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We discuss and illustrate the application of density-matrix techniques in the helicity basis for the
tree-level production and decay of heavy fermions, via real or virtual W bosons. Both Drell-Yan
and O(a, ) QCD production processes for W production are considered, with W~LvL and subse-

quent L and vL decays, where L and vL denote heavy fermions with no strong interactions (such as
lepton and neutrino or W gaugino and photino). Compact expressions are given for the complete
production/decay cross sections at the parton level, including possible multistage cascade decays.

I ~ INTRODUCTION

The tree-level squared matrix element for a heavy-
lepton production and decay sequence

ab~Lx&, . . . , x„, L ~vl y]yz,

where x; and y; denote additional particles, can be
evaluated directly by y-matrix reduction routines. How-
ever, this can lead to enormously complicated algebraic
expressions that are very hard to simplify; great simplifi-
cation can be achieved if we factor the amplitude into L-
production and L-decay parts. In this paper we show
how this comes about, for more general ( V, A) interac-
tions than in previous work' and with applications to
some heavy-lepton production processes of physical in-
terest at present-day pp colliders.

First let us decompose the amplitude fP for the com-
plete process of Eq. (1) into factors describing L produc-
tion, L decay as

~= g A&(ab~Lxt, . . . , x„)B&(L vLytyz) D, (2)

where D =(L —mL +imt I L ) is a propagator denomi-
nator, and we keep track explicitly of the helicity A=+ —,

'

of the intermediate heavy lepton L. We consistently use
particle labels to denote their four-momenta. The squared
matrix element, averaged over initial and summed over fi-
nal spins and colors, then takes the form

g g g At, Bt„A„*B„*
/

D
/

m 5 A, ,p

g AgA„* g Bt,B„* (3)
g,p 5

Here N; is the number of initial spin/color states being
averaged, while symbols ~ and 6 denote the spin/color
states of the external particles in the production and decay
processes, respectively. It is to be understood that the
cross section is normalized as

do =:4'
~2s

d ic
(2tr) 6 (a+b —vL —y~ —yz —xt—4 4 —x„) . (4)

u (p, + ) =(E +m) '~ (y.p +rn) 0
0

The decomposition in Eq. (3) applies quite generally to
any production and decay of L.

The individual terms g At, A„* and gsB~B„* in Eq.
(3) are algebraically much less complicated than the com-
plete amplitude squared; they are somewhat like the
squared matrix elements for production and decay
separately (actually they are proportional to elments of the
density matrix for L production and decay). They can be
calculated using the helicity spinors

cos —,
' 0

exp(iP)sin —,0

u(p, —)=(E+m) ' (y p+m)

—exp[i/]sin —,
' 0

cos T0
0
0

labeled + for helicity + —,', with the outer products

u (p, +)u(p, +)= —,(p y+m)(1+ysy. S),
u(p, +)u(p, —)= —,exp(iP)(p y+m)y, y C,
u (p, —) u (p, + ) = —,

'
exp( i/ )(p y+—m ) ysyC* .

(6)

[For the corresponding antiparticle vV-spinor outer prod-
ucts, set m~ —m in Eq. (6).] Here S is the covariant
spin vector
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S,=(
I p I

/m &p/(m
I p I

))

and C is defined as

C„=(0,cos8 cosP —i sing, cos8 sing+i cosP, —sin8),

may sometimes be approximated by a heavy-quark or
gluino decay process, the hadronization inevitably intro-
duces some depolarization (for spinless hadrons the depo-
larization is complete) which has to be specified and is not
included in our treatment.

p.s=p C =p C*=S-C=S.C*=O (9)

The summations over A, and p in Eq. (3) take particu-
larly simple forms in a number of cases, thanks to alge-
braic identities; we describe several cases in the following
section in order of increasing complexity. The first cases
are for pure V+A couplings at the production and decay
vertices of a heavy lepton L; these are described in Sec. II.
The next case is general V, 3 couplings for L production
and decay, assuming vL is massless; this is described in
Sec. IIIA. Finally we address general V, A couplings
with massive vL in Secs. IIIB—III C. Our considerations
allow a sequence of decays to be strung together; for ex-
ample, we include the possible decay of vL above.

