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Nonsingular quarkonium potential
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It is shown that the appearance of singular terms in the quasistatic potential models of quarkoni-
um can be avoided with the use of an improved quasistatic approximation, which yields a nonsingu-
lar quark-antiquark potential.

Although quasistatic potential models for quarkonia
have met with considerable success, the validity of such
models has often been questioned. It has also been sug-
gested' that the singular terms appearing in the quar-
konium potential be replaced by phenomenological non-
singular form factors. We shall give a justification for the
use of a quasistatic potential for the treatment of quar-
konia, and further show that a nonsingular quarkonium
potential can be derived by means of an improved quasi-
static approximation.

Recently a quark-confinement mechanism inspired by
renormalization-group-improved perturbative quantum
chromodynamics was proposed, and it was shown that
quark confinement can be understood as a consequence of
the fact that quarks and antiquarks can exchange only
hard gluons. It was further argued that this confinement
mechanism helps to explain why a quasistatic quark-
antiquark potential yields good results for quarkonium
spectra even when the quark and antiquark possess appre-
ciably large momenta. Let us consider the scattering of a
quark and an antiquark in the center-of-mass system, and
let p and p' be the initial and the final momenta of the
quark. Since

where

k=p' —p, s=p'+p,
it follows that if k is allowed to take only large values, s
can be treated as small. This provides a justification for
the quasistatic approximation in which terms of second
and higher orders in s are ignored.

We shall now derive a singularity-free quarkonium po-
tential by an improvement of the usual treatment. In or-
der to obtain the potential from the scattering operator,
let us carry out a nonrelativistic approximation of the
quark-antiquark scattering matrix element by treating
p /po as small. Since p /po is smaller than p /m, this
approximation is an improvement over the usual practice
of treating p /m as small, and it can be expected to give
an improved result for the potential at very short dis-
tances, which correspond to large momentum transfers.
We thus obtain, for the Fourier transform of the second-
order perturbative potential,
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with

S= —,(o1+tr2), S12 =3tr1'rtr2'r —tr1 tr2, (4)

and

f1 =[1—(1+2mr)e ']/m2r2,

f2 = [1—(1+2mr + —,m r )e "]/m 2r 2 .

We observe that P 2(r) behaves as 1/r at the origin, and
application of the same treatment shows that P 4(r)
behaves as 1nr/r at the origin.

It is also interesting to note that, according to the im-
proved quasistatic approximation, Fourier transforms of
the scalar-exchange and vector-exchange linear confining
potentials are
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and since in the quasistatic approximation we can set
p2 k2 and p
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so that

P s(r)=Br — (1——,f))L.S,
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which are finite at the origin.
As is well known, a singular potential has the disadvan-

tage that the singular terms in the potential have to be
treated as perturbation for the solution of the Schrodinger
equation. A similar situation arises when the kinetic ener-

gy of a two-particle system is taken in the form

T=p /m —p /4m

and it becomes necessary to treat the p term as a pertur-
bation. With the use of the potentials derived here, it is
possible to avoid altogether the use of perturbation for the
calculation of energy levels and wave functions of quar-
konium by expressing its Hamiltonian as

A =2(p +m )'~ +1 (r),
where I (r) represents the sum of nonsingular perturba-
tive and confining potentials.
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