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Using high-order strong-coupling developments we have analyzed the phase structure of the SU(2)
lattice gauge theory at different space-time dimensionalities, considering the action defined through
different representations of the SU(2) group. For the Wilson action, the strong-coupling analysis is
able to determine unambiguously the five-dimensional first-order phase transition. We have ob-
served also the persistence of this first-order phase transition at higher dimensions. Strong-coupling
methods have been shown to be a valuable instrument to study the behavior at high dimensionalities.
In respect to the other group representations, phase transitions of first order are clearly detected for
all dimensionalities higher than four. In these cases, the most difficult point is the determination of
the critical dimensionality above which phase transitions are present. Only for the spin-2 represen-
tation action does a first-order phase transition at three dimensions seem to be present.

I. INTRODUCTION II. STRONG-COUPLING DEVELOPMENTS

Space-time dimensionality plays an important role in
confinement dynamics. ' Indeed, the phase structure of a
lattice gauge theory changes when the space-time dimen-
sion varies. In general, one expects, from mean-field ar-
guments, that for a sufficiently large space-time dimen-
sionality all lattice gauge theories will exhibit a first-order
phase transition. Monte Carlo simulations are the usual
way to study the phase structure of a lattice gauge
theory. Nevertheless, serious practical problems arise
when one tries to simulate the behavior at high dimen-
sions due to the size of the lattice. On the other hand,
since the phase transitions at high dimensions are usually
of first order, strong-coupling methods, that are known
to work better dealing with second-order transitions,
seem, in principle, to be not very useful.

In this paper we apply strong-coupling methods to
determine the phase structure of the SU(2) lattice gauge
theory at different space-time dimensions. We have found
that strong-coupling methods are valuable to determine
the presence of phase transitions at high dimensions.
Pade approximants for both the free energy and the
internal energy give very consistent results. The most dif-
ficult part of this analysis is the determination of the crit-
ical dimensionality of the space-time, i.e., the dimension
above which phase transitions are present. The reason is
that in the immediate below dimension, a shadow of the
phase transition is usually present, giving a singular
behavior in the Fade analysis. In such cases, a careful
analysis must be performed to determine whether a con-
tinuous phase transition is present. In some cases, a
Monte Carlo analysis becomes necessary.

The plan of the paper is as follows. In Sec. II the dif-
ferent lattice actions considered are presented and the
strong-coupling series generated. Section III contains the
results of the analysis of these series, leaving for Sec. IV
the study of the Pade extrapolations. Finally Sec. V con-
tains the conclusions of the work.

The action that we have considered for the strong-
coupling analysis is just

The first case corresponds to the pure Wilson action and
the second to the SO(3) theory. A summary of the results
obtained for the SO(3) case can be found in Ref. 7. The
Wilson action has been already studied in four dimen-
sions using different approaches. Nevertheless, its
behavior at high dimensionalities by strong-coupling
methods has not been determined as yet.

The strong-coupling analysis has been performed in a
rather general way. To this purpose we have considered
the SU(2) lattice action defined through the sum over all
SU(2) group representations

S(U~)= S((Uq)

and we applied the usual character expansion that gives

I p Pi„X„(U~ ) (3)

or, inversely,

Pi, = IDULY(U)e ' (4)

where DU is the Haar measure of the SU(2) group.
The first step in such a computation is the evaluation of

the P~„ functions. This has been performed analytically,
obtaining the following expressions [x,=P„/(2r + l)]:

&((U~)= X((U~),
21 +1

where X~(U&)=tr&(U&) represents the trace on the 1 repre-
sentation of the SU(2) group, for the product of the ma-
trices belonging to an elementary square of the lattice. In
the present paper we have considered the cases
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TABLE I. Coefficients of the four different series for the free energies. See formula (6). D is the space-time dimensionality.

