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Quantum inverse problem for an extended derivative nonlinear Schrodinger system
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The technique of the quantum inverse spectral method is applied to an extended version of the
derivative nonlinear Schrodinger equation (DNLSE) ~ The simple DNLSE does not permit a quanti-
zation in the R-matrix framework of Faddeev et al. due to its noncanonical and nonultralocal na-
ture. The extended DNLSE is canonical and we have explicitly obtained the R matrix, the commu-
tation rule for the scattering data, the excitation spectrum, and the integral equation for the eigen-
values. Some comments are also added about the equation satisfied by the scattering matrix.

I. INTRODUCTION

With the advent of the inverse spectral transform there
have been various attempts to formulate a quantum-
mechanical version of it. Recently, two important and
parallel methodologies have been advocated by Thacker,
Wilkinson, and co-workers' at Fermilab and by Faddeev
and his collaborators in the U.S.S.R. That both ap-
proaches lead to the same result, at least in the cases of
the nonlinear Schrodinger equation (NLSE) and the mas-
sive Thirring model (MTM), has been demonstrated. But
some restrictions do exist for the applicability of the latter
approach which is often referred to as the quantum R
matrix method. The first such restriction is that the
theory should be canonical and ultralocal ~ That is, the
basic commutation relation must not contain any deriva-
tive of 5 functions. Also a second and very severe restric-
tion is that the space part of the Lax equation, that is, the
L operator (P„=LP), must contain canonically conjugate
variables. The equation in two space-time dimensions
which is very similar to the NLSE but differs in that the
nonlinear term is the derivative nonlinear Schrodinger
equation (DNLSE). Unfortunately the Kaup-Newell
spectral problem which is the space part of the Lax pair
for the DNLSE leads to a noncanonical symplectic struc-
ture for the corresponding Hamiltonian flow. And so the
R-matrix approach was not applicable. But here we
demonstrate that an extended version of DNLSE can be
interpreted as a usual canonical Hamiltonian flow and
hence can be quantized following the R-matrix formalism
in an elegant fashion. In Sec. II we discuss the equation
and its Harniltonian structure very tersely. In Sec. III the
R matrix is obtained. In Sec. IV the commutation of the
scattering data is deduced and the diagonalization of the
Hamiltonian is performed. Lastly we deduce the integral
equations satisfied by the S matrix and eigenvalues of the
excitation spectrum.

The isospectral problem associated with this equation is
given as

I. A

Aq*
Aq

—iA

d 2Lf= io3 +Q 0+AQ& +r 0 A
dx

with

0 q;

Pi
~o= —.qipi

(p, ,q, ), (po, qo) are two sets of nonlinear fields. Then as-
suming

and V taken to be a fourth-degree polynomial in the spec-
tral parameter A it is shown in Ref. 5 that the equations
generated are

which is known as the Kaup-Newell spectral problem in
the literature. Then any member of the infinite number of
conservation laws can be used as the Hamiltonian. But it
is seen that the symplectic structure of (l) is

a na
a

which leads to a noncanonical nonultralocal commutation
rule and the attempt to quantize such a theory within the
methodology of R-matrix formalism becomes a total
failure. But recently by starting from a 2&(2 quadratic
bundle it has been shown by Gerdjikov et al. that it is
possible to generate a coupled set of generalized DNLSE
(which we will refer to as a generalized derivative non-
linear Schrodinger equation).

The quadratic bundle is

II. FORMULATION AND BASIC HAMILTONIAN
STRUCTURE

iqi~+q&xx+1 &&qi q i + Viqi —2Voqo =0

qo~+qo~~ —«oqi qo —21 Vpq&„

The simplest DNLSE is written as

iq, +q„„+e(
~ q 'q) =0 . where

+E
~ q, 'V, q, + V, q, =o,
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2 2
po =~oqo pl =~q 1 t-'o =~1

~o =&lqoq 1 +&oqlqo
(7)

III. THE QUANTUM INVERSE PROBLEM

The quantum inverse problem is always formulated by
discretizing the space coordinate. To proceed with the
calculation we rewrite Eq. (4) as

E1 4 2
Iqi I

—2eo Iqo I2 x

rp —A Aq 1 +qp
—AP1 —Pp A —r p

2 (12)

2
2 + El 4

~qi, +qi, +~eiqi q. + (8)

