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Pion photoproduction and Compton scattering in the cloudy bag model
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We extend a version of the cloudy bag model, which has successfully been applied previously to
describe pion scattering, to also account for pion photoproduction and Compton scattering. Numer-

ical results for the M&+(T =
z ) multipole of the photoproduction amplitude and the f~+I multipole

of the photon scattering amplitude are presented and compared to experiments. A comparison is
made with other treatments of these processes.

I. INTRODUCTION

For about ten years the cloudy bag model (CBM) has
been studied in an attempt to understand the structure of
baryons. In this model the three-quark core of the baryon
is surrounded by pions coupled in such a way as to restore
chiral symmetry, which would otherwise be broken on the
bag surface.

One of the first problems studied in the CBM was
pion-nucleon scattering, ' and since then a whole series of
investigations on meson-baryon scattering in different ver-
sions of the CBM followed. Furthermore, there were
efforts to understand the electromagnetic properties of the
baryons from these models. Photoproduction and Comp-
ton scattering off the nucleon are closely related to pion
scattering, since both processes involve the full off-shell
pion scattering amplitude. Moreover, by unitarity and
time-reversal invariance these processes are closely linked
to each other. These relations are formulated by Watson's
theorem, connecting (n, tr) and (y, tr), and by the optical
theorem, which links the Compton-scattering amplitude
to the total photoabsorption cross section.

These connections make it desirable to describe the
three processes simultaneously —a goal which is attempted
in this work. While pion photoproduction has already
been treated in some versions of the CBM (Refs. 7 and 8),
there seems to exist no previous study of photon scatter-
ing in this framework. The investigation of Compton
scattering together with the other reactions is particularly
attractive, since after having fixed the parameters of the
model to describe pion scattering and photoproduction the
calculation of photon scattering is free of any additional
parameters. Fortunately, there are some data available to
compare our results with, and there is a good chance that
better data will become available as soon as improved
photon-beam facilities come into operation.

In this work we do not propose a new version of the
CBM, but rather apply one model, which has been suc-
cessfully used to describe pion scattering, to the ym and

yy processes. In this model the observed 6 resonance
comes about by the Chew-Low process (i.e., rescattering
of the pion at the nucleon), the "elementary" b, excitation
(quark spin-isospin flip) and the interference of the two
processes. We consider both these elementary processes

also in the case of (y, tr) and in addition study the pion-
pole term as predicted by the model. The same dynamics
enters the calculation of photon scattering. In this paper
we only consider the M i+ ( T = —,

'
) multipole for ( y, m )

and the Compton-scattering fM~ multipole. A study of
other multipoles is under way. Of course, the spin= 3Y

multipoles have been selected, since they are the most
prominent in the 6-resonance region, on which we con-
centrate here.

We now would like to briefly comment on the version
of the CBM we are dealing with here. The Lagrangian of
this model is given —in terms of quark degrees of
freedom =xplicitly in Ref. 2. From this Lagrangian one
then derives the AN, trb and the yN, yh couplings. If one
then eliminates the quark degrees of freedom in favor of
effective baryon degrees of freedom, one gets a set of rules
for the couplings (including form factors), which are quite
similar to those used in phenomenological approaches,
which do not introduce quark degrees of freedom at all
(e.g., an isobar model supplemented with the Chew-Low
process). For convenience and to set some conventions we
have reproduced these rules in an appendix. Unfortunate-
ly, because an MIT bag is used to model confinement, one
is not able to calculate the nucleon, 6, and mN propaga-
tors from the quark model. These are introduced
phenomenologically and, in fact, we use a different trN
propagator than Ref. 2. Renormalization of the propaga-
tors and of the different vertices is treated as in this refer-
ence.

The CBM version considered here has been criticized
because it does not predict pion s-wave scattering. '
Nevertheless, this model has been quite successful describ-
ing pion scattering in the 33 channel, and we do not ex-
pect that the model dependence of our results will be
strong for the multipoles considered here. But a careful
treatment of photoproduction and Compton scattering
also in other versions of the CBM will be necessary, espe-
cially if one wants to study other partial waves, too.