I
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24

S I /2

I

2

I

6

SI

10

12
11
13

14

16

I 5
48 144

I 29
48 D+ 72o

I 49 1001
128 D 2304 D + 864oo

7 2 32 131 211 991
512 + 622 080 4 354 560

5 3 43 2 5341 264497
1024 2048 + 184 320 20 321 280

47 3 7 030 933 2 97 100911 I 474 972 157
4096 + 106168320 743 178240 + 16721 510400

I

30
I 43

243 1944

I 197
81 D 9o72

5 133
324 D s184

I 71
162 6480

2 2 IIS 91 997
6561 11 664 + 5 248 800

4 2 29 140 779
2187 D —

1296 D + 3 849 120

1775 2 101 981 413 D 44 229 817
354294 3 542940000 + I 180980000

901 2 17 223 067 670 147 489
118098 D 590490000 D + 23 882040000

20 3 10 807 D 2 32 568 827 16 900 287 011
531441 + 2125764 2125764000 + 1666598976000

544 3 8615 D 2 222 862 051 I 356 188 041
1594323 I 594323 + 10628 820000 D —

58 786 560000
2323 D 3 9 232 746 743 D 2 95 695 307 951 66 708 447 081 853

I 594 323 430 467 210000 + 1 377 495 072 000 I 028 529 653 760 000

f3&/z„——(2r + 1)Iq„+~ (2x, /z )/x &/z, (sa)

f3'„—— e '[I„(2x, ) I„+,(2xi )]—,1+(—1) " x,
2

(&b)

2r +1
~3/2r Ip„+,(2x3/2 )IO(2x3/2 ) + g Irn (2x3/2 )

X q/2 m =1

r +3m/2

k = r —3m/2

r+3m/2 —1

Ipk+ ) (2x 3/q ),
k = r —3m/2+1

~

(Sc)

( 1
2P cG

e ' g Ik(2xp)
2 k=0

r +2k

m = Ir —2k

r+2k+1
[I~(2x~) I~+((2xp)] I k—+(2—x) g [Im(2xq) Im+t(2xp)]-

m= r —2k —1~

(5d)

where I„(z) are the modified Bessel functions. '

Introducing these expressions in the rather general for-
mulas for the free energy of Refs. 11 and 12, one obtains
the strong-coupling series that, up to order 16, are

F, = g C„'(D)(x,)",

where the coefficients for the different actions considered,
depending on the space-time dimensionality, are shown in
Table I.

From the series for the free energy is possible to deter-
rnine the corresponding series for the internal energy. We
have used the following normalization:

1 d
EI ——1— F2l+1 dx(

('7)

where (21+1) is the dimensionality of the corresponding
group representation.

III. ANALYSIS OF THE SERIES

We have represented in Figs. 1—4 the behavior of the
series for the free energy for the different lattice actions
considered, from d =2 to d =7. In each figure, there are
represented the series of order 10—16. The two-
dimensional case has been included as a reference to com-
pare the different behaviors since we know that it is trivi-
al; i.e., there are no phase transitions present.

In all the different cases, the series at high dimensions
show a very clear singular behavior, all orders diverging
at, very approximately, the same point. This behavior
contrast with that of the two-dimensional case, where a
very smooth behavior is shown. In addition, it can be also
observed the fact that this singular point approaches the
origin when the space-time dimensionality grows. This
fact is expected from general mean-field arguments. The
most difficult point is the analysis of the three- and four-
dimensional cases, where a quasisingular behavior ap-
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TABLE I. (Continued).

10

12

13

16

1

2

S3y2

1

24

1 17
768 D + 5760

1 29
768 5760

37 1373
46 080 806 400

40 171 122 611
155 520 000 272 160000

107 117 7 658 449
1 161216000 44706816000

275 633 383 221
11 612 160000 7 464 960000

S2

1

2

1

6
I

12

20

1 577
1875 + 45 000

D625 630 000
23 3229

7500 180000
3 9059

625 D 540000
569 28 073

90 000 1 890 000
3163 11 177 323

450 000 831 600 000
161 701 32 256 149

24 300000 2 721 600000
5497 343 659 461

1 012 500 35 380 800 000
443 239 7 750753

113400 000 1 058 400 000
63 151 169 779 613

24 300000 32 659 200 000
3 682 171 24 797 723 581

2 268 000000 7 185 024 000000

pears. To elucidate these cases, the Pade analysis turns
out to be more efficient than a simple direct inspection of
the series.

One has to remark that dealing with first-order phase
transitions, the point where a strong-coupling series
diverges, even the Pade extrapolations, can correspond,
actually, to the point where the metastable phase ends, in-
stead of to the true critical point. This is also the origin
of the fact that free energy and internal energy analysis
show slightly different singular points.