Our discussion of production/decay helicity correla-
tions applies formally to any spin- —, fermion L but is

physically relevant only when L has no strong interac-
tions: e.g., L is a lepton or 8' gaugino of supersymmetry
and vI is a neutrino or Z gaugino or photino. For strong-
ly interacting fermions such as quarks or gluinos, there is
an additional hadronization process between production
and decay. Although the eventual heavy-hadron decay

where the polar angle 8 and azimuthal angle P define the
direction of p. The four-vectors p, S, C, C' obey ortho-
gonality relations

II. V+ A INTERACTIONS

u (p, + )u (p, + )~ —,
' (p.y+mS. y ),

u (p, +)u(p, —)~——,
'

m exp(ig)C y,
u (p, —) u(p, + )~——,m exp( i/)C*—.y .

(10)

Since the spinor outer products are effectively of the
form u (p)u(k)=y V„q, where V„~= —,'p+mS,

, m C—exp(i P ), or ——,m C exp( —i/ ) as determined by
Eq. (10), it follows that the expressions for g A ~A &

are
all of the scalar product form X.V„~ where X is some
four vector:

g A+A+ ——, X (L+mL—S),

g A A+ = ——,X.Cm eLxp(ig),

+A+A' = —, X C*—mLexp( iP) . —

If V —A coupling is assumed for both production and
decay, there are effectively additional projection operators
—,'(1 —y5) on the left-hand side and —,'(I+y&) on the
right-hand side of Eq. (6). This greatly simplifies the
algebra and Eq. (6) can be represented by the substitutions

Here we explicitly specialize to L production,
p~L, m ~rnL, S,C, C* are defined by the L kinematics.
Similarly, the decay sums g&Bt,B„' are all described by
the scalar products of a common four-vector Y and the
same vectors Vq„(note that A, ,p are reversed here):

gB+B+———, Y (L+mLS),
5

gB+B* = ——, Y CmL exp(ig),
5

gB B+ ————,
' Y.C* emxLp( iP) . —

5

(12)

The relevant vectors, X, Y can be determined by evaluat-
ing particular cases. For example, they appear separately
in the spin-averaged production and decay of L:

~

M(production)
~

= g AqA q =N; 'X.L,

~

~(decay)
~

= gBqBq = Y.L
(13)

FIG. 1. Feynman diagram for 1owest-order heavy-L produc-
tion ud ~W~LvL with subsequent decay L ~vLev, .

(note that the decay amplitude squared is not spin/color
averaged in this definition). To extract X and Y from
these simpler calculations, it is imperative to keep track
throughout of the momentum vector L arising from the
u(L)u(L) outer product and not to re-express it as a
linear combination of other momenta.
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The summation over A, and p in Eq. (3) can now be per-
formed:

=N; ' g (X.V„g ) ( Y. Vg„)/
~

D
~

A. ,p

=N; '[(X.L)(Y.L) , m——l (X Y)]/~D
~

(14)

where we have used the identity

2(X.S)( Y.S)+(X.C)( Y.C*)+(X C*)(Y C)

=2(X.L)(Y.L)/ml —2(X Y) . (15)

The complete result Eq. (14) can thus be inferred directly
from the easy-to-compute average quantities in Eq. (13).

Had we calculated the spin-averaged production of L
multipled by the spin-averaged (i.e., unpolarized) decay of
L, we would have found

]
~/

~

'= —,'N, -'(X.L)( Y.L)/
~

D
~

'

instead. This gives the correct total cross section, since
the decay width of L is independent of helicity, but not
the correct details since it omits the effects of L polariza-
tion on the decay distributions.