If we now make the change of variables

with P given as

For ql ——0 this system is reduced to the case of usual
NLSE and for qo ——0 we get If we solve Eq. (12) formally we can write

f L(x, A)dx,=e i4 (13)

under the assumption of asymptotically nonvanishing
nonlinear fields. Because in the formalism that we will be
following the system is assumed to be periodic over the
strip —L &x &L. If this length is divided into n equal
subdivisions of length 6 then n 6=2L and we consider
then an infinitesimal version of (13), written as

@=2 f (9a)
X

1+ f " L(xA) Qo. (14)

then we get

iq it+q &
+'ei(

I q & I
(9b)

It is then customary to define the operator at the nth
point as

the derivative NLSE. It can then be deduced that the set
of Eqs. (5) and (6) can be put into a Hamiltonian form via
the Poisson-brackets relations:

X

L„(A)= 1+ J L(x, A)dx
L n —1

(15)

If we define the average over the fields and their products
as

Ieoqo (x),q)(x') I =6(x —x'),
Ieiqo(x) q& (x')I = 5(x

(10)

X
n n

q 1 dx =Aq 1„, qpdx =b qp„,
n —1 n —1

X
n

ql q 1 d~ =~qlnq ln
n —1

(16)

But these structures make a transition to the form

[ q',*(x),q (x')
I
= 5(x —x')

then the commutation rules [obtained from the Poisson
brackets (10)] become

[eOqOn~qlm] + Bnm

under the reductions noted in (9) and the theory becomes
nonultralocal and noncanonical. So we formulate the
quantum inverse scattering method (QISM) for the cou-
pled set (5) and (6) rather than for (9b).

[eiqon~q & ]= ~ &nm

and Eq. (15) can be explicitly written as

(17)

L„(A)=I.'
l ——,e,aq, „q,„—A a1

Ahq 1
—epAqo

Ahq l„+Aqp„

1 + 2 6 1 kq 1nq ln +A
(18)

We then construct the direct product of the matrices

L„'(A) =L„(A)g 1,
L„"(A)= I e I.„(A),

(19)

defined in accordance with the prescription given in (3).
Then the most important object to consider is

up to terms first order in A.
After an elaborate calculation we arrive at

Li&„(A,p) Li2 (A p)
L, (A) L„(P)= L (A ) L (A )

(21)

L„'(A) XL„"(p) (20) where each L;J„(A,p) are 2X2 matrices written as
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Liin(A p)=
1 —e,q)„q)„b,—(p +A )6 pq)„b+qo„A
—e&(p+ —,

'
)q &„b,—eoqo„b, 1+(p —A )6

L )2„(A,p) =

L2i„(A,p) =

(A+ —,
'

)q )„b,+qob,

(p+A)b.

—e)Aq )„6—eoqo„h
—e)Aq )„5—eoqo„5

(22)

Lpp„(A, p) =
1 —(p —A )6 pq 1 n ~+qan ~

—&&(p ——, )q &„6 e~o„b,—I +e,q, „qf„h+ b (p'+ A')

Similar calculation can also be done for L„(p)g L„(A).
Next an important object of our study is the quantum R
matrix which satisfies

b(p)a(A) =a(p, A)a (A)b (p)+/3(p, A)b(A)a (p) .

a (p)b(A) =a(p, A)b( A)a (p )+/3(p, A)a (A)b(p),

RL„(A)L„(p, ) =L„(p)gL„(A)R .

We consider R of the form

(23) b(A)a(p) =a(p, A)a(p)b(A)+/3(p, A)a(p)b (A) .

IV. CONSTRUCTION OF THE EIGENSTATES
a 0 0 0
0 b c 0
0 d e 0
0 0 0 f

Then Eq. (23) yields the solution

1 0 0 0
0 a P 0
0 P a 0
0 0 0 1

(24)

(25)

q i. I
o&. =qo.

I
o&.=o . (30)

Then let us now observe how the L„(A) operator operates
on the vacuum so defined. At the nth lattice sites we
have

L„(A)
I
0)„=i

q~ +~q
0 1+A'6 I

0) . (31)

The eigenstates of the quantized system can be con-
structed by starting with a postulated vacuum. Let us say
that we designate the vacuum by

2(p —A)
1+2(p, —A)

1
(26)

RT(A) T(p) = T(p) T(A)R, (27)

1+2(p —A)
(p„A)=

We now obtain the commutation rules for the scattering
data via this R matrix through

L„+i(A)L„(A)
I

0)'„

1 —2A 6 A (q, „,q, „+,)

0 1+2A 6 I
0)„', (32)

Let us now consider the effect of two consecutive L
operators on

I
0)„. It is

where the scattering matrix T(A) is written as

a (A) b(A)—
b(A) +a(A)

