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Magnetic moment and form factors of a composite system in a solvable potential model
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The momentum-transfer (Q) dependence of the electromagnetic form factor is calculated for the
charged-fermion—neutral-scalar system in a potential model. The magnetic moment has a major
contribution similar to the static bag-model value. Two additional corrections have opposite signs.
Their near cancellation is connected with the proper description of the photon vertex. The same
description, together with the integration measure deduced from the quasipotential formalism, leads
to a form factor which has as low rate of decrease with high-Q values as suggested by the experi-
mental data. This investigation, based on an explicitly solvable model, might give some useful hints

for the treatment of the more complex systems.

I. INTRODUCTION

Quark-model calculations of nucleon form factors are
usually based on static potential models. In a broader
sense the MIT bag model is also included in that category.
Starting with a model which describes a situation with
zero momentum transfer (Q=0), one has to calculate
quantities which are either proportional to Q (i.e.,, mag-
netic moments) or which are continuous functions of
|Q| (i.e., Q* dependence of form factors). Instead of
static-model states one has to use states which explicitly
depend on the total four-momentum P. This means that
essentially static-model states have to be suitably boosted.
Problems can easily emerge in this transition from P=0
to P40 model states.

The calculations of the nucleon magnetic moment in
the MIT bag model, for example, did not produce uni-
form results.!~® When form factors were calculat-
ed,"” 1011 their falloff with high Q? was usually faster
then indicated by experiments.

There is some hope that the elucidation of all these dif-
ficulties can come from a relativistically covariant poten-
tial model.”> In such a model the total momentum of the
system P and its total mass w can be unambiguously de-
fined. Via the quasipotential approach'*~!7 such a model
is also connected to the Bethe-Salpeter formalism.'® This
last connection, as discussed in the Appendix, helps to
find a proper manifestly covariant expression for a form
factor.

The bound state of a charged spinor and a neutral sca-
lar particle'? already represents a system which is suffi-
ciently nontrivial for our purposes. The model suggests
that the differences in the theoretical values for magnetic
moment! ~° follow from the respective starting assump-
tions about center-of-mass (c.m.) coordinates. There are
two types of corrections to the main contribution. They
come, respectively, from the change of the coordinates
and from the boosting of the model states. In our simple
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model these two effects almost completely cancel out.*®
As a further illustration one can build a model containing
several charged spinor particles which do not interact
among themselves. The model contains a neutral scalar
particle which interacts with all spinors and in some sense
plays a spurion role.”® Later in the text it will be denoted
as the {N +1} system. Such a model, which has a
kinematic similarity with the soliton-bag model,* can be
used to illustrate the difference between Refs. 4 and 6 and
Ref. 9, respectively.

If the charge form factor is calculated (see Sec. 1V) in
accordance with prescriptions found in the spinor-scalar
model, its Q2 dependence is in qualitative agreement with
the experimentally found behavior. When calculation is
carried out by employing the usual conventions,”%1%!! the
charge form factor (as shown in Fig. 1) falls off more rap-
idly with increasing Q2.

II. TWO-BODY POTENTIAL MODEL

Our model is based on Sec. V of Ref. 12. For simplici-
ty we assume that both particles, or at least the spinor
particle 1, are massless. Useful kinematical relations are

P=p,+p;,

€ €
p= wa— sz >

(2.1)
4 €1 P € P
P1=p w s Pa=—p + w >
€+e6=w,
Here, p; and €; are the momentum and energy of a parti-
cle i. According to Ref. 12 the wave function ¥ which

describes the spinor-scalar system is a four-component
spinor which satisfies
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(1 —U0=0, (2.2a)
P-py=0. (2.3a)
In coordinate space the relevant variables are
X =X1—X3,
€1xX,+6€x
y = it d SRt k2 , (2.4)
w
€2
X1=y +—Xx .
w
If
U= U( X ) )
(2.5)
., PHPY
x,l‘= _g,u + P2 Xy

the system (2.2a) and (2.3a) is solvable by a factorizable
wave function

Y=¢(yn(x,), (2.6)
with
b(y)=e~"7, 2.7
one can write (2.2a) as
€
p.+—P—-U(x,)
w

n(x,)=0. (2.2v)

This equation takes a simple form in the system where
center of mass is at rest (c.m.r. system)

P=(w,0),
U=U(|x]|).