Similar results follow with V+A couplings; in this case
S,C, and C* appear with extra negative signs in Eq. (10).
When both production and decay couplings are V+A,

these negative signs occur squared in Eq. (14) and the re-
sult is unchanged. When one coupling is V+A and one
is V —A, the bilinear S,C, C* terms in Eq. (14) change
sign and the result becomes instead

=N; '[ —,ml (X. Y)] /~D
~

(16)

Our discussion has referred to the production and decay
of a particle, requiring positive-energy spinors u, u. To
describe antiparticles instead we use negative-energy spi-
nors v, u; the mI terms in Eqs. (6) and (10)—(12) then
change sign but the final results are unchanged. These
techniques can be applied successively to add in the
sequential decay correlations of a number of particles,
provided their production and decay couplings are always
V+ A.

A. Application: L production via du ~ W ~L vt
with L ~vt. ev,

For a simple example, consider L production by the
lowest-order process du ~Lvt followed by L ~vz ev,
decay, with V —A couplings throughout (see Fig. 1).
There are X; =36 initial spin/color states to average over.
The squared matrix elements for the spin/color-averaged
production and decay of L corresponding to Eq. (13) are
then

N; 'gA„A*=N, '384G M (d v )(u.L)/[(s —M ) +I M ], (17a)

QBxB~ ——128GF Mw (e.vt )(v, L)/[(s' Mw ) +I —w Mw ],
5, A,

where s = (d + u ) and s' = (e +v, ) . We can immediately identify

X =[384GF'Mw (d. r. )/[(s —M ')'+&w'Mw']]u —=Fu

Y = I128GF Mw (e.vt )/[(s' —Mw ) +I w Mw ]](v, ) =G(v, )

(17b)

(18)

and hence construct the spin/color-averaged matrix ele-
ment for the complete process

=N, 'FG[(u.L)(v, L) ——,ml (u v, )]/i D
i

(19)

while a relation similar to Eq. (17b) gives

Y' = [128GF
l

U&
l

Mw (e v~)/[(s" —Mw )

+t w'Mw ]IV:—Gp~) (21)

B. Application: Subsequent vt. ~epv„decay

Continuing the previous application, if vt is heavy and
subsequently decays via v, —vt mixing by vt ~epv„(see
Fig. 2) we can include this step in an analogous way, after
identifying the appropriate vectors X' and Y' from spin-
averaged production and decay of vI . From Eqs. (18) and
(19) we extract

X' = [(d vt ) 'FG
i
D

i
[(u.L)(v, L)
——,ml (u v, )]Id

where s"=(vL —e) and Ul, is the vt, v, mixing matrix
element. Hence, the spin/color-averaged matrix element
for the complete process is

~

m
~

'=N, 'F'G'[(d vt )(p vt ) ———,
' m,, '(1 p)]/

~

D'
~

',
(22)

where

D'=(vt m+im 1 )—
=I"d (20)

is the propagator denominator for vz.
In a similar way we can, if necessary, add in the decay
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q'

FICx. 3. Feynman diagrams for O(a, j heavy-L production
with L~v~qq ' decay.

FIG. 2. Feynman diagram for lowest-order heavy-L produc-
tion ud~ 8 ~Lv& with subsequent decays of both L ~vz ev,
and v~ ~epv&.

of vz as well as vz, and indeed the decays of their leptonic
decay products, provided that all decay couplings are
V+ A.

C. Application: L production via du ~ Wg ~L vt g
with L~vt qq

The dominant pT dependence in 8' production is due
to gluon emission; the lowest-order heavy-lepton
production/decay process of this type is shown in Fig. 3.
The squared matrix element for the decay process is simi-
lar to that of Eq. (17b) but with an additional factor of 3
for quark color and a squared quark-mixing matrix ele-
ment

~ Uqq ~

. Hence, we conclude that the relevant vec-
tor Yis

L p 8(L vp+v L——p gpL v ie —prQ~v—) . (25)

Keeping track of this L vector, the product can be written

Y = [ 384GF Mw
~

U q'
~

(q 'v) l[(y —Mw )

+M w'I" w'] I q a =Gq ~

(23)
where v denotes vt and y =q +q '.