In Sec. II of this paper we will briefly review the form
of the scattering and production amplitudes and the equa-
tions they obey, define the mN propagator to be used, and
give some useful kinematical relations. The explicit solu-
tion of the (y, tr) and (y, y) scattering equations will be
presented in Sec. III together with a summary of the re-
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normalization procedure used. The numerical results are
presented and discussed in Sec. IV, followed by a con-
clusion and a brief outlook.

II. SCATTERING AMPLITUDES
~vv YY V'K Tt T(: TT, Y

In this section we will set up the basic scattering equa-
tions for both pion production and Compton scattering.
The important point is, that both processes are closely
linked to pion scattering as already alluded to in the Intro-
duction, and we deal here with a description which treats
all these processes simultaneously.

FIG. 1. The photoproduction amplitude Eq. (5) and the
Compton-scattering amplitude Eq. (6). The full circles represent
amplitudes and the open circles driving potentials. Photons are
represented by wiggly lines, pions by dashed lines, nucleons by
full lines, and 6's by open boxes throughout all figures.

A. Basic scattering equations

The scattering equation for the processes under con-
sideration is the (coupled) Lippmann-Schwinger equation

T = V+VGT .

The transition matrix T is a 2 & 2 matrix with the channel
transition matrices as entries:

concentrate in this paper on the J= —,
' partial wave of the

mN and yN final states, respectively
To define our notations and conventions we will collect

here explicit formulas for J= —,'. For pion scattering we
have

t„(q',q) =4irP33(q ', q)t (q', q) (7)

The channels are pion scattering t, pion photoproduc-
tion t~y, its inverse ty~, and photon scattering tyy. Simi-
larly, the driving potential V is represented by the matrix

v v

if we confine electromagnetic processes to second order in
the coupling constant e:

t y
——v~+t Gv y,

tyy
——vyy +vy~Gt~

= v yy+ v y~Gv ~+ v y~Gt~~Gv„y

(5)

(6)

That means that once we have obtained a solution of Eq.
(4), we immediately get solutions for t r and trr, provid-
ed we have a model to construct the driving potentials v y
and vyy. The potentials will be constructed in the cloudy
bag model as detailed in the following section. A pictorial
representation of Eqs. (5) and (6) is provided by Fig. l.
We will explicitly show later that the formalism used here
does indeed automatically satisfy Watson's theorem and
the optical theorem. This, of course, is a direct conse-
quence of the fact that the Lippmann-Schwinger equation
satisfies two-particle unitarity and that V is constructed
to satisfy time-reversal invariance.

ym yy

The propagator G in Eq. (1) will be specified later.
The above coupled equations can be decoupled in terms

of the off-shell pion scattering t matrix

(4)

with q and q' the momenta of the incoming and scattered
pions, respectively, and P33 the projection operator into
the (J= —, , T = —', ) partial wave:"

P,3(q', q)=[2q' q —iver (q'XQ)]T &,
2 l

T~p — 5~p &~pygmy3 3

Analogously one defines, for photoproduction,

(9)

t r(q', k)=(ei Xk) ~ (2q' iver X—q')T 3t r(q', k) . (10)

Here k is the momentum of the incoming real photon and
e~ the polarization vector. Transversality requires
ei k=0. For photon scattering we define the J= —,

partial-wave amplitude by

t,', (1',k) = [ 2(ei.' Xk') ~ (e„Xk)
—io [(~i.'xk') x(&i xk)]]trr(k', k)

T(q', q, E)= V(q', q, E)
d3A, M V(q', X,E)T(A,,q, E)+ 3(2ir) E~ E Ei.—coi.+ie—

(12)

in terms of the momenta and polarizations of the incom-
ing and scattered photons. As is obvious from Eqs. (10)
and (11), we are dealing here with a purely magnetic exci-
tation of the system.

We now specify the form of the m.N propagator to be
used in our calculations. In the c.m. frame Eq. (1) takes
the form

B. Partial waves

In practice we project the above equations into partial
waves thereby reducing the three-dimensional integral
equations into one-dimensional ones. Furthermore we

implicitly defining the propagator G. Here we have intro-
duced the nucleon's mass M, its energy E~ =+M +q,
the pion energy coq =+q +m, the pion mass m, and the
total c.m. energy E.