(2.8)

The potential U need not be completely specified for our
purposes. Where detailed illustrations are useful we will
assume that it is an infinite square well or that it is deter-
mined by boundary conditions which correspond to the
MIT bag model. The condition (2.3a) becomes

j =0, 2.3b
iw oy n(x) (2.3b)
so that the equation (2.2b) assumes the form standard for

a stationary problem:

em(x)=—[yp—U(|x|)In(x) . (2.2¢)

Variables x and p in (2.8) and (2.2¢) are c.m.r. variables.
In some expressions below the corresponding quantities
will carry the label c.m.r. explicitly. We do not go into
the explicit numerical determinations of €, and w which
are not important for our purposes. The complete solu-
tion of such {1+ 1} system is lucidly discussed in Ref.
12. For the case where m;=m,=0 one finds
€1=€6;=w/2. With m;=0 and m,50 the system mass
w has to be found from the quadratic equation
w?—2€;w —m,?>=0. The quantity €, itself is always
found by solving (2.2c).

The solution for a c.m.r. system

Yome=e on(x) (2.9a)

can be boosted to a Lorentz frame whose velocity is
v=P/E as follows:
_P(Px) P

_—xo

—> = _iP.y
d’c.m‘r. ¢'P e S(P)"I X+ w(E+W) w

(2.9b)

In the simple case discussed here the explicit form of
the spinor transformation S(P) has the well-known free-
particle form

1

SP)=—F—e—— .
B = e Ty LYot W

(2.10)

In all applications' ~° the expression (2.10) was used as
a reasonable approximation in the calculation of the nu-
cleon (or octet baryon) magnetic moment. It is easy to see
that (2.10) connects solutions of Egs. (2.2b) and (2.2¢).
The key formulas are

Ul X|eme)=Ullx1]),

2
2 P(P-x) _2 ")
(xc.m.r.) - ‘X—f— w(E+w) w 0 - -xle,u, ’
and
S~ YP)PS(P)=w ,
—1 —( - T =
ST Py, S(P)=(—)y |p.+ w(E +0) P10

= _Y(pl Je.m.r= —Y Pemr. -

1
VawEw) 1T

The boosted form (2.9b) satisfies also the subsidiary
condition (2.3). That follows trivially from the equality

P(P-x) P

———— =0.
X+ w(E +w) wxO

The electromagnetic interaction is treated as the first-
order perturbation. In the field-theory language that
would be a bound-state interaction representation which is
commonly used in the quark-model calculations of form
factors. This means that strong interactions are included
“exactly,” which has to be understood in the sense of the
potential model building where the bound spinor-scalar
state is described by a solution of particular relativistic
constrained dynamics.?’ (The nonperturbative treatment
of the interactions with an external vector field is a much
more complex problem.?°)

In the calculation of the magnetic moment the follow-
ing expression for the electromagnetic vertex is used:
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N= fd4x1d4leZPf(x1 ,Xz)eye AiQx"/’P,-(xhxz)

—iQ

= [d* d*yip (x,pe: )
= p(X.y)e-y exp yHx

=2m)*“P;—P,—Q)N .

d}Pi(xry

)O(L -x)

(2.11a)

Here e is the photon-polarization vector while the integral N is determined by

N = [d*%n'(x,P/)S"(P;)y ey exp

. €2
—i—Q-x
w

The expression (2.11) satisfies all general requirements. It
openly displays overall energy-momentum conservation in
the form of the four-dimensional 6 function as demanded
in Refs. 7—9. This came naturally from the exponential
factor in (2.9). The combination d*x8(L -x) constitutes a
covariant measure.'°~1320—23 When

P;=P,=P, (2.12a)

eY—%o, (2.12b)
the choice L =P /w =P allows for a suitable normaliza-
tion of the wave functions.? 2> The introduction and the
choice of the covariant measure can be, via quasipotential
formalism,!*~!"21=23 connected with the Bethe-Salpeter
equation.!® Some details are discussed and described also
in the Appendix. General analysis of the physical situa-
tion led, already some time ago,!° to the introduction of
such covariant measure, which is always present in the
form-factor calculation, even if not always written out ex-
plicitly.7_11 The usual, sometimes hidden, choice is

L=P,+P;. (2.13)

With the overall momentum conservation as in (2.11) a
more consistent alternative (see the Appendix) is

L=P;P;=P,+0Q). (2.14)

The low-momentum-transfer behavior, i.e., the value of
the magnetic moment, is not influenced by the form of
the covariant measure. Its effect is proportional at least
to Q? so that differences appear at high Q values dis-
cussed in Sec. IV of this paper.