Evaluating (27) by (28) and (25) we arrive at

a (A)a (p) =a (p)a (A),

b(A)b(p) =b(p)b(A),

a(A)a(p) =a(p)a(A),

a(A)b(p) =a(p, A)b(p )a (A)+/3(p, A)a (p)b(A),

(28)

(29)

a (A) b(A)—
T(A) = + L„(A)

n =1 +a (33)

we can infer the effect of a, b, a, b on
I
0). Then in the

limit of large N such that Nh=L' is fixed where L' is
the length of the lattice, the diagonal elements of (32) lead

where 3 is some polynomial q&„q&„+&. This property of
Ln when operating on the local vacuums is of utmost im-
portance. Bemuse as we proceed from one end of the lat-
tice to the other, which is really a circle due to periodicity
condition assumed, the product L„(A)L„+,(A) . L~(A)
is nothing but the scattering matrix T ( A ). Furthermore
due to Eq. (32) the product remains triangular. Hence,
since
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—A L' A2L '

to the eigenvalues e and e via the limit
T NAL'

lim 1—
N

=e A2L
'

So finally we write

a(A)
~

0) =e
~

0),
a(A) 0& =+e+

~

0&,

b(A) i0)=0,
(34)

and b(A) will create states from a vacuum. Let us now

consider a series of physical states of the form

n](A]) =b(A, )
~

0&,

Q2(A], A2)=b(A])b(A2) ~0),
+3(A]~A2tA3) —b(A])b(A2)b(A3)

~

0)

and so on. The important job is to ascertain the eigenmo-
menta and the eigenenergies of 0&, Q2, Q3. For that we
operate with a (p) and a(p) on Q], 02, Q3 and utilize the
commutation rules to shift a (p) so as to operate on

~
0)

to get (we illustrate here the case of two-particle states)

e
—p L p(p, A2)a (p)I12(A], A2) = n, (A],A, ) — e ' n, (A, ,p)a(p, A] )a(p, A, ) a(p. , A, )a(p, A, )

P(p, A]) p, &L /3(p, A])/3(A], A2)
e ' 02(p, A2)+ e ' Slq(p, A]) .a(p, A])a(A], A2)

'
a(p, A])a(A], Ap)

Similarly,

+eQ L p(A2, p) ~,2L
a(p)+2(A] A2) +2(A] Ap) e I12(A p)a(A],p)a(A2, p)

' a(A],p)a(A2, p, )

p(A] p) A2L p(A]p)p(A2A, ) A 2L
e ' Ilq(pA2)+ e ' Q2(pA]) .a(A],p)a(A2, A, ) a(A]p )a(A2A] )

(36)

(37)

Now TrT(A) is nothing but the Hamiltonian so we demand Q2(A]A2) to be an eigenstate of a (p)+a(p) which leads to
the following equations, determining the eigenmomenta and energy eigenvalue of the two-particle state:

[a (p)+a(p)]Ilz(A]A2) = e
—p L e /LI. L

+ f12(A]A2)a(p, A] )a(p, A2) a(A]p)a(A2p )
(38)

along with the condition 2A; L'= g b(A; —Ai)+2~n;,
j+i

(41)

qA 'L 1+2(A]—Az)
e —1+2(A]—A2)

(39) where n; are integers. Let us consider Eq. (41) with i re-
placed by i +1:

In general for the n particle configuration we have the
condition

2A;+] L'= g b(A;+] —Ai)+2vrn;+] .
j+i

(42)

1+2(A, —A, )

—1+2(A, —A, )

2A 2L'
e (40)

2A, 2L' A(A; —A )

j+i

j+i
which is nothing but the algebraic Bethe ansatz. In prac-
tice it is really very difficult to analyze an equation of the
form (40) so we now make a transition to the usual form
of a Fredholm-type integral equation from (40). Let us
rewrite (40) as

Subtracting (41) from (42) we obtain

2 .2=A;+) —A;
1

j&1

277
, (n;+] n;) . — (43)

As L'~ ~, the A s become infinitesimally spaced so we
define

p(A;) = 1

L'(A;+, —A;)

with

b(A; —Ai) =ln 1+2(A, —A, )

—1+2(A; —A )

which is supposed to reach a finite limit in the continuous
limit. So we deduce from (43)

~p(A)+ —, f K(A —A')p(A')dA'=2A, (44)

