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Adiabatic resonant oscillations of solar neutrinos in three generations
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The Mikheyev-Srnirnov-Wolfenstein model of resonant solar-neutrino oscillations is discussed for
three generations of leptons. Assuming adiabatic transitions, bounds for the p- and e-neutrinos

mass-squared difference 62' 0 are obtained as a function of the e-p mixing angle 0&. The a11owed re-

gion in the A2~ o-Hl plot that would solve the solar-neutrino problem is shown to be substantially

larger than that of the two-generation case. In particular, the difference between the two- and

three-generation cases becomes significant for 0~ larger than -20 .

INTRODUCTION

The discovery of the Mikheyev-Smirnov-Wolfenstein'
(MSW) mechanism as a possible solution to the solar-
neutrino problem has aroused much interest lately. In
this proposed mechanism, within the Sun there is an ef-
fective potential visible only to the electron neutrinos.
This gives them an effective mass and mixing angles dif-
ferent from their vacuum values, the additional contribu-
tion to the mass-squared value being proportional to the
electron density in the environment. The variation of this
effective mass as the neutrinos traverse the Sun results in
a resonance oscillation of the high-energy ones to muon
neutrinos. This supposedly explains the solar-neutrino de-

pletion. The 'Ga detector now under construction and
future experiments based on neutrino neutral-current in-
teractions will eventually put a test on the validity of this
theory. In the meantime the original idea has been refined
and improved.

Most of these analyses were done in the two-generation
model. According to the prevailing theoretical prejudice
which is based on the see-saw mechanism of neutrino
mass generation and on the experience gained from the
quark sector, lepton-mixing angles (in particular the e-It
mixing angle H~) are expected to be small' suggesting that
the two-generation calculations are indeed a good approxi-
mation to the more realistic three-generation case. This
prejudice, however, has not yet been substantiated by ex-
periments so that it is worthwhile to explore the possibili-

ty of large mixing angles in the leptonic sector and its ef-
fects on the resonance oscillation of solar neutrinos.

For two generations, a detailed analysis shows that in
order to explain the experimental data 0, cannot exceed
—35 . However, it has been known for some time that for
three generations the solar-neutrino problem can be ex-
plained by the assumption of maximal mixing of the three
types of neutrinos, which implies, e.g. , O& value of —S5'
(Ref. 11). This suggests that in the large-angle case the
two-generation analysis is clearly inadequate. Even for
the small-angle case when one expects the two-generation
calculation to be reasonably valid, it would be useful to
examine explicitly how good the approximation actually
1s.

In this paper a three-generation calculation for the
MSW mechanism is presented. For the sake of simplicity
and due to the lack of experimental observation of CP
violation for leptons, we assume that CP is conserved in
the leptonic sector. In order to further simplify our calcu-
lations, only the case of adiabatic approximation, as in the
work of Rethe, is discussed as an example to demonstrate
explicitly how the addition of the third-generation neutri-
no would affect the analysis of the two-generation case.

We outline the general procedure in Sec. II. In Sec. III
it is shown, in order to verify the results in Sec. II for
three generations, that they reduce to the well-known
two-generation ones when Oz

——0. Here O2 is another angle
parameter characterizing the mixing of the third neutrino
with the first two. Section IV contains discussion of the
numerical results.

II. THREE-GENERATION CALCULATION

In order for the proposed mechanism to work, the neu-
trino weak eigenstate P cannot coincide with the mass
eigenstate f . With the assumption of CP conservation
in the leptonic sector, they are connected by an orthogonal
matrix Uo, i.e., g = Uottt, with Uo ——Uo '. Written out
in full with the Kobayashi-Maskawa parametrization, '

we have

C) —S)C3 —S)S3

vq —— S)CP C) C2C3 S253 C) C2S3+S2C3

V3 S&S2 C}S2C3+C2S3 C]S2S3—C2C3

where C; =cosO;, S; =sinO;. Denoting the mass-squared
matrices in the mass and weak bases as Mo and Mo,
respectively, we have

Mo ——diag(m, ', m q, m, '),
Mo ——(M~ ), i,j = 1,2, 3

= UOMO Uo,T D

where Mo is a real symmetric matrix.
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M =Mp+diag(A, O, O)

M11+A M12 M13

M12 M22 M23

M13 M 23 M33

where 2 =2EV, E being the energy of the neutrino. Cor-
respondingly the matrices Mo and Uo will be changed to
M and U, respectively, which are given as