To relate t~ and tyy to more conventional quantities,
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we note the following relations, which hold in the c.m.
frame:

(o)

3/2
')/ ~q'k M

M, + =M, +(T=—,)= t r(q', k),
2~ E (13)

f ItM —— try(k, k) .
2m E (14)

The label MM indicates, that excitation as well as deexci-
tation of the nucleon is magnetic. '

Defining the pion-scattering 33 phase shift 533 via

FIG. 2. Driving potentials for pion scattering: (a) crossed
Born-term (Chew-Low potential), (b) "bare" b, , (c) crossed
"bare" 6, which is neglected in this calculation.

t =/t /e

Watson's theorem states that

M)+ ——~M)+ ~e

(15)

(16)

v~~ —vcl+ v

vcr(q' q) =~g (q')g (q»
h (q')h (q)

ua (0)E —mao

(20)

(21)

(22)

Furthermore we have the optical theorem relating AM to
M)+ by'

'mfMM=q'X ~M~'+T-'3+M~"+T-'3 l'. (17)

As can be seen, in the last equation there also enters the
J=—', , T = —,

' partial wave, which we will neglect in this
paper due to its smallness compared to the T = —, partial
wave.

We finally note some useful formulas relating the
above-defined amplitudes to observables, if only those
partial waves would contribute:

M~ 2 7+3 cos 0
dQ

with the pion couplings
1/2 (0)

2 f~ex q u (q)
g q =i

3 m

(&)
1 f~xa u(q)hq= v6 m q

(23)

The pion vertices are written in terms of the "bare" m.NN
and AND, coupling constants and the form factor u (q) as
defined in the Appendix. The cutoff of this form factor is
determined by the bag radius R.

The crossed b, graph [Fig. 2(c)], which also contributes
in the 33 channel, is omitted due to its smallness. As usu-
al we have approximated the nucleon propagator entering
(21) by

cr~ = ImfMM(k, k)
k

=8~ Q I M)+ T—
3

~

a
(19)

III. SOLUTION OF THE SCATTERINCx EQUATIONS

(24)

defining the on-shell pion energy co.
In the same version of the CBM we now calculate the

driving potentials for the year process (u „). Here arises
additionally the pion-pole term (uPz). These potentials
are graphically represented in Fig. 3. Using the rules
from the Appendix one gets

In this section we wi11 derive the driving potentials for
the integral equations in the J= —, channel for pion pho-
toproduction and Compton scattering. In terms of these
potentials the explicit solutions of the scattering equations
wi11 be written down. Furthermore, vertex and mass re-
normalizations will be briefly discussed. To simplify no-
tation we have dropped the spin and isospin indices in this
section, since we are exclusively dealing with the 33 chan-
nel here.

v~=vKE+ua +utp &

vH(q', k) =cog(q')a (k),
h (q')b (k)var q', k =

(0)E—ma

(a)

(25)

(26)

(27)

A. Driving potentials for the m.m., y~, and yy processes

For convenience and later reference we will briefly re-
call the driving potentials for pion scattering as first de-
rived by Theberge et al. The ~m process is driven by two
potentials corresponding to the Chew-Low process [i.e.,
the crossed Born term ucL, Fig. 2(a)] and the "elementa-
ry" 6 excitation uz [Fig. 2(b)]:

VTL P
CL

(c)

FICI. 3. Driving potentials for pion photoproduction in the
33 channel: (a) crossed Born-term, (b) "bare" 6, (c) pion-pole
term.
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(b) (c)

UY Y
CL

UYY

FICr. 4. Driving potentials for Compton scattering: (a)
crossed Born-term, (b) "bare" 5, (c) crossed "bare" 6, which is
neglected in this calculation.

