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Mixing of quark flavors
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A specific framework to describe the weak-interaction mixing of an arbitrary number of quark
generations is investigated. In particular the mixing matrices for four and five flavors are studied.
In the case of three flavors a mixing matrix results which differs in a crucial way from the standard
Kobayashi-Maskawa form.

The mixing of quark flavors in the interaction of
quarks and 8' bosons is a yet-unexplained feature of the
weak interactions, which must be related to the mecha-
nism of mass generation for the quarks. If all quark
masses were zero, the phenomenon of weak-interaction
mixing would not exist. Thus the mixing parameters can
be viewed as elements of the quark mass matrix. In case
of three generations of quarks the weak-interaction eigen-
states d', s', and b' are related to the mass eigenstates
d, s, and b by the 3)& 3 unitary mixing matrix V (Ref. l):
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S =V s, V= V,dV„V,b

Vtd Vt Vtbb

Taking into account the experimental constraints and
the constraints imposed by unitarity, one finds for the ab-
solute values of the mixing elements (see Ref. 2, for a re-
vision of the V„b matrix element see, e.g. , Ref. 3):
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Thus nature seems to prefer the mixing of nearest neighbors; e.g. , a particular flavor is predominantly mixed with the
quarks close by in the mass spectrum. This suggests possible relationships between quark masses and mixing angles, e.g. ,

those discussed in Refs. 4 and 5.
It is not excluded that the mixing element V„b is zero. However the unitarity constraints require V,d to be nonzero.

In the limit V„b ——0 the phases of the complex matrix elements of V can be rotated away, and one is left with a real rota-
tion matrix which can be parametrized by two angles. A third angle and a complex phase can be introduced as a slight
perturbation. As a result one obtains the following representation of V discussed in Ref. 6:
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Here S and C denote sinO and cosO, respectively, where
O,z is the mixing angle describing the mixing of generation
i with j. The Cabibbo angle Oc is given by O12.

In this paper we should like to discuss a simple general-
ization of the representation (3) for an arbitrary number
of generations. Especially it is our aim to parametrize

each nondiagonal matrix element Vz. (i~j) by a special
angle 8;~. A very simple generalization of Eq. (3) is found
which in retrospect supports the claim made in Ref. 6
that the representation (3) is the most suitable one to
parametrize the experimental data.

The mixing among n generations is described by an

35 1732 1987 The American Physical Society



35 BRIEF REPORTS 1733

n Qn unitary matrix Vas
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where q is the quark-mass eigenstate, q' the weak-
interaction eigenstate, (q~, q2, q3, . . . ) =(d,s, b, . . . ).

In order to arrive at a simple parametrization of V we
suppose, in accordance with observation in the case of
three generations, that the mixing elements can be ex-
panded in a small parameter p. The diagonal elements
are of order 1 ( Vz -1), the elements next to the main di-
agonal are of order p ( V~~. -c;Jp,

~

i —j ~

=1, c;~ are con-
stants of order 1), etc. In case of three flavors such an ex-
pansion is similar to the one discussed by Wolfenstein.

The structure of the mixing matrix which results is

(V;, )=

1 012 0 0

0

(the symbol —denotes the constants c;~, which we have
omitted).

The mixing of n generations is described in general by
the n parameters of V. %'e can adjust the 2n —1 relative
phases of the 2n quark fields such that 2n —1 elements of
V can be made real, for example, all diagonal elements V„.
and all elements above and next to the main diagonal
V;;+& (altogether 2n —1 elements). The remaining

( n —1) parameters are , n—(n—1) angles and
—,
'

(n —1)(n —2) phases (for a general parametrization see
Ref. 8).

In zeroth order of p the mixing matrix is the unit ma-
trix. Next we treat the first order of p and consider the
case where all elements V~;+~ are different from zero, but
all elements above the latter vanish:

The exact form of the matrix can be easily obtained if
we introduce the (complex) rotation matrices R;J as
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First we shall use such rotation matrices with 5,J ——0, in
which case the —symbol is left out: R;J =R;~. The ma-
trix Vis given by the (real) product

V=R„1„R„2„1. R23R12 (8)

In this case the mixing of flavors proceeds sequentially.
First one has a mixing between d and s, followed by a
mixing between s and b, etc. Only nearest neighbors mix.
No phases are present.

We observe that the number of zeros above the main di-
agonal is equal to —,

'
(n —1)(n —2), i.e., it corresponds ex-

actly to the number of independent phases. This suggests,

I

analogous to Eq. (6), the following parametrization (in
lowest order of the angles):
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Here 013 denotes 013e, etc. Thus each matrix ele-'~13

ment Vi (j&i) is described by one angle 8,J and one
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phase 6,z. In the special case j=i +1 no phase appears,
i.e., phases appear only if the two quarks involved in the
mixing are not nearest neighbors.

An exact parametrization of the mixing matrix, which
(-)

in lowest order of 8 leads to Eq. (9), can be constructed
analogous to Eq. (8). One finds

V=Rn —],nR~ 2„' R2 „R) ~
' Rk ) kRk

X . . R2 I R ( I,
. - . R23R )3R I2 . (10)

The matrix V is a product of (complex) rotation ma-
trices. The order of these matrices given in Eq. (10) is not
unique, due to the fact that two matrices R;~ and Rk~
commute if i&k, j&l. For example, in case n =4 there
is, besides the order given in Eq. (10), one additional pos-
sibility, while for n =5 eleven other possibilities exist.

The pattern of the rotation sequences given in Eq. (10)
is denoted by the arrows in the scheme
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The exact form of the mixing matrix is

V=R„)„R„2„R„2„) R24R23R, 3R,2 . (13)

If we are only interested in the matrix V up to the
( —)

second order in p, one has in lowest order of O:
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The quark mixing matrix given in Eq. (10) is
parametrized in terms of ,

'
n (n——1) angles 8;~. and

—,(n —1)(n —2) phases 5;J. (j)i +2) and represents a

very simple way to describe the phenomenon of weak-
interaction mixing for the case of an arbitrary number of
generations. Each matrix element VJ(j &i) is described
by one angle O;~ and one phase 6;J. We believe that this is
the most suitable generalization of the Cabibbo rotation
matrix. Below we consider specific cases.

(a) n =2: The matrix V reduces to the real rotation
matrix R~q (Cabibbo rotation).

(b) n =3: One arrives at the matrix Eq. (3), given in
Ref. 6.

(c) n =4: The mixing matrix Vis given by
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(d) n =5: One finds

V=R45R35R25R )5R34R24R )4R23R $3R )2 .
The full expression will not be given here. If we keep only the terms up to second order in p, we obtain

(15)



35 BRIEF REPORTS 1735
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(In the elements below the main diagonal we have neglect-
ed all terms of the third or higher order in S;J.)

In this paper we have presented a simple way to
describe the mixing of quark flavors. A general pattern of
the n &&n mixing matrix was discussed. In the case n =3
this pattern reduces to the mixing matrix given in Eq. (3).
This supports the idea that in the case of three flavors this
matrix should be used in analyzing the experimental data,
and all other proposals, including the one introduced in
Ref. 1 should be abandoned. If nature should provide us
with more than three generations of quarks, the matrices
given in Eq. (14), Eq. (15), or, in general, in Eq. (10),

should be used to describe the weak-interaction mixing.
In case of four flavors our parametrization is very similar
to the one discussed by Gronau, Johnson, and Schechter,
and coincides with the one used by Botella and Ling-Lie
Chau' in their analysis of CP violation.
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