M = U'MDU,

M =d]ag(p] p2, /23 ),
U = U]](0;~P;),

(4)

and in the following we shall use the notation c; =cos]/];,
s;=sing;. For given initial values m; and 0;, the effec-
tive values p; and P; will be functions of A. The quanti-
ties of interest to us are p] and h2] ——p2 —p] . As will be
shown below, they enter a coupled set of equations with

02 and ~32 P3 P2
2 2

Equation (4) gives the elements of M in terms of the
]]]] s and p s. In order to eliminate the variables which
will be irrelevant to our discussion, we take the following
linear combinations of elements of M (Ref. 13). We find

In the interior of the Sun the electron neutrino "sees"
an effective potential V=~2GFX, due to its weak in-
teraction with the electrons present. Here GF and N, are
the Fermi's constant and the electron density, respectively.
As a result the mass-squared matrix will be modified to
(in the weak basis)

2M, 2 F——,cos(a —p3),

2M» —— F,—sin(a —P3) .
(12)

where ap and /3Q are the vacuum values of a and P, resPec-
tively. The functional dependence of o. ' on 3 is deter-
mined from Eq. (5), which can be rewritten as

1 e 8
(M22 +M33 ) —M] ] ——62]cos2]t ] +—+4

2

Taking 3 =0 yields

1 Bo
—, (M22+M33 — ], —b, 2] QCOS20]+

(14)

(15)

where variables with subscript 0 denote vacuum values, as
above. Hence

B —Bp= A2] pcos20 ]
—62 ]cos2(b ]—

2
(16)

From Eq. (10) and its vacuum counterpart, i.e.,
BQ ——B,cosPQ, etc. , Eq. ( 1 6) can be rewritten in a form
where the interdependence of 2 and a' can be made more
explicit:

c4 = A2] pcos20] —F cos( ap+ a' )cot2$]

Keeping in mind that the M;~'s assume the same values
whether in matter or vacuum, Eqs. (11) and (12) mean
that B„F„P+2$3,and a —$3 are all constants, i.e., in-
dependent of A. The same is true for p+2a.

If we denote by n' the departure of o. from its vacuum
value, we can write

a=a, +a', P=P, —2a',

(M22 +M33 ) —(M], +3)= ( 1 —Ts] )A2]

+ —,(1—3S] S2 )632,1 2 2 (5)

—B,sina'sin(/3Q —a') .

Again from Eq. (10),

(17)

M33 M22 —B cos2$3 c]D sin2]/]3-
2M23 —— Bsin2]/]3 ——c ] D cos2$3,

2M, 2 Fcos]t]3+s]D——sin/3,

2M]3 ——F sin/3 s ] D cos]]]]3

where

B =s ] b,2] +632cos2$2,

F = b, 2]sin2]t]],

D =632S]n2(52

Here A&1 is defined as

21 =621+$2 A3

Now if we write, to define B„F„a,and P,

B =B,cosP, c]D =B,sin/3,

F=F,cosa, $1D =F,sina,

Eqs. (6) and (7) can be rewritten as

M33 M22 —B,cos(/3+ 2/3)

2M23 ———B,sin(p+2]t 3),

(9)

(10)

sin
tan(b]

sing

F,
B,

= tan01
S]IlPp

sinao

i.e.,

sin(/3Q —2a')
cot]/]] =cot0]

sin(ap+ a')
S]IlPQ

sinao
(18)

B Bo
b, 2]cos2$]+ —+A =32] pcos20]+

2 2

B+c, D =B +C, D

+s D =Fo +S1 Do

ciD $1D C)D()
arctan +2arctan =arctan8 F Bo

S1DO
+2arctan

(19)

Equations (17) and (18) furnish two equations with two
unknowns a' and P] for any given A. Their values are
then substituted back into Eq. (10) to yield values for B,
F, and D. Then values of b, 2], b, 32, and P2 follow easily
from Eq. (8). A more transparent way of displaying the
system of equations is to rewrite them as
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The right-hand sides of the four equations above are all
constants calculable from the vacuum values 01, etc.
Thus they constitute a set of equations from which p1, 1/z,

621, and 632 can be solved for given values of A. The
values of 1/, and 1))z solved numerically from Eq. (19) are
then substituted into the following expression for the
probability for an emerging electron neutrino to maintain
its identity:

section, to avoid undue complication, we will restrict our-
selves to the case when the transition is adiabatic. This is
indicated explicitly by the subscript a of P in Eq. (20).