The choice of boosting made in (2.11) agrees with phys-
ical intuition and with the form of a vertex for free spin-
% particles. In the free-particle case the vertex would be

f d4xv(pf )eipfxe e i, _iPixU(pi )
with Dirac spinors
Up)=S(pX

found by boosting Pauli spinors X and the exponential
factors found by Lorentz transforming a wave corre-
sponding to the particle at rest:

e—th_)e—ipx .

If the wave functions 7’s are bag-model solutions, in-

S(P;)n(x,p;)8(L -x) .

(2.11b)

I

tegration in (2.11) goes over hyperellipsoids whose boun-
daries depend on the bag radius R and on the four-
momenta P; and Py.

If one is interested only in the leading terms in P; ; and
Q, the x, dependence of (2.11b) can be omitted. An ex-
pansion of 77’s in powers of P/wx, shows that the leading
contribution after the integration must be proportional to
(P/w)(R-P/E)?. In the Breit frame where

P;=—P;=Q/2 (2.15a)
and for the spacelike photon with
q=(0,Q) (2.15b)

the exponential factor does not depend on x,. The
choices (2.15) are convenient in the magnetic-moment cal-
culations.?~7

In order to find the magnetic moment one can simply
replace, in (2.11b),

d*x8(L-x)—dx ,

and integrate over the sphere with the radius R. Detailed
justification of such an approximation, valid for the lead-
ing low-Q contribution only, can be found by studying
formulas in Sec. IV.

The magnetic moment corresponds to the form factor
Gy (Refs. 1—9) which always appears multiplied by the
factor

oXxQ.

This Q can come either from the exponential factor in
(2.11) or from the spin rotation [i.e., S(P)]. As in Ref. 2
we shall denote the respective contributions u° and p? so
that the result can be written in the general form

€]
=—pS+pulf= [1—— (pS+puf. .16
p="H +u o |# +u (2.16)

Explicit forms for u5 and u® can be found in Ref. 2.
Here, uS corresponds to the old static-bag-model result
while p® is a correction due to spinor rotation. It can be
relatively large, but as the “standard” contribution u5 is
quenched, the overall result is

p~p®

in quantitative agreement with Refs. 4—6.
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III. SOME GENERALIZATIONS

In order to learn somewhat more from the result (2.16)
one can study the { N + 1} model, which has already been
described in the introduction. Such a model is a simple
generalization of a spinor-scalar model. It will be applied
to the low-Q limit, or equivalently nonrelativistic limit, so
we are not concerned with its relativistic covariance. The
structure of the { N 41} model is close to the usual'~°
MIT-model-based calculational schemes. It will be used
to illustrate possible choices of so-called “internal coordi-
nates.”

One can introduce internal coordinates p; as

xi:Pi+y, [:1"~‘,N7
2 €ixi
S S
w i

Here x; are “absolute coordinates” while y is the c.m.
coordinate. Overall consistency requires

26,'[),‘:0 . (3.2)

y

In the already discussed spinor-scalar case one finds

€ €]
——Xx, — —Xx , (3.3)
P1= X, pP2= X

while the integral (2.11b) can be written as

N~ [dpm'sTyleyse "% . 2.11¢)
In the boosted bag problem, Refs. 2, 3, 7, and 8 have used
for the nucleon bag state a wave function of the general
form

. 3
Yp~e DT [S(Pmp;,P)], (3.4)

i=1

which is a straightforward generalization of the wave
function (2.9). In the system in which P=0 all exponen-
tial factors of the type exp(— i¢;z°) are united in a general
factor exp(—i Y, €;) ~exp( —iwy°®), (:°>—y°). However,
Refs. 2, 3, 7, and 8 assume that an absolute coordinate for
the ith particle is

X =pi +y. (3.5)

