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The strengths of shell-focusing singularities in the ingoing Vaidya spacetimes are examined in
terms of limiting focusing conditions. The singularities are found to be strong-curvature singulari-
ties only for mass functions which are initially linear functions of the advanced time.
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The affine radial null geodesic equations (with parameter
A) of the "backscattered" test field (u&const) reduce to
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In a recent paper Waugh and Lake' have given a regu-
lar covering of the Vaidya metric for a linear mass func-
tion including the cases with a naked shell-focusing singu-
larity. The purpose of this report is to examine the
strengths of shell-focusing singularities in the Vaidya
metric. We find that strong-curvature singularities, in the
sense of Tipler, arise only for mass functions which are
initially linear functions of the advanced time.

The ingoing Vaidya spacetime (in standard geometrical
units) is given by

ds =2drdu —[1—2m(u)/r]du +r dA,

where d II =d0 +sin 0dt() and m is a non-negative
monotone increasing function of the advanced time U.

The metric (1) represents the solution to the Einstein
equations for a radial flux of unpolarized radiation with
the eikonal energy tensor
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as u~O [lim, 0(m/v)=p]. It is worth noting that the
strong LFC holds for all the geodesics which terminate at
the shell-focusing singularity U =r =0. The character of
this singularity (other than its "strong" nature) depends
on the exact form of m (u). (For example, with m =pv it
is known that the singularity is globally naked for

)5, 6

Condition (9) is a very strong restriction on m (v). It is
of interest, therefore, to examine the (albeit not strong)
focusing character of a more general function. Here we
examine

which is equivalent to the termination of the geodesic in a
strong-curvature singularity in the sense of Tipler. '

From Eqs. (2) and (5) it follows that /=0 along all geo-
desics U =const. Along the backscattered test field, how-
ever, it follows from Eqs. (2), (4), and (5) that
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As a result, from Eq. (7), it follows that the strong LFC
holds as long as dm /dv ~, o(

—=p) & 0, that is
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m-eU", n ~1
as v ~0 (where e =const & 0) so that from Eq. (8)

(10)

P(A. )—:R ttl l~, (5)

where R ~ is the Ricci tensor and the geodesic terminates
at X=O. For the purpose of this report we consider the
following focusing conditions: the limiting focusing con-
dition (LFC)

limA. tt &0,
A, ~O

and the strong LFC

In this report we consider these geodesics with the (as-
sumed) conditions dA. &0, A) 0, and u =r =m =0 at
A. =O (the shell-focusing singularity). Though the coordi-
nates used in the metric (1) do not unfold the shell-
focusing singularities, ' they are adequate and convenient
for the examination of their strengths.

Along a null geodesic, affinely parametrized by k, with
4-tangent l let

U =27 (12)

That is, a single null geodesic (the Cauchy horizon) leaves
the origin tangent to this direction.

As a result, from Eqs. (4), (11), and (12) we find that
8ne

A
3 —If

(13)

as X~O along the Cauchy horizon. With the limiting
form (10) then the past most point of a shell-focusing
singularity satisfies the LFC only for 1 & n & 2.
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as A. ~O. Equation (11) shows that details of the geodesic
history are required [in particular, u(A. ) as A, ~O]. Fol-
lowing standard techniques, one can show that the sys-
tem of Eqs. (3) and (4) has the regular critical direction

35 1531 1987 The American Physical Society



1532 BRIEF REPORTS 35

d7

dv
(14)

along the remaining geodesics which reach U = r =0.
From Eqs. (3), (4), (11), and (14) then

With the above limitation it is of interest to examine
the remainder of a shell-focusing singularity. Again, with
the aid of standard techniques, it follows from Eqs. (3)
and (4) that, with the form (10),

as A, ~O and so the LFC is satisfied along the remainder
of a shell-focusing singularity.

Of course the limiting form (10) need not hold. An ex-
ample has been given by Lake. For this example, howev-
er, we find that ttt grows simply as in (15) but with
n =1jr=2.

As a final remark, we note that with the limiting form
(15) 1(t grows faster than 1/A, ~ for all /3&2, and so the
remainder of the shell-focusing singularity just fails to be
strong in the sense of Tipler.
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