$K^0 \leftrightarrow \overline{K}^0$ transitions in matter

G. V. Dass

Indian Institute of Technology, Powai, Bombay 400 076, India

K. V. L. Sarma

Tata Institute of Fundamental Research, Colaba, Bombay 400 005

P. K. Kabir

CERN, Geneva 23, Switzerland and University of Virginia, Charlottesville, Virginia 22901 (Received 8 September 1986)

The predicted time asymmetry between the rates of $K^0 \rightarrow \overline{K}^0$ and $\overline{K}^0 \rightarrow K^0$ transitions is shown to remain the same whether the kaons propagate in ordinary matter or in vacuum.

Failure of T invariance, viz., reciprocity, is expected on the basis of the observed CP noninvariance in neutral-kaon decays and the theoretical premise 3,4 of TCP invariance, but is yet to be observed in any phenomenon. The CP noninvariance reported in neutral-kaon decays is attributable entirely to a small admixture of the CP=+1 component in the long-lived neutral-kaon state, which is almost a CP=-1 eigenstate. As long as this is the case, the only T-noninvariant effect which can be definitely predicted is a difference in the rates of $K^0 \rightarrow \overline{K}^0$ and $\overline{K}^0 \rightarrow K^0$ transitions. We shall show below that the predicted time asymmetry remains the same whether the kaons propagate in a vacuum or in matter likely to be encountered in terrestrial laboratories. This may have some relevance for proposed 5,6 experimental tests of the effect.

In a material medium, the coherent forward propagation of a neutral-kaon beam is described by adding to the quasi-Hamiltonian Λ , which describes the time evolution of an arbitrary free neutral-kaon state, an optical potential representing the effective interaction of kaons with the medium. For a "dilute" medium, the additional term is given by 7

$$\Lambda_{\text{med}} = -2\pi m_k^{-1} \begin{bmatrix} \sum_j f_j & 0 \\ 0 & \sum_j \overline{f}_j \end{bmatrix}, \tag{1}$$

where f_j and \overline{f}_j represent the forward-scattering amplitudes for K^0 and \overline{K}^0 , respectively, from a scatterer j, and the summation extends over all the scatterers in a unit volume. In principle, there could be off-diagonal entries in (1) caused by $\Delta S = 2$ interactions but, according to a well-known argument, these are extremely small, of order 10^{-12} relative to the diagonal terms and totally negligible in the present context. The addition of a term such as (1), which distinguishes between K^0 and \overline{K}^0 , to the quasi-

Hamiltonian is formally equivalent to the introduction of an effective TCP-noninvariant interaction. Since Ref. 1 already considered the general case in which TCP invariance is *not* assumed, we can directly take over the result obtained there for the time asymmetry:

$$\mathcal{A}_{T} = \frac{P_{K\overline{K}}(\tau) - P_{\overline{K}K}(\tau)}{P_{K\overline{K}}(\tau) + P_{\overline{K}K}(\tau)} = \frac{2\sin\sigma\cos\delta}{\cos^{2}\delta + \sin^{2}\sigma} , \qquad (2)$$

where the parameters $\sigma = \pi/2 - (\alpha_S + \alpha_L)$ and $\delta = \alpha_L - \alpha_S$ are measures of T noninvariance and TCP noninvariance, respectively. The mixing angles α_S and α_L are now to be interpreted as the values corresponding to the eigenstates of the quasi-Hamiltonian *including* the extra term (1); we have changed the subscripts 1,2 of Ref. 1 to S,L to conform to the currently accepted notation.

The essential remark of this note is the observation that the ratio of the transformation rates $P_{K\overline{K}}(\tau)$ and $P_{\overline{K}K}(\tau)$, given by Eqs. (9a) and (9b) of Ref. 1, depends only on the magnitude of the ratio $\Lambda_{\overline{K}K}/\Lambda_{K\overline{K}}$, which is unaffected by the addition of a term such as (1) which has no off-diagonal elements. Consequently, the interposition of any material substance of normal density between the point of production and the point of detection of a neutral kaon will not affect the predicted time asymmetry,

$$\mathscr{A}_T \cong 2\sigma$$
 , (3)

to lowest order in the *CP*-violation parameters σ and δ which are known to be small. Under the hypothesis of *TCP* invariance (and ignoring possible small $\Delta S = -\Delta Q$ corrections), σ is the leptonic charge asymmetry in K_L decays; hence, the corresponding predicted value¹⁰ of \mathcal{A}_T is $(6.60\pm0.24)\times10^{-3}$.

One of us thanks CERN for its hospitality. This research was supported in part by the U.S. Department of Energy.

¹P. K. Kabir, Phys. Rev. D 2, 540 (1970).

²V. L. Fitch, Rev. Mod. Phys. 53, 367 (1981).

³J. Schwinger, Phys. Rev. **82**, 914 (1951); **91**, 713 (1953).

⁴G. Lüders, Ann. Phys. (N.Y.) 2, 1 (1957).

⁵E. Gabathuler and P. Pavlopoulos, in *Proceedings of the LEAR Workshop*, edited by U. Gostaldi and R. Klapisch (Plenum, New York, 1982).

⁶N. Tanner and R. Dalitz, Ann. Phys. (N.Y.) 171, 463 (1986).

- ⁷See, e.g., P. K. Kabir, *The CP Puzzle* (Academic, London, 1968), p. 67.
- ⁸L. Okun and B. Pontecorvo, Zh. Eksp. Teor. Fiz. 32, 1587 (1957).
- ⁹This can be seen by comparing Eqs. (9) of Ref. 1 with Eq. (B7) on p. 106 of Ref. 7.
- ¹⁰Particle Data Group, Phys. Lett. 170B, 1 (1986).