Taking the logarithm of both sides we get where



1284 A. ROY CHOWDHURY AND SHIBANI SEN 35

K(A)=
dA

4
1 —4A

(45)
u)(A;)=(A'; —A;)L, F(A;)=p(A;)u)(A;),

then proceeding as before we can deduce
where AF is determined by the condition of particle densi-
ty written as

AF NI p(K)dK =—. (46)—AF L

2~F(A)= —J dA'F(A') b(A A')—+b(A' —A) .
a

aA

(4&)

2A, 'L'= g b(A, A, )+2—~ri, +b(A, —A') .
l+J

If we now define as before

(47)

Equation (44) is of utmost importance for discussing the

thermodynamic spectrum of the model which is outside
the scope of the present communication. Lastly we may
add without derivation some comments about the scatter-
ing matrix between two pseudoparticles. Suppose in the
state of the system represented by Eq. (41) we introduce
an extra particle with momentum A' which alters the mo-
menta of the ith excitation from A; to A;, then we may
write

V. QUANTUM INTEGRALS OF MOTION
AND TRACE IDENTITIES

In the previous section we have used the trace of T(A)
as the Hamiltonian for the nonlinear system under con-
sideration and have constructed the eigenstates. The justi-
fication of taking the trace T(A) as the Hamiltonian lies
in the derivation of the quantum trace identities following
Ref. 9 which will yield the quantum integrals of motion
and hence also the Hamiltonian proper.

To proceed with the derivation we start from the
discrete transfer operator L„(A) written as

1 ——,e]kq1„q1„—A 5 Ahq]„+ Aq0„
L„(A)=i

~1A~q ]n ~0~q0n + T~l~q 1nq 1n +A
(49)

The monodromy matrix TL(A) for the interval [ —L,L]
is defined as

We transform the infinitesimal monodromy matrix L„
by means of a gauge transformation U„, requiring the
transformed monodromy matrix L„ to be diagonal:

A(A) B(A)
) A' —

C(A) D(A) (50) (53a)

By the standard procedure in the quantum inverse scatter-
ing method one can show that the generating functional
r=(A +D) (the transfer matrix) of the integrals of the
motion have the property

A
—Kg (K)

K=1
(53b)

where the 2&&2 matrix U„ is in the form of a formal
asymptotic series,

[r(A), r(p)] =0 . (51) where

The spectrum of the operator r(A) is calculated in the
limit 6~0, N~co, AN =L =const. We shall show, in
this continuous limit, that the local integrals of the
motion can be obtained from the expansion of 1nr(A) in
reciprocal powers of A as A'~ ao.

in[a(A)exp(A L)]= g C~A
k=1

A~ oo

(52)

[The factor exp(A L) corresponds to ordinary canceling
of the plane wave. ] To express the coefficients
C1,C2, C3, . . . in the limit 6~0, L~ oc in terms of the
quantum particle number, the quantum momentum, and
the quantum Hamiltonian using the fields.

0 P(K)
(K)

Qn (k) 0n

Although the matrix elements U„are operators, the in-
verse matrix U„' can be obtained by formal inversion of
the series, since it begins with the unit matrix I.

The condition of diagonality of the matrix L„ leads to
the following equations for p and y".

K K K K K K
pn+pn —) n ~ 7n+j n —) Gn

The quantities B„and G„can be expressed in terms of
P' ' and y

' with I &K, respectively, and the fields. We
give here only the expressions for G" ' ' ', for which we
require
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Gn 1q1n ~ n ~(RQn

(3) & 2 + + 1 1 ~ ( 1 1

n 2 ~I q ln'q lnq ln +ynqIn Vn —I+ + ( Vn yn —I )

(4) & + e 1 1 l ( 2 2
Gn 2 ~ 0~ Iqon q In qln + Yn qo'nyn —I + ~ ( Yn yn —I ) r (55)

5 & 3 e e 4 1 1 1 3 3
n 2 I 'q lnqlnq Inqlnq In 2 Yn'qlnyn —Iq lnq ln + Vn'tin Yn —I ~ 2

(1 n yn —I )'qlnq In (3 n Yn —I) r

(6) & 2 e + + 1 1 1 + 2 2 l 1 2 2 4 4
n 2 Eoel qonqln'q lb'qln'q In

2
Vn'qonyn —lqIn'q In +) nqon Vn —I ~ 2

(yn Yn —I)'qln'q In (yn 3 n —I )

On P and y we impose the natural boundary conditions

y~ ——0, Po ——0 for all K.
This choice leads to a normally ordered form of 13 and y when Eqs. (54) are solved and the solution for y is