The squared spin/color-averaged matrix element for the
L production stage has the form

2~+, G M~ I U

9[(x —Mw ) +Mw I w

(24)

Here, x =d +u —g and L ~H ~ is the product of lepton-
ic and hadronic spin tensors. The latter depends linearly
on the L momentum vector through

L pH ~=256(g d) '(g u) 'I(L.d)(v d)(g. u) (L.g)(v d)(x.d)—
+(L u)[(v d)(x u) —(v g)(x u)+(v. d)(x.d)+(v. u)(g.d)]I . (26)

Hence, for N; =36 initial spin/color states being averaged, we conclude that

X =9216K(g d) '(g u) 'j(v d)(g. u)d —(v.d)(x.d)g

+ [(v.d)(x u ) —(v g)(x.u )+ (v.d )(x d)+(v u )(g d)]u (27)

where v denotes vt .
Combining these results for X and Y, we find the spin/color-averaged matrix element for the overall production and

decay sequence to be

=F(g d) '(g u) '/D'f . (q v)[[2(L d)(L.q') ml (d q')](v. d)(g—u)

—[2(L.g)(L q ') —ml (g.q ')](v d)(x.d)

+[2(L u)(L q ') —mi (u q ')][(v d)(x.u) —(v g)(x u)

+(v d)(x d)+(v. u)(g d)]] . (28)
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Here D' is a product of 8'and L propagator denominators

D'=(L —mt +imt I t. )(x M—~ +iM~I ~)(y M—~ +iM~I tv)

with x =d +u —g and y =q +q '. F contains the remaining numerical factors

(29)

215F= rta, GF Mg
/

U„d
/ [, Uqq /3

(30)

where U;j is the Kobayashi-Maskawa quark mixing matrix.

D. Application: Further decays of v~ and vt

If the neutrinos vt and vt in Sec. IIC are heavy, they may undergo charged-current decays via lepton mixing
vz~lAB, vz ~l 'CD where l I' are charged leptons and AB, CD denote fermion pairs coupled to O'-. This would ex-
tend the production and decay chain of Sec. II C into an eleven-particle transition:

g~l l'ABCD qq'g . (31)

This process (illustrated in Fig. 4) is evaluated in Ref. 4, in a context where L and vt are exotic E6 fermions, forming ei-
ther a left- or right-handed weak-isospin doublet. It is interesting to show the power of the helicity projection technique
by giving below the squared eleven-particle matrix element (averaged over spin and colors). Each time we add a neutrino
decay, we read the vector X from the squared matrix element for the previous process; for the first added neutrino decay
we read X directly from Eq. (27). The vector Y is defined in analogy with Eq. (21), assuming that (A, B), (D,C) are lep-
ton isodoublets. For the case of V —A couplings we obtain the spin/color-averaged matrix element

4~et, 2, I
Uud

I I Uqq I I
Urrl

I
U. t.t I

(SMg GF)
3 (g d)(g. u) j=L, &L~&L~

WI, . . . , W4

[(j2 m 2
)

2 + / 2m 2
]

2

X(l A)(l '.D)[2(vt. q)(vt .B)—m, '(q.B)]

X [(2s+t+u )[2(L u)(L.q ') mt (u q—')][2(vt. .d)(vt .C) —m„(d.C)]

—(s+u)[2(L g)(L.q ') mt (g q ')]—[2(vt d)(vz C) —. m (d.C)]

—(s+t)[2(L.u)(L q') —mt (u q')][2(vt. g)(vt. C) —m (g.C)]

—t[2(L.d)(L q') mt (d.q ')][—(2(vt d)(vt .C) —m-„(d.C)]

—u [2(L u )(L.q ') —mt (u q ')][2(vt u )(vt. C) —m (u C)]}, (32)

where W1, . . . , 8'4 denote the four participating 8'-
boson momenta d + u —g, L —vz, vz —l, vt —I ' and
UII, UI~' are the vt —vI, vt —vi mixing matrix elements.
The Mandelstam variables s, t, and u are defined as fol-
lows: s =(u+d), t=(u —g), and u =(d —g) . This for-
mula assumes A, B,C,D are leptons with full-strength
V —A charged-current couplings. If either (both) pairs
are quarks, multiply by 3(9) for color summation and also
by the appropriate Kobayashi-Maskawa matrix elements
squared.