The yNN and yN6 vertices are defined by

e K(0)

2M

b(k)=
3

& ~2 ~(0)J ynb,

(29)

The bare couplings a' ' and fz~t can be calculated in the
CBM and are given by

K(0]=-,'„,2M

FIG. 5. Examples of contributions to Compton scattering,
which are automatically generated by iterating the basic pho-
toproduction potentials.

and

fywa ~ R(4Q —3) e 1

m ~ ~ 120(Q —1) ' 4n. 137

K ' is the "bare" isovector magnetic moment of the nu-
cleon. The magnetic moment of the quark core p~ de-
pends on the bag radius R and the frequency of the lowest
mode in the MIT bag v (Q=vR =2.04). The quark mass
is assumed to be zero. Renormalization of a' ' and frecta
will be discussed later. As is obvious from Eqs. (22) and
(27) the "bare" 6 has no width, but will acquire its width
dynamically.

The pion-pole term [Fig. 3(c)] is in the c.m. frame given
by (before projecting out the J= —,

' partial wave)

(0)

v~~r(q', k) =eq.q'a". (q' —k)e ~&r& ~4m
m

(31)

(32)
u (&q'+k' —2q k~ )

bL (q ~k):(2L + 1 ) p p p 1 1 1 f dX PL(X)
q 2+k2 2q kz +m2

2 u(~q' —k~)
2Q k cia cg)

and here the projection into the M&~+ multipole is a bit more involved due to the q' —k dependence of this term. After
some angular-momentum algebra we find, for the 33 partial wave,

{0) 1/2

v pp~(q', k) = — v 4m — q'g bt (q', k),efm 3 k
Pl 4 coq~

with Pt (x) the usual Legendre polynomials. To correctly
project out the M&+ partial wave is important for the nu-
merical results to be obtained. For the yy process in the
J= —, channel we consider the two potentials as depicted
in Figs. 4(a) and 4(b). We again neglect the crossed b
graph [Fig. 4(c)] and, of course, neglect direct iteration of
the graphs in Fig. 4, since we are only working to order
e . If we again use the approximation (24) for the nu-
cleon propagator these potentials read

N(q', q, E)
t „(q',q, E)= (35)

N(q', q, E)= g (q')g (q)cvD2(E)+h (q')h (q)D&(E)

B. Solutions for t~~ and t»
The explicit solution of the pion-scattering equation (4)

can be obtained analytically, if all driving potentials are
separable as is the case here due to the approximation
(24). For convenience and further reference we will here
briefIy reproduce the result first obtained in Ref. 2:

vc~)L.(q q) (q ) (q)
4n

(33) + [g (q')h (q)+ h (q')g (q) ]~D,(E),
D (E)=D i (E) D2(E) tVD32(E) . —

(36)

(37)

varr(q', q) = b (q')b (q),4'
in terms of the previously defined photon couplings a and
b.

Note, that, e.g., graphs as in Fig. 5 need not to be con-
sidered as driving potentials, but are automatically gen-
erated as iterations of the pion-pole term and interferences
of the pion-pole term with UCI . We will further comment
on this issue in the next subsection after having estab-
lished the solution for tzz.

The propagators D&, D2, and D3 are slightly different as
compared to Ref. 2, since we are using a different ~N
propagator. We have listed them in the Appendix. An
easy calculation then proves that ImN(q', q)=0 for the
on-shell scattering amplitude. That means that the phase
of t is determined by D(E) alone.

Using the result (35) it is lengthy but straightforward to
also obtain solutions for t~ and t~~. In terms of the
"bare" yNN and ONE vertices a and b as defined by Eqs.
(26) and (27) t

&
can be written as
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t r(q', k, E)=
I [g (q')a (k)+g (q')e(k, E)]coD2(E)+[h (q')b lk)+b (q')f (k,E)]D)(E)D(E)

with

+ [g (q')b (k)+h (q')a (k)+g (q')f (k, E)+h (q')e (k,E)]coD 3( E) +u~~~D (E) I (38)

g(A, )u r(k k)
e(k,E)=—f dA, A,

7T E~ E —E~ —co~+it

h (A, )u ~~r (2,k)
f(k,E)=—I dA, A,

7T E~ E —E~ —co~+is

(39)

(39')

At this stage it is not difficult to prove that Watson s theorem is indeed satisfied by Eq. (38). To this end one first shows
that on the mass shell the expression in curly brackets in Eq. (38) has a vanishing imaginary part, so that again the phase
is determined by D(E) alone. Therefore t and t z do have the same phase as is required by Watson's theorem.