This immediately leads to the expressions of the type
(2.11e) and to the result

w=pS+u? . (3.6

The important thing is that here y and x; are treated as
independent quantities; y is just a coordinate of the center
of the bag. Once such an ansatz is made, Lorentz
transformation (i.e., boosting) inevitably leads to (3.6).° In
a way, such an ansatz seems a natural generalization of a
static picture in which the bag is centered in the origin of
the coordinate system (y=0). Superficially it seems to be
analogous to our model, if one identities p, as an “inter-
nal” bag-model variable. However, if x (2.4) is selected as
an analogy for the “internal” bag-model variable, the re-
sult of the type (2.16) is obtained, with the quenching fac-
tor (1—¢;/w) analogous to the one suggested by Refs. 4

and 6. As the choice (3.5) ignores physical meaning of the
variable y (3.1) and also the consistency condition, (3.6) is
highly suspect. Generally speaking, the internal or rela-
tive coordinates for the { N 41} system are

zi=x;—Xx5, i=1,...,N . (3.7)
Here x;,x; are “absolute” coordinates analogous to x; and
x, from the {1+ 1} case, while z;’s are analogous to the
relative coordinate x from (2.4). The binding potentials
are functions of z; and xs is the coordinate of the scalar
particle which here plays the role of a spurion. One can
introduce the c.m. coordinate

> €ixi +€xg
w

y (3.8)

, W= > €+E€; .

i
This model closely corresponds to the model described by
Ref. 19, where one can find many additional relevant dis-
cussions. Coordinate z; here corresponds to the coordi-
nate £, of Ref. 19. The expression (3.8) is the same as
(2.20) from Ref. 19. If the central scalar particle is treat-
ed as an unphysical spurion it is possible to arrange that
€;’s are eigenvalues of N bound states. Equations (3.7)
and (3.8) allow us to express x;’s as functions of z;’s
which do not depend on €5:

——i 2 €;2; , (3.9)

€
1__
w i1

x1=y +2z;

etc. The 'electromagnetic verticies are described by a
straightforward generalization of the formula (2.11a) in
which one should make the replacements

xX—Z; ,

(3.10a)

N
Jdx—3 [d%; .

i=1
The electromagnetic field is coupled to a particle, ith spi-
nor and the corresponding contributions are summed
over. The overlaps of the other k=i spinors give factors
one in the nonrelativistic limit. The wave function of the
system is a product (properly symmetrized) of the forms
(2.9b) and (3.4):

N
IV = = I (symm)S;(P)n;(z;,P) . (3.10b)

P
i=1
In the space of three quarks, for example, the operator I
which describes electromagnetic vertex is
I'‘'=

> rheyier: . (3.10¢)

permi, j, k

Proper relativistic generalization of (3.10c) might lead to
nontrivial overlaps of a wave function of spectator spinors
and to the redefinition of the electromagnetic vertex.?* In
order to avoid these problems, this section, as mentioned
above, does not aspire to the full relativistic covariance.

In that system we have in the photon vertex for the spi-
nor particle i=1 an exponential
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€
exp(—iQ-x|)=exp | —iQ-y—iQ-z; 1—;‘

(3.10d)

——ii}—Q- > z€; } .

i1

In the magnetic moment calculation the term with y is ab-
sorbed in the overall § function which assures momentum
conservation. Only the second term in (3.10d) contributes
to u in the leading order of Q. If all spinor masses are
equal one has ¢;=e¢, so that one has a common factor
(1—e/w) in front of w5 contributions. With three
charged particles, i.e., three quarks, and with properly
symmetrized and normalized wave functions for the
{3 + 1} system, one finds, with €; =¢,

(3.11)

p= pi4put .

|_€
w

Here u5 and u? (see Ref. 2, for example) are obtained by
summing over three quark contributions which follow
from (3.10c). It is not surprising that the result (3.11) is

J

P,P;x) P
iy 21 Prx) By

J, (Q)—fd3x ex iaiQ-x —
oI L K w(E +w) wE

Here parameters a and B are introduced to distinguish
various cases:

(1) a=1, B=1,
(2) a=1, B=0,

(4.2)
(3)a=2, B=1,

The first case corresponds to (2.14). The fourth case is
analogous to the theory adopted by Refs. 7, 8, and 10 and
to the coordinate selection leading to the result (3.6) for
the magnetic moment. The value 8=0 is associated with
the covariant measure (2.13) in the Breit frame (2.15),
where

L=P;+P;=0.
In that frame, with the coordinate substitution

Q(Q-x)

2=X+ 20(E 1w (4.3

and with the notation
Q(Q-z)

ri(B)zziBF , (4.3b)

one can write
_w L BT
Jo(Q,a,B)= z fexp ia— EQ z |y (rJB?)
><77(r+(B))d3z . (4.3¢)

BPf‘X
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in agreement with the soliton-bag-model-based result* as
the respective models are obviously analogous.