If the vt ~l coupling is V+A instead, the result is
simply obtained by replacing factors as follows:

III. GENERAL V, A INTERACTIONS

With general V, A interactions at the L production and
decay vertices, it is possible to adapt the previous tech-
niques. For continuity we still use the notation L and vz
of the preceding sections. In the special case of massless
vt the changes are rather simple, but in general we need
to use explicit forms for the production and decay ampli-
tudes. We illustrate below three cases involving 8'bosons
with general V, A couplings; the first has m =0 but the
others have massive vz.

We assume that both the production and decay of L are
governed by an interaction Lagrangian of the form

(1.A)~(l B),

[2(vz .X)(vt B)—m (X B)]~m (X. A),

(33a)

(33b)
Ly"[Ct (1—ys)+Ca(1+ps)]vt. 8'„+H.c. ,

2 2
(34)

where X is a generic vector. A similar rule applies to
vz ~l 'CD decay, with vt, l, A, B replaced by vt, l ',D, C.

where g is the weak SU(2) coupling constant; for standard
V —A interactions C~ ——1 and Cz ——0.
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[2(L x)(L y) —ml. (x y)] 2(CI +CR )(L.x)(L y)

—ml (Ci —C~ ) (x y) .

(35)

B. Application: L production via du ~8'~Lvt.
with L ~vt. ev„massive v~

The Feynman diagram for this production/decay chain
has been shown in Fig. 1. Since m„&0, it is now neces-

Vg

sary to evaluate explicitly the traces associated with the L
in the production and decay density matrices. It is con-
venient to express the spinor outer products in the generic
form

u (L,p)u(L, A, )=(a y+y5b. y+A yy&B y+T)„~,
(36)

v(L,p, )v(L, A, )=(a.y y5—b y+A yy5B. y —T) ~ .

From Eq. (6) we identify the coefficients above as

1a++ ———,L, a+ ——a +
——0,

FIG. 4. Typical Feynman diagram for O(a, ) heavy-L pro-
duction with subsequent decays L ~vt qq ', vq ~IAB,
vg ~T'CD.

b++ ——+ —,'mI S, b+ ——b*+ ———,'ml e' C,
A++ =+—,L, A+ ——3 + ———,L, (37)

B++ ——S, B+ ——B*+ ——e'&C,

A. Application: L production via du ~ 8 g ~L vt g
with L~vt qq '; m„=0I

The Feynman diagrams for this process are shown in
Fig. 3. Examining the traces involved in +A~A& (and

gBqB„")we see that the Cl and Cz terms are simply
the V —A and V+ A production (decay) cases of Sec.
IIC. The CI Cz terms vanish because m„=0. Hence

the complete result for
~

~
~

is simply ( CI +Cz ) times
the result of Eq. (28) plus 2CI Cz times the correspond-
ing result for ( V+A) production with ( V+A) decay using
Eq. (16).

In other words, the result is obtained by replacing in
Eq. (28) the quantities in square brackets as follows:

1T++ = Tmi. T+ ——T +
——0.