In a similar fashion we finally obtain the solution for t~z.

r»(k', k, E)= [A (k', k, E)coD2(E) +8 (k', k, E)D ) (E)+C (k', k,E)coD3 (E)+S(k', k, E)D (E)]
4mD (E)

(40)

with terms corresponding to the Chew-Low process, the elementary 6 excitation, and their interferences with the pion-
pole term [Figs. 6(a) and 6(b)]

3 ( k', k,E)=a (k')a (k)+ e (k', E)e (k,E)+a (k')e (k,E)+e (k', E)a (k),
8 ( k', k, E)=b (k')b (k)+f (k', E)f (k,E)+b (k')f (k,E)+f(O', E)b (k),

an interference term [Fig. 6(c))

C( k', k, E)=a(k')b (k)+f(k', E)e (k,E)+a (k')e (k,E)+a (k')f (k,E)+b (k')e(k, E)+(k'~k),

(41)

(42)

(43)

(a)
r

J
I 'I i I I

'L

e

r J
/ I I / I

I I I I I I I ,'I I I I I I I I

/ ~ I / /

I I I I

I
''

I I,' 'i
I

FIG. 6. Graphical representation of the Compton-scattering amplitude Eq. (40): (a) contributions generated by A (k', k, E), (b) con-
tributions generated by B(k', k, E), (c) contributions generated by C(k', k, E), the exchange graphs (k~k') are not shown, (d) the
term S(k', k, E).
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(d)

FIG. 7. Examples of two-photon amplitudes contributing in
the J =

2 channel. Those cannot be obtained by iterating the
basic potentials or by their interferences. FIG. 8. Renormalization graphs of the yNE vertex.

as well as a term corresponding to graph (d) in Fig. 6,

M U~y~ (k', A, )U~~~(A, ,k)S(k', k,E)=—f A,2dk. . . (44)
E~ E —E~ —m~+ie

We can now show that the optical theorem, Eq. (17), is
indeed satisfied by explicitly proving that

C. Mass and vertex renormalization

The general procedure for renormalizing the CBM has
been discussed comprehensively in Ref. 2. We will here
follow very closely the procedures outlined there. The re-
normalized ~NN and n.Nb coupling constants f'&~ and
f'„~a are given by

Imtyy(k', k)= — q'to~
~

t «(q', k)
~

1, M
2~ 'E (45)

VnNN(e ) (p)fed= Z fm
N

with t„defined by Eq. (40) and t~ by Eq. (38). From
(45) we immediately get (17) by using (13) and (14). Equa-
tions (38) and (40) are the basic formulas needed to calcu-
late the numerical results presented in the last section.

As is obvious from Fig. 6 many different processes are
automatically taken into account by Eq. (40). But as a
matter of fact, the set of graphs in Fig. 6 is not complete,
just as there are graphs contributing to pion scattering,
which are not taken into account by Eq. (35). These are
graphs which cannot be obtained by iteration of the driv-
ing potentials considered here and their interferences. In
the case of pion scattering and pion photoproduction
some of these graphs can be taken into account in terms
of vertex renormalizations as has been done for pion
scattering in Ref. 2. Similar renormalizations have to be
done for the photon vertices. But unfortunately, vertex
renormalizations are not sufficient in the case of Compton
scattering. Here, in addition, so-called two-photon ampli-
tudes have to be taken into account. Examples for such
two-photon amplitudes, which are neither obtained by
iteration of the basic potentials nor by vertex renormaliza-
tions, are depicted in Fig. 7. But as has been discussed in
a different context, ' the consideration of those graphs is
necessary in order to, e.g., show that the electric rnul-
tipoles are gauge invariant. Numerically we expect two-
photon corrections in the J= —, channel to be small as
are, e.g., also vertex corrections to fz~t, (cf. the following
section). Therefore we have neglected them here. This is
not possible for some other partial waves as will be briefly
discussed later.

(i() V )va(&) (())
fm'Na ~ ~ feNa (46)

and explicit expressions for V &)v(e) and V„&a(E) are de-
rived in second-order perturbation theory in Ref. 2.