The adiabatic condition can be formulated by consider-
ing the evolution of the neutrino mass eigenstates. From
Eq. (1), we have

(21)

z 2++ z z(C z z++ z z) (20)
The equation of motion for 1/ gives

i = Mf= MU 1/
. d1/1 1 1

dt 2E 2E
(22)

which is valid when the source and the detector are far
apart so that the oscillatory terms are averaged to zero.
The neutrino capture rate is then given by

o. E+EP v, ~v, dE.
d1/

dt
1 . dU z-

2E dt
MD+i U

Substitution into Eq. (21) gives

(23)

Here o(E) and 4(E) are the detection cross section of the
detector and the solar-neutrino flux, respectively. In this

The orthogonality of U means that (d Uldt) U is an an-
tisymmetric matrix. Explicit evaluation yields

V1
. d
l V2

dt

/z1 l2E 1(cz—p1+s1sz1/3) —1 (szp1 —s1cz$3)
2

P2 /2E —i (1/'z+c, 1/)3)

p3 /2E

V1

V2 ) (24)

where P; =dP; Idt, and the off-diagonal part of the square
matrix is antisymmetric. For the problem at hand, the
condition for the resonance transition ' to be adiabatic
can be stated as

~
Qz1 ~

&&1 at resonance, ' where Qz, is
defined to be

~21 —1
Qzl = (Czpl+S1S2$3)4E

The constancy of a —p3 implies that a'=1/), —O3 and
hence P3

——a '. From Eqs. (17) and (18), it is straightfor-
ward to express a ' and P, in terms of A. Putting every-
thing together, we get

—1(cota+ 2 cot/3)F s,D—
8c,s, z c1cz(cota+2cot/3)+sz E dr

(26)

Here we have replaced dA /dt by dA /dr, r being the dis-
tance from the center of the Sun, since the neutrinos are
essentially traveling at the speed of light. In principle the
above equation allows one to determine the value of Qz1
at resonance in a general situation.

b, z1cos2$, +A = A&1 ocos2O, , B =Bo,
F =Fp, D =Dp=O .

(27)

D =0 means &f&z ——0, which in turn means that b, z, ——Az1.
The fact that B, F, and D stay constant implies a =up,
i.e., a'=0. Thus $3=03. All these amount to

4z—=Oz=0

b z1sin2$1 ——b, z1 osin2O, ,

b, z1cos2$1 ——b, z1 Ocos2O1 —3 .

From Eqs. (28b) and (28c) one gets

tan201
tan2$, =

1 —(3 /Ag )

(28b)

(28c)

(29)

where AR is the value of A at resonance, " defined to be
the point at which 621 attains its minimum value 621 R-.

contain p1 or b, z1 explicitly, a solution to Eq. (19) can be
obtained by inspection to be

III. TWO-GENERATION APPROXIMATION
~R =~21,pcos201, 521,R 621,osin201 (3O)

In order to check the validity of the formulas derived in
the previous section, we demonstrate that they reduce to
the by-now well-known two-generation formulas in the
appropriate limit.

When Oz
——0, Eq. (19) can be easily solved. From Eq.

(8) we see that Oz ——0 means that Do =0. Since D does not

which are the expressions obtained by Bethe. Note that
in order to recover the two-generation formulas, it is
necessary that Oz equals 0 but O3 can be arbitrary. (This is
true in the Kobayashi-Maskawa' parametrization. ) One
can see the reason for that by noting that given Eq. (28a),
U can be written in the form
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c) —si 0 1 0
ci 0 0 C3

0

0
S3s)

0 1 0 S3 —C3

6p p(eV )

Recalling that M =UMU, we see that what happens
here is that M is always transformed first to the block-
diagonal form

Mi)+A Mi2 0

M2) M22 0 io-4-

0,0.002)

0 0 m

by a rotation through an angle 03 about the v, axis. What
remains is then just a two-dimensional problem.