For the Ci term in such a trace, u(lu)u(A, ) effectively
reduces to (a b).y; for —the CR term it reduces to
(a +b) y; for the Cl C~ terms it reduces to
(A y)y5(B y)+T. In writing the results of the trace
evaluations, it is convenient to introduce the combinations
of coefficients

eke aiba bop

f,„=a,„+b„„, (38)

EAp(x y) =(x.y)TAp —(».Akp)(y. B~p)+(» BAp)(y A~/)

The spin/color-averaged density matrix for the lowest-
order production subprocess du~W~Lvt has the fol-
lowing form, in the L helicity basis, where W& ——d +u:

N' AxAq = 3~g [(IVi Mw ) +I w Mw ] [CI (d.vt )(u e&z)+Ca (u'vI. )(d f~x)+m CI C+E&~(d, u))

=(&I..e„g)+(&g.f„g)+&ME„g(d,u ) . (39)

Similarly the spin-averaged decay density matrix can be expressed as

B~B& ——4g [(W2 —Mw ) +I w Mw ] '[Cl (e vq)(v, e~&)+C~ (vq v, )(e f~z) —m„CI C+E~&(e,v, )]

=( Yl egp)+( Yg.fg~)+ YMEgp(e, v, ) . (40)

To evaluate the summations over A. and p in the full matrix element squared, we use Eqs. (15) and (37) to derive the iden-
tities
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g (x e&~ )(y.e~& ) = g (x .
f&& )(y.fg& ) = (x.L )(y L ) —z mr ~(x .y),

A, ,p k, p

g (x e g)(y.fg„)= ,
'

m—L (x.y),
k, p

g (x e„~)E~„(a,b) = —,m r[( x.L)( a b) —(a L)(x b)+(b L)(x.a)]=J(x,a, b),
A, ,p

g(x f„r )Eqq(a, b) =J(x,b, a),
A, ,p

QE&~(a, b)E~&(c,d)= —,mr (a.b)(c d)+ —,[(a L)(d L)(b c)+(b L)(c L)(a d) —(a L)(c L)(b d)

—(b L)(d.L)(a.c)]=—K(a, b, c,d) .

The spin/color-averaged matrix element squared for the complete process can then be written down as

'[(Xi L)(YL'L) , mr —(—&i, Yc)+(Xw L)(Yz'L) zmL (Xiv'4)

+ mL (Xr. Yg +X+ Yr )+ YM[J(Xr, e, v, )+J(X~,v„e)]

+X~[J(Yr, d, u )+J( YR, u, d)]+XM Y~K(d, u, e, v, )] .

(41)

(42)

The contributions here can be recognized as left-left, right-right, right-left (as given in Sec. II for pure V+3 couplings),
followed by three contributions due to I —R interference that vanish when m =0.

C. Application: L production via ud ~8'g ~Lvt g with L ~vL ev„massive vt.

l
AgAp ——

l

X [ CL'[(2s + t+ u )(d.vL )(u e„~ ) —(s + u )(d vr )(g e„~ )

The relevant Feynman diagrams are analogous to those in Fig. 3. In this case the spin/color-averaged production den-
sity matrix has the form

[(Wi —M~ ) +(I gMg )']
9ut

—(s+t)(g.vL)(u ez~) t(d vL)(d e„~—) —u(u vr )(u ez )]

+C~ [(2s+t+u)(u. vL)(d f„~)—(s+u )(g vL)(d f„~)
—(s+t)(u. vr )(g fz~) t(d. vL)(d. f&—~) —u(u vr )(u f.&~)]

—m CLC~[(s+u)E&~(d g)+(s+t)E&q(g, u) —(2s+t+u)E&~(d, u)]]

3:—(X eLpg)+(X~.f~g)+ g XQE~g(pj, qr. ), (43)

(44)

where (p~, q&)=(d, g), (pz, qz)=(g, u), and (p~, q&)=(d, u).
Here g, is the strong-interaction coupling constant,
g, =4~o.„and the Mandelstam variables s, t, and u are
as defined below Eq. (32). The decay amplitude squared
is given by Eq. (40). The matrix element squared for the
complete production/decay process is of the form in Eq.
(42) with the XM, YM, and XM YM terms replaced by

3

g XQ[J( Yr,pr, qj)+J( Y„,qj. ,pr )]
j=1

+ YM g X&II (p, q, e, v, ) .
j=1
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