The quantities ZN and Z~ can be expressed in terms of
the nucleon and 6 self-energies, XN and X~..

BX)v(E)
ZN ——1—

BE E=M
(47)

BXt),(E)
Zg ——1—

aE E (R)=m&
(48)

For XN and X~ we again use the results given in Ref. 2.
Explicitly one then gets, for the renorrnalized 6 mass,

ma =ma +Xa(mg ) .(R) (0) (R)
(49)

As in Ref. 2 m ~"' has been used as one of the parameters
of the model to be fitted.

We now apply the same renormalization procedure to
the photon coupling constants )(' ' and fz~t,

V«Nlv(~) (p) (i() V«Nt). (~) (p)
f«Nt = . fy~t .

N

To calculate VzNN/ZN amounts to evaluating the mag-
netic moment of the nucleon in the CBM as has been done
in Ref. 2. Only the renormalization of fy)va needs some
closer consideration. To this end we first calculate the
graphs b, c, and e in Fig. 8 in second-order perturbation
theory, yielding

5 f~m q u (q) 10 f~xd~m q u (q)
(0)2 4 (0) (0) 4

Vy)) a 0 = 1+ 2 lq 2 +3~ m2 0 ~q (&@+~a) 9~ m 0 ~q(~q+ma)

f'~+'~~ q u (q)(tot), +7' p)a+8pi )
+ 6~2m' m pg 0 tpq (p)q+p)a) (2p~q+~pg)

(51)



1580 M. WEYRAUCH 35

We neglect the energy dependence of Vz&~ here and de-
fine co~ ——m&' —M. Furthermore, we want to emphasize
that the graphs a and d in Fig. 8, which in principle also
contribute to the vertex renormalization of fr~~ are al-
ready accounted for, since they are obtained by iteration
of the driving potentials. This is similar, as is discussed
in Ref. 2, for the ~NA vertex. Furthermore, as is shown
in detail in that reference for pion scattering, the model is
renormalized consistently by the above method; i.e., all
unrenormalized quantities appearing in the scattering am-
plitude (35) are consistently replaced by the corresponding
renormalized ones. The same applies for the photopro-
duction and Compton-scattering amplitudes (38) and (40),
respectively.

IV. NUMERICAL RESULTS AND DISCUSSION

140

120

—100
QI

80

60

40

20

0
250 300 350

k (MeV)

400 450

FIR. 9. The 533 phase shift as obtained in this calculation
(full line) compared to the data of Ref. 15 (dashed line).

The basic results we obtain are predictions for the
M~+ (?' = —, ) multipole for photoproduction and the f~+~
multipole of the Compton-scattering amplitude. For both
quantities experimental information is available.

Before presenting our results we will briefly outline how
the parameters that enter our calculation have been deter-
mined. All results, which will be presented, depend on
just two parameters: the bag radius R and the mass of the
"dressed" b (see previous section). The renormalized
vrNN coupling constant at@ion threshold has been set to
the experimental value (f„'zz ——0.082). [Note, that f~~~
is slightly energy dependent because of Eq. (46).] The pa-
rameters are fixed in such a way that the experimental 533
phase shift is reasonably well reproduced. In Fig. 9 our
result for the 533 phase shift is shown in comparison to
the experimental data of Ref. 15, calculated with

~ =O.97 f, ,"'=1242 MeV .

These values are well in accordance with numbers ob-
tained in other applications of bag models. Our parame-
ters are different from those reported in Ref. 2, since we
are using a different mNpropagator. . The propagator used
here has the advantage to correctly take into account nu-
cleon recoil kinematics. We would like to remind the

reader that the renormalized 5 mass does not agree with
the energy where 633 goes through 90, since besides the
"elementary" 6 we have a Chew-Low background contri-
buting to the scattering in the 33 channel.

We have also performed a calculation with the same
mN propagator as in Ref. 2, yielding an even better fit to
the 533 phase shift with the parameters

R =0.82 fm, m~ ' ——1278 MeV, f„~~——0.064 . (53)

These parameters agree with those reported in Ref. 2 ex-
cept for mI, '. Besides the fact that the renormalizedf'» appears to be relatively small in this case, compar-
ison of the two calculations shows that the numerical
values of the different parameters depend relatively
strongly on the mÃ propagator used. As already
remarked in the Introduction this propagator cannot be
calculated from the quark model.