When 82 ——P2 ——0, Eq. (20) reduces to its two-generation
counterpart:

io-'-
2 Generations

P, ( v~ v)=C( c) +S) s, (31)

As noted in the previous section, the above formula is
valid only when the transition is adiabatic. By putting
s2 D=O in Eq——. (26) and making use of Eq. (28b), the ex-

pression for Qz, simplifies to

I I

to 20

(25, 0.01)

(p&&
i )

(20 ~O.OI }

I I I

&0 40 50o 8

21
(~2i,osin29& ) 1 dA

sin 2P &
2E dt

The adiabatic parameter Q is the resonance value of
~ Qz& ~

. It is obtained, by putting Pt re/4 in th——e above,
as

FIG. 1. Calculated 2. 1-SNU contour plots for the ' Cl detec-
tor on the 0&-6» o plane, with different values of (82, 63/0)
shown beside the curves. Values of 63$o are in units of eV .
The adiabatic condition is assumed.

( ~21,0»n2»'
2E dt

(32)
Dpi p(eV

which is the well-known expression for the adiabatic pa-
rameter in the two-generation case. '

To make the two-generation discussion complete, we
discuss the probability P(v, ~v, ) for an electron to
emerge unscathed in a more general case when Q is not
necessarily large. %'ith the assumption that the change in
electron density in the transition region is linear,
P(v, ~v, ) is given by' '

+e ' '~[1 —P, (v, v, )]

=P, (v, ~v, )

+e '"~ '~[1 2P, (v, ~v, )) . —(33)
tO

—4-

When Q is much greater than 1, which is the adiabatic
case, P(v, ~v, ) is equal to P, ( ~v). vIn the other ex-
treme when the transition is abrupt, i.e., Q &~ 1, we have

P(v, ~v, ) =1 P, (v, ~v,)—
=C& si +Si c2 2 2 2 (34)

which is essentially the second solution described by
Rosen and Gelb.

We emphasize here that an expression similar to
P( ~vv, ) in Eq. (33) for the three-generation case is
presently not available.

I I

10 20 50 40 50 8I

FIG. 2. Allowed regions on the Ol-621o plane consistent with
the experimental Cl data at 68.3%%uo confidence level, for the
three-generation (shaded) and the two-generation (cross-hatched)
cases. The adiabatic condition is assumed. Also shown are ex-
cluded region (dotted) from some of the more recent terrestrial
neutrino-oscillation experiments.
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Equations (29) and (31) are the two-generation counter-
parts of Eqs. (19) and (20). Together with Eqs. (32) and
(33) they form the main equations for the two-generation
case which enable one to calculate the neutrino capture
rate on the Earth. They are, in a sense, exact when 02 ——0.
One would expect that they are good approximations for
small 02 values also.

IV. RESULTS

By following the procedure outlined in Sec. II, values
for the expected neutrino capture rate can be obtained for
given values of 0&, 02, Az& o and A3Q 0 ~ The results are as
follows. Figure 1 shows the 2.1-SNU contours on the
0&-62& o plane for the Cl detector, with different values
of 02 and 632 o The solar model in Ref. 15 is employed.
Only contributions from the dominant B and Be reac-
tions are included. It can be seen that the calculated neu-
trino capture rate is practically independent of 02 and
632 o and there is no difference between the two- and
three-generation cases if 0& is no larger than —20. How-
ever, the part of the contours beyond 0& ——20' shows a ra-
pid up-shifting (from the two-generation curve) behavior
as 02 gets larger, i.e., when there is substantial mixing of
the third neutrino with the first two. In essence what
would have been line contours in the two-generation treat-
ment (dark solid curve) smears into broad bands towards
larger 0& values, when 02 and A3p Q are taken into account.

Beyond —30' the two-generation results merely serve as
the lower bounds for the allowed region in the three-
generation case.

Presently the experimental data on the Cl detector
capture rate is 2. 1+0.3 SNU. Assuming the adiabatic
condition, the region on the 0&-A2& o plane compatible
with the experimental data within one standard deviation,
i.e., at a 68.3% confidence level, is shown in Fig. 2. It can
be seen that even at this confidence level the allowed re-
gion in the three-generation case is markedly more exten-
sive than that predicted by two-generation calculations,
which is shown on the same graph together with upper
bounds from previous accelerator and reactor neutrino os-
cillation experiments. '

Summing up, the observed solar-neutrino depletion can
be accounted for by either the long-proposed maximal
(large) mixing among the tfiree species of neutrinos or the
more recently discovered MSW mechanism, or any inter-
play between them. Three-generation calculations for the
nonadiabatic case are in progress and will be reported else-
where. '
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