[I,J]=I""(x)/Q' (x),
where P' '(x) and Q' '(x) are polynomials of order I and
J in x, in such a way that I +J & N where N is the order
of the series. One expects that true singularities can be
detected as congruences in the apparition of poles of ap-
proximants of different orders. In the case of the adjoint
and spin-2 representations, we are interested in the diago-
nal of the Pade table: [I,I] and its nearest ones
[I,I +1],[I+1,I]. For the fundamental and spin- —, rep-
resentations, however, due to the fact that

IV. FADE ANALYSIS OF THE SERIES

Wishing to extract the maximum possible information
from the strong-coupling series that we have generated,
the Pade approximants technique has become very useful.
Indeed, Pade approximants provide information about the
analytic structure of functions that are known only
through its series developments. In our case, singularities
in the thermodynamical quantities, as the free energy, and
the internal energy can point out the presence of phase
transitions. It is expected that second-order transitions
give a singularity in the internal-energy Pade approxi-
mants. By contrast, first-order transitions can be detected
as a singular behavior in the free energy, although a re-
flection of this transition can be manifested also in the
other thermodynarnical quantities as internal energy or
specific heat.

~e denote by [I,J] the Pade approximant

n + 1/2( xn + 1/2) +n + I/2(xn + 1/2)

the independent Pade approximants are only [2n, 2n],
[2n +2,2n], and [2n, 2n —2]. In this case, the Pade table
will contain less independent approximants.

Dealing with series of order 16 for the free energy and
order 15 for the internal energy and considering all the
significant Pade approximants, the number of poles
detected is high enough to allow for a statistical treatment
in order to detect congruences. To this purpose we have
represented in Figs. 5—8 the corresponding histograms,
one for each dimension, indicating the number of poles
found, for each value of the coupling. A first look to
these figures leads to the satisfactory fact that the Fade
statistical method gives a unique value of the poles. Its
average location, with an estimation of the statistical vari-
ance, can be found in Tables II and III.

The information that can be deduced from the analysis
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FIG. 1. Strong-coupling results for the (a) internal and (bj free energies at orders (a) 9,11,13,15 and (b) 10,12,14,16, for the funda-
mental case. The order of the series corresponds to the full, dashed, dashed-dotted, and dotted lines.
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FIG. 2. Strong-coupling results for the adjoint case. The notation is the same as in Fig. l.
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FIG. 3. Strong-coupling results for the spin- 2 case. The notation is the same as in Fig. 1.
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FIG. 5. Number of poles of the Pade approximants for different dirnensionalities for the fundamental case.
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TABLE II. Pondered average of the location of the poles of the Pade approximants for the internal
energy.

X 1/2

1.35+0.60
1.19+0.26
l.13+0.29
1.11+0.33

Xl

1.19+0.17
1.05+0.04
1.01+0.12
0.93+0. 13

X 3y2

1.47+0. 34
1.53+0.23
1 ~ 65+0.27
1.49+0.32

1.23+0.33
1.25+0. 19
1.20+0. 16
1.18+0.20
1.20+0.22
1.18+0.18

of the Pade extrapolation results, for all the different
cases, can be summarized as follows.

A. Spin- 2 representation. Fundamental action

The analysis of this case is complicated by the fact that
there exist only a rather small number of independent ap-
proximants. Nevertheless, a clear peak in the Pade histo-
grams for both the free and the internal energies is seen
for the space-time dimensionalities from d = 5 to d =7,
suggesting, then, a first-order phase transition. The five-
dimensional first-order transition was already detected by
Monte Carlo simulations. '

The two- and the three-dimensional cases look very
similar, with no concentration of poles, denoting the ab-
sence of phase transitions. The four-dimensional case, fi-
nally, is the most difficult to interpret, as it happened in
previous strong-coupling analysis of this case. The
slightly singular behavior shown by the Pade extrapolated
series corresponds to the shadow of the singularity of the
five-dimensional case.

As a general characteristic, shown also by the other
group representations, the approach to the origin of the
singularity when the space-time dimensionality gro~s is
clearly reflected in the values of the averages of Tables II
and III. These results show the better convergence of the
Pade method to determine singularities at high dimen-
sionalities, since the statistical errors of the pole locations
are very small. For instance, the four-dimensional case
has a greater statistical error, denoting, then, that it is not
a true singularity.