The "bare" AND. coupling constant is as usual taken
from SU(6) symmetry (f zalf ~z~ ——&72/25) and renor-
malization is performed according to Eq. (46). This
makes the renormalized f '

&z slightly energy dependent.
As Fig. 9 shows we get a quite reasonable fit to the 633
phase shift with the coupling constants and other parame-
ters determined in this way. The width of the b, (i.e., the
pion scattering cross section in the 33 channel) is a little
bit too small as is typical for CBM calculations.

The photon coupling constants v' ' and f&~~ are given
by Eqs. (29) and (30), and with the parameters (52) they
take the value x' '=1.57 and f&~~ ——0.060. As has been
shown in detail in Refs. 2 and 5, the CBM (with the re-
normahzation procedure discussed in the previous section)
reproduces the experimental magnetic moments quite
well, if one also includes recoil corrections. Therefore we
have taken for renormalized isovector magnetic moment a
simply the experimental value (v=2. 33). The renormal-
ized fez~ has been calculated with the parameters (52)
and the renormalization procedure (51) to be

f&~~ ——0.052. Here recoil corrections have not been in-
cluded.

It is possibly interesting to compare this result with
other determinations of f'r~~. In such comparisons some
caution has to be exercised, though, since the values have
been obtained within different models and the coupling
constants are usually not defined in precisel~ the same
way. Koch and Moniz' have determined fr~& ——0.081
from a phenomenological analysis of pion photoproduc-
tion. In that calculation, however, the nonresonant back-
ground has been parametrized by a very simple ansatz, so
that the quoted value for fr~~ should be taken only as a
rough guideline. A similar value for fz~q as been used in
Ref. 7 (f&~a ——0.087 and 0.12). In a very recent analysis
of the photoproduction data a value of fz~~ ——0.073 has
been extracted, ' which seems to be quite in line with the
number for f&~~, which has been determined recently in
another phenomenological analysis' of the y~ process
(f&~~=0.091). But as already remarked previously we
have to keep in mind that the numerical values for the
coupling constants depend relatively strongly on the de-
tails of the calculation and the approximations used.

We are now ready to discuss our results for
M&+(T= —, ) and fM~. The M~+(T= —, ) multipole is
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FIG. 10. The real part of the MI+(T= 2 ) multipole (full

line) compared to the data of Ref. 15 (open circles).

presented in Fig. 10 and compared to the experimental
data from Ref. 15. Obviously the experiment is repro-
duced quite well by our calculation and, the data seem to
be much better accounted for by this calculation than by a
previous treatment of the ym process within the CBM
(Ref. 7). In that calculation Chew-Low processes have
been neglected entirely in the 33 channel, and a form fac-
tor has been applied at the y vertices, which is not ap-
propriate for real photons. Another difference to the
present calculation is that the Blankenbecler-Sugar reduc-
tion of the Bethe-Salpeter equation has been used to
iterate the driving potentials.

Our results for the fMM multipole are presented in Fig.
11. Here the quality of the available data is much poorer
than in the photoproduction case. Nevertheless, some
general remarks can be made at this stage. The data given
in Fig. 11 are taken from a fit of the multipoles to the
available scattering data. ' As is explained in detail in
that reference, the exact values for the fM~ multipole
strongly depend on the conditions under which the fit is
performed, so that one may expect that the experimental
situation will change when more and better scattering data
become available. We also show in Fig. 11 the results of a
very elaborate dispersion theoretical calculation of the real
part of the fMM multipole. ' As is obvious, the result of
the CBM is very similar to the one obtained in the disper-
sion calculation. That means that, if we take the experi-
mental data at face value, there is a 30—40%%uo discrepancy
between both calculations and the data. This is a serious
problem which needs further attention. Note that there is