In order to choose between result (2.16) or (3.11) and
(3.6) one has to decide which theoretical model better ap-
proximates the real physical composite baryon. A picture
in which c.m. coordinate is a function of the absolute
variables of the constituents seems intuitively more ap-
pealing. It is also favored by the present potential-model-
based considerations.

IV. HIGH-MOMENTUM-TRANSFER DEPENDENCE
OF A FORM FACTOR

The main aim of this section is to demonstrate how the
high-Q? behavior of form factors is influenced by the
coordinate transformations and by the selection of a co-
variant measure. The model itself is too simple for the
direct comparison with experimental data.

It is sufficient for our purpose to calculate a quantity
corresponding to a charge form factor, which is obtain-
able from formula (2.11) by the replacement (2.12b). A
useful form is

P,’(Pi'x) P,‘

w(E +w) wE 4.1

STUPs)yoS(P)y |x+ BP;-x

T

According to our potential model €,/w =+ (€;=€,=¢;
w =2¢) so that a=2 leads to an exponential factor corre-
sponding to the choice (3.5). The region of integration,
according to our bag-model-like boundary condition, is
determined by

|r(B)| <R .

The overlap of the functions nT and 7 exits only over the
smaller region

| (B)| <R,

which has to be selected for the calculation of the integral
Jo. Obviously f=0 in case (4), for example, leads to an
integration over a spherical region, which was indeed used
by Refs. 2—7, 10, and 11. The numerical integration is
further simplified by introducing

(4.3d)

lz|=r, Qz=rQ¢,
2 02 |, 172

f+(B)= 1+BEZ— 2+ g & , (4.42)

r=Ry(f (BN, d’x—27dydx R(f,)"".
Here the integration goes over

O<y<l, —1<é<l. (4.4b)
The results are normalized by the requirement

Jo(0,a,B)=1 (4.3e)

which is, for case (1), also the correct normalization for
the potential-model wave functions.
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The numerical values of J, were found for
o=kR =[(&;,R)*—(mR)*]'/2=2.396 ,
€R =2.5963 ,
m R =1.000 .
In Table I and Fig. 1 they are shown as functions of

=1L

w

The form factor J, exhibits well-known zeros'?> which
are always present when one has model wave functions in-
side a rigid sphere. The onset of those zeros is model pa-
rameter dependent; for our cases (1) and (2) they would
appear at higher Q, i.e., t values.

The curve 1, corresponding to case (1), which is the
correct relativistically covariant treatment in the potential
model, falls much slower with the momentum transfer
than other curves. The high-Q behavior is influenced by
both the invariant measure and the exponential factor. Of
the two, the latter seems to be much more important.
Only the selection (3.1) leads to a form factor which does
not fall with Q too rapidly. When the selection corre-
sponding to (3.5) (a¢=2) is made J, falls so rapidly with
Q that the correspondence curves 3 and 4 are shown in
Fig. 1 only for the ¢ values # < 2.

One should keep in mind that the calculation of Refs. 7
and 11, for example, lead in general to form factors whose
large- Q behavior was unsatisfactory. They were decreas-
ing at high-Q values faster than indicated by the experi-

TABLE I. The charge form factor J, as a function of
t=|Q| /w.

t Case (1) Case (2) Case (3) Case (4)
0.0 1.000 1.000 1.000 1.000
0.2 0.971 0.974 0.912 0.912
0.4 0.892 0.903 0.699 0.700
0.6 0.785 0.802 0.466 0.499
0.8 0.674 0.687 0.281 0.238
1.0 0.574 0.574 0.159 0.098
1.2 0.491 0.472 0.086 0.022
1.4 0.424 0.385 0.044 —0.011
1.6 0.371 0.314 0.021 —0.021
1.8 0.328 0.256 0.007 —0.019
2.0 0.294 0.211 —0.000 —0.014
2.2 0.266 0.175 —0.004 —0.009
2.4 0.243 0.146 —0.006 —0.004
2.6 0.224 0.123 —0.008 —0.001
2.8 0.207 0.105 —0.008 0.001
3.0 0.193 0.091 —0.008 0.003
3.2 0.181 0.079 —0.008 0.004
3.4 0.170 0.069 —0.008 0.005
3.6 0.161 0.061 —0.008 0.005
3.8 0.152 0.055 —0.008 0.005
4.0 0.144 0.049 —0.007 0.005
4.2 0.138 0.044 —0.007 0.005
4.4 0.131 0.040 —0.007 0.005
4.6 0.125 0.037 —0.007 0.005
4.8 0.120 0.034 —0.006 0.005
5.0 0.115 0.031 —0.006 0.005