6 clearly shows the existence of stable singularities for the
space-time dimensions from 4 to 7. The singularity
present in the four- and five-dimensional cases has been
already determined also by a direct Monte Carlo
analysis. ' '

The three-dimensional case shows a quasisingular
behavior, which may correspond to a singularity. In a
previous work we associated this singular behavior with a
possible continuous phase transition. However, the com-
parison with the behavior of the fundamental case sug-
gests that this may correspond also to the shadow of the
phase transition present in the next higher dimension.
The definitive conclusion is a matter of the Monte Carlo
analysis. '

As expected, the two-dimensional case shows a total ab-
sence of stable poles.

C. Spin- 2 representation3

The analysis of this case has the same difficulties as the
fundamental action due to the small number of indepen-
dent poles. Nevertheless, for high dimensionalities,
d =5,6, 7, the presence of a phase transition is clearly
shown. The four-dimensional case shows also a singular
behavior. This case was already studied in Ref. 16 where
the full four-dimensional mixed ( —, , —, ) action was con-
sidered, showing a first-order phase transition for the
spin- —, axis.

The two- and the three-dimensional cases show no
phase transitions, although some poles appear at d =3,
possibly corresponding again to the shadow of the four-
dimensj. onal phase transition.

B. Spin-1 representation. SO(3) lattice gauge theory D. Spin-2 representation

The statistical analysis of this case is very efficient due
to the great number of independent approximants. Figure

The results of the statistical analysis for this case show
the most spectacular phase transition determinations.

TABLE III. Pondered average of the location of the poles of the Pade approximants for the free en-

ergy.

D X ly2 X 3g2 X2

0.95+0. 17
1.36+0.20
1.04+0.08
0.91+0.04
0.82+ 0.05

0.88+0. 19
1.09+0. 17
0.95+0. 11
0.86+0.06
0.77+0.06

1.45+0. 14
1 ~ 34+0.36
1.51+0.30
1.44+0.21
1.40+0. 14

1.19+0.26
1.14+0.16
1.10+0.18
1.04+0.21
1.04+0.21
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From all dimensionalities from d = 3 to d =7, a clear ac-
cumulation of poles is visible for both the free and the
internal energies. This result suggests, then, the presence
of first-order phase transitions for all these dimensionali-
ties, including the three-dimensional case. To confirm the
existence of this phase transition, a Monte Carlo analysis
is, therefore, necessary.

V. CONCLUSIONS

In this paper we have performed a high-order strong-
coupling analysis of the SU(2) lattice gauge theory with
different action representations at space-time dimensiona1-
ities, from d =2 to d =7. Rather general analytical for-
mulas for the strong-coupling developments have been de-
duced. In addition to the direct series analysis, the Fade
approximants have been also computed. The order of the
series has allowed for a statistical treatment for the deter-
mination of the Pade singularities. From this analysis we
have shown the existence of first-order phase transitions
from d =5 to d =7 for all lattice actions considered, fun-
damental, adjoint, spin- —, and spin-2. The location of
these singularities approached the origin when the space-
time dimensionality increased, a type of behavior already
expected from general mean-field arguments. One has to
remark that the locations detected by the strong-coupling
methods may not correspond exactly to the true singulari-

ty, since, dealing with first-order transitions, the strong-
coupling series show its singular behavior near the end of
the metastable phase.

With respect to the determination of the critical dimen-
sionality, i.e., the dimension above which phase transitions

are present, we have pointed out the problem of identify-
ing the shadow of the phase transitions of high dimen-.
sions at the critical dimensionality. Nevertheless, our
analysis has been able to determine the absence of phase
transitions for d =2, 3, and 4 in the fundamental case,
d =4 being the critical dimension. For the adjoint case, a
first-order transition is present at d =4, with d = 3 being
the critical dimensionality. This is also the situation for
the spin- —,

' action, contrary to the spin-2 action where a
phase transition seems to be present also in three dimen-
sions.

The general conclusion that can be deduced from the
above analysis is that strong-coupling methods are a valu-
able instrument to determine the presence of phase transi-
tions, even of first order, in lattice gauge theories. The
Pade analysis becomes very efficient in the determination
of singularities, especially at high dimensions. With
respect to the critical dimensionality determination,
strong-coupling methods have the problem of identifying,
in the Pade approximants, the shadow of the phase transi-
tion present at higher dimensions. Nevertheless, the phase
transition picture obtained in the cases analyzed in the
present work looks completely consistent.
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