-no room to change the parameters in the CBM calculation
in any significant way, since all parameters have been
fixed to describe pion scattering and photoproduction.
This situation certainly seems to be a challenge for both
theory and experiment. Concerning theory, one eventual-
ly has to ask if the off-shell structure of the pion-
scattering amplitude (which determines the photon
scattering amplitude) is correctly given by the model em-
ployed here. One might, e.g., try to use another
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FIG. 11. The fM+~ multipole of the Compton-scattering am-
plitude: the results of this calculation (full line) compared to the
data as obtained by a multipole fit to the scattering cross sec-
tions (Ref. 13)~ Stars represent the imaginary part of the data,
full circles represent the real part. The dashed line is the result
of the dispersion-theoretical calculation reported in Ref. 13.

(quasi)relativistic equation to iterate the potentials instead
of the Lippmann-Sch winger equation employed here.
Furthermore, one needs to analyze the predictions of oth-
er versions of the CBM, in particular, the version with
pseudovector volume coupling of the pion to the bag.

V. CONCLUSIONS AND OUTLOOK

We have attempted in this work a simultaneous descrip-
tion of pion scattering, photoproduction, and Compton
scattering within the framework of the CBM. With
reasonable values for the parameters of the model we ob-
tain a good description of the 533 phase and the
M &+ ( T = —, ) multipole. Watson's theorem is exactly
satisfied in this calculation. Since the imaginary part of
the Compton-scattering amplitude is directly linked to
photoproduction via the optical theorem, we also get an
acceptable description of the imaginary part of the f~+I
multipole. The result for the real part of this multipole is
off by about 40% as compared to the presently available
experimental data. While this situation might change,
when better scattering data become available, the
discrepancy between model and experiment might also
point to some difficulties within the model. In this
respect it is important to note that Compton scattering is
calculated free of parameters, since all model parameters
have been fixed to describe pion scattering and photopro-
duction.

The CBM provides us with an explicit formulation of
the off-shell behavior of the pion-scattering amplitude,
which in turn determines the off-shell structure of both
photoproduction and Compton scattering. In particular
we obtain in this way an explicit model for photon
scattering off the nucleon, which resembles quite well the
results of dispersion theoretical calculations. One of the
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advantages of such an explicit model is that it can be ap-
plied to calculate Compton scattering of complex nuclei.

We have concentrated our attention here on the 6 reso-
nance region. It would be certainly very interesting to
also analyze, how the model behaves at low energies.
There the Compton-scattering amplitude is fixed by low-
energy theorems up to first order in the photon energy. '

While for the f~~ multipole the low-energy theorem is
obviously satisfied to zeroth order (i.e., f~~ ~0 for
k~O), the behavior in first and second order needs to be
analyzed carefully. The low-energy behavior wi11 need
even more attention, when one considers other partial
waves (particularly the electric ones), because the correct
low-energy behavior is closely linked to gauge invariance
of the Compton amplitude. ' Especially when considering
the fF'F+ partial wave we will have to take into account
also two-photon amplitudes ("seagull" terms), which do
not contribute to f~M and are therefore not considered
here, in order to have gauge invariance and consequently
the low-energy theorem satisfied.

Finally we would like to emphasize that a simultaneous
treatment of photon scattering together with pion scatter-
ing and photoproduction should also be performed in oth-
er versions of the CBM. This may help to get further in-
sight into some features of chiral bag models.

The couplings of a pion with isospin a to the "bare"
nucleon and 6 are given by
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The couplings of a real photon to the "bare" nucleon
and 6, and the pion are given by
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For the spin and isospin operators o., o.zz, ~, and ~&~ we
use the following normalization of the reduced matrix ele-
rnents:

D, (E)=I ~ f Eg E —Eg —cog+is
(A8)

(A7)

The propagators D&, D2, and D3 entering the formulas
for t, t~, and t~„ take the following form in terms of
the mN propagator defined by Eq. (12):

APPENDIX D2(E) = E —m a'

In this appendix we collect some formulas derived from
the CBM, which are useful for evaluating the driving po-
tentials needed in this calculation. Furthermore the prop-
agators entering the different scattering amplitudes are
listed. For an explanation of the used symbols see the
main text.

2 2M h (A)

Ei. E Ei ~t—+t&
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