mental data. It seems very likely that this situation would
be improved by using the expression (3.4) instead of one
which leads to the result (3.6).

V. CONCLUSION

It seems that the main problem in the quark-model cal-
culation of magnetic moment!~® and Q dependence of
form factors"7!®!! js in the exponential factor (2.11) or
(3.10). This factor is actually a photon wave function. Its
precise form depends on the electron of the coordinate
system used to describe many-body problems. As dis-
cussed in Secs. II and III of this paper, this is a question
of the model building. A simple covariant potential
model provides a well-defined answer described by (2.11).
This can be also, as discussed in Sec. III, generalized to a
version of the quark model. The factor €/w which ap-
pears in the exponent, tends to make the magnetic mo-
ment too small. However, this might be the consequence
of the MIT bag model wave functions which were used to
describe the inner motion of quarks.

On the other hand, the factor €/w in the exponential in
(2.11) and (4.1) leads to form factors which fall relatively
moderately with Q, as seems to be required by the experi-
mental data.

| — S~y T T v 1
0 1 2 3 4 5
FIG. 1. The values of the charge form factor are calculated
for four combinations of parameters a and B defined by (4.2).
Curve 1 (a=1,B=1) is given by the exact treatment of the
model.
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It might be that a suitable potential quark model, with
a proper covariant treatment, based on the pseudopoten-
tial approximation to the Bethe-Salpeter equation, could
provide a satisfactory description for both small and large
momentum transfer.
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APPENDIX

As stated in Refs. 10, 12, 14—17, and 21-—-23, the
“equal-time surfaces” determined by the condition

(f1Zx]|i)=0 (A1)

are  associated with the quasipotential equa-
tions.!#~17:21=23 Here £ is an operator meaning the total
four-momentum of the two-particle system, and x is the
relative coordinate. The condition (A1) determines the set
of hyperplanes in the space of the relative coordinates. It

stays valid even when an external electromagnetic poten-
tial is present.?® The meaning of condition (A1) can be il-
lustrated in the quasipotential approach. One has to
study two-time Green’s function for two-particle scatter-
ing, go to its Fourier transform, and then use the c.m.r.
system for the momenta entering the Green’s function.'

The four-time Green’s function (GF) G is connected to
the two-time GF G by

G (xox,xoy,x ,Oxl)xE)Y, )
= [ 8(x0—10)8(x 5 —y0)dyody oG (x,,x",y") . (A2)

Time integration in (A2) is to be understood as being per-
formed in a c.m.r. system. The covariant form of (A2) is

G=[5

Here P is the total four-momentum of the system. The
coordinates x and x’ correspond to one particle, while the
coordinates y and y’ correspond to another particle.

By using Fourier decomposition for G one finds from
(A2):

P-(x —y)
| P |

P_(xr_yl)

> TP

dyody G . (A3)

G= [d*pd*qd’p' d’q expli(—p-x—q-y+p"x +a-y)]expli (po+40)%0—i(Po+90)%01G(P,P0; 0905 PP 6; 4, q0) -

By introducing new variables
K=po+49o, K'=po+qo ,

)
€=qo, €=qop,
one can write

(A4)

(AS)

5=fd3p d3qd®’' d’q' dxdx' dede'expli(—p-x—q-y+p' X' +q'-y)]explikxo—ik'x )G/ (p,k —€,q,6p' k' —€3q,€') .

According to Ref. 14 the Fourier transform of the func-
tion G is given by
G (p,k;q,6;p",k";q',K")

=fd6de' G/(p,k—e€;,q,6p k' —€3q,€) . (A7)
This expression corresponds to the formula (2.9) of Ref.

14. Our « is in their notation pg, etc. In the c.m.r. sys-
tem, in which (A2) holds, one has

p+q=p +q' =0, k=«". (A8)

It is sufficient for our aims to study the case of the two
scalar particles. It is easy to find an explicit form of (A7)
for the case of two free scalar particles whose Green’s
function is

Go(x,y,x",y)=D(x —x')D(y —y') . (A9)

One obtains
G{(p,x;q,x;p’,x';q’,x’)=g6(p,q,x)6(p—p’)8(q——q’) .
(A10a)

Here,

(A6)
f
gé(p’qak)"’ L
2wp[(K—wp)2—a)q2]
1
2 21’
204[(k+04)" —w,”] (A10b)

2 2 2
@;"=p;"+m;" .

In the c.m.r. system, in which the whole procedure was
carried out, the expression (A10) is actually the kernel in
the quasipotential equation, as it was deduced in Ref. 14.
As w, =w, =w one has

p q
/ 12
go(p,k)~ 20 2 an? (A 10c)
Here,
k=E , (A10d)

where E is the c.m.r energy of the system (Ref. 17 used
the notation E =w).

The main aim of this paper is to determine a particular
hyperplane in the space of relative coordinates which is
suitable for the description of an emission (or absorption)
of the photon by a composite two-particle system. Obvi-
ously the spinorial properties of particles and fields are
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X X |
y y' N bA

(a) (b)

FIG. 2. Solid lines depict scalar particles with mass m. The
dashed line corresponds to a massless scalar particle which car-
ries four-momentum s.

not of the paramount importance and one can avoid
inessential kinematical complications by studying the
emission (or absorption) of a massless scalar field from
the particle 1 (which has coordinates x,x").

As shown in Ref. 18 one has to look first at an emission
from the free-particle Green’s function (A10). The corre-
sponding diagrams are shown in Fig. 2. The vertex in
Fig. 2(b) is determined by
F(xl,yl;xz,y2)= fd4x3D(x1 ——X3)

XD (x3—x,)D(y —py) . (AlD)

J

1705

Omitting some inessential factors one can write the
Fourier transform of (A11) as

Ff(Pl»‘]l,S,PZ,‘h)

~D(p)D(p,)D(q)8(p;+S —p)8(q; —q3) , (Al2)
1
D(p)=——"5—.
Pi p,~2——m2+i0
The conserved momentum here is
P=p+q1=p,+q,+S . (A13)

(In our main text notation P =P;.) In order to go to the
two-time formalism, i.e., to the quasipotential approach,
one can impose the conditions

S(P-(x;—y1)), 8(P(x,—y,)).

Here P is given by (A13) and in the c.m.r. system one has,
as before,

P=(x,0) .

(Al4a)

(A14b)

Manipulations are very much simplified if the observed

particle is not on the mass shell, i.e.,
S =(0,s), Sy=0. (A15)

(An analogous choice was made in the main text for the
photon.) The Fourier transform of the two-time vertex is

Ff~fd6[ L

(K—G)z—a)plz+iO][(K—E)2—a)pzz—iO](62~a)q12—+—i0)

In the c.m.r. system, where
P1=—q1=P, Wp =04 =0,

P 2

p, =@ =(p—s)+m?,

(A16b)

w0*—&?=2p-s—s?,
the integration over € in (Al6a) can be carried out expli-
citly and one finds

1

F/~———[g}(p,p.k)—gb(p—s,p,6)] .
W —w

(Al6c)

|

|
VS

!

|

p-s
P

FIG. 3. Solid lines describe a scalar particle with an effective
mass M. The dashed line symbolizes a massless scalar particle.

8(p;—p2—s)8(q;—qy) . (A16a)

f

This is analogous to a single-particle vertex, shown in Fig.
3. In momentum space that vertex is of the form

1
(P 4+M>[(p —S)P+M?]

_ 1 1 1 . (Al7a)

S2_2p-S | p*+M?  (p —S)i+M?

The equality (A17) is analogous to the Ward-Takahashi
identity. It is closely connected with (A16). Taking into
account (A 15) one finds

$?-2p-S=62—w?. (A17b)
Thus, obviously, the expression (A16c) describes a scalar
vertex for a composite particle which is appropriate for a
two-time or quasipotential formalism. The equation
(A16c) contains a difference of a two-particle Green’s
function in the two-time formalism which is divided by
the correct factor (A17b). This completes the discussion
of the condition (A1), which presently leads to (A14), and
which was used in Secs. I and IV.
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