N
I IC)

( I )n —I y ( I )IG IK1

I=n+1

Using (55) we obtain, from this,

(56)

(57)

y„' =(—1)"+'e g ( —1

I =n+1
N

y'„= ( —1)"+ ' g ( —1)'
I=n+1

I=n+1

A'

)'q» y' =( —1)"+'&0 g ( —1)'qol
I=n+1

] 2 g g 1 1 1 1 ]
2 ~I q»qllq»+ylqllyl —I+ g ( I yl —I)

1 e e 1 1 ~ 2 2
T~oelqolqllq II + yl qolyl I +

&
(yl —yl —I )

(58)

N

2 &I q Ilq llq Ilq llq» —
2

ylq Ilyl Iq Ilq ll
I=n+1

2+ Ylq Il Vl —I 2~ (yl ) I —1)q llq 1l +
&

(yl yl—
N

y„'=( —I)"+' g ( —I)'[Gl'J .
I=n+1

It is easy to express the elements of the matrices L„ in terms of P and y, i.e.,

QO QO

(L.)11=1 1 ——,&I~ql.ql. —A ~+~qln g A +'yn +I~ q—on+ A yn —I
K=1 K=1

—h b
QO QQ

1 —2~EI~qlnqln+~qln g A yn I+~qon—g A
K=1 K=1

(59)

We have written down the last equation with allo~ance for 6 ~0. Similarly,

h~h QO QO

)22—e I + 2 e lq I.q 1.—~e lq I. g A "+ 'P. I
—~eoqo. g A P.

K= 1 K=1
(60)

We next go back to the derivation of (52). It follows from (53a) that

TL (A) = Urv(A)TL(A) Uo '(A),

A(A) 0
(61)

TI (A)=Llew(A) . - L, (A)=
0 D(A)

Using (59) and (60), we obtain, accurate up to order of 6,
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A Qo Qo

A(A)=e — '
1 —zEIb—, g qI nq; n+~ g ql. g A +'V. —I+~ g qO. g A Y.—I

n =1 n =1 K=1 n=1 K=1

2 2 1 —K+1 K+ 4 el ~ gg 'qln, 'q ln, qln 'tin 2 ~1~ gg'qln, q ln qln g A Yn —I

n, n.
l (J l (J

2 —K K & 2 —K+1
2 el~ gg qlnq ln, 'qon, q.On .'g A Vn —I . 2 ~I~ gg 'qln, g A Vn, —I.qln qln.

n. n.
z J

K=1 n. n. K =1
z J

l (J l (J

2 I gg 'qOn, g A Vn; —I'Win 'q In +~ gg q ln, g A Vn, —I'q ln. Vn —I.
n. n K =1

z J
n-n K= 1

z J
l (J l (J

+~ gg 'q ln, g A Vn, . —IqOn V n —I +. ~ gg qOn, g . Vn, —I'q ln Yn —I

nn K=1
z

nn K=1
z J

l (J l (J
P

+ ~'XXq", X A ' V.', lqo„, V.", I
n n. K=1

l J
I (J

(62)

~e obt»n a simI»«xpre»ion for DIA) but, in the limit A, D(A) is exponentially small. $n expression (61) for
TL(A) ln terms of P and V we ignore the boundary terms, which correspond to the transition L ~~, and we note that
conditions (56) lead to the equation A(A) =A (A). Then, as L ~ co, we obtain

in[exp(A L )r(A)] — in[exp(A L)A (A)] .

The expansion in inverse powers of A for exp(A L)A(A) is obtained from (59) and (61):

exp(A L)A (A) = 1+ g A 'Izz,
1=1

(64)

where the first five terms of the expansion are

2 1al = ~ 2 qln'Vn —I +~+ qonVn —I—

1 1

2 ~ I ~ gg 'q I n; 'q I n, q 0n V n . —I

n n.
l (J

2 1

2 ~I~ gg qOn, Vn, I'q l.n q In

n;n
l (J

n, n.
l (J

n,-n

l &J

2 2
2 ~I~ yy qln, q ln, qlnJ3 nj —I

n, n

l (J
2 2

z ~i~ gg q ln, Vn,. —I'tin. . 'q In

n,. n.
l (j

2 1 1 2 1 1+~ gg 'q l, V, —I'qOn 7 n —I +~ gg qOn, Yn, —Iq ln. Vn. —I.
3 2 3

122 ~ g q lnVn —I +~ g qOn3 n —I 2 ~1~ gg q ln, qln, 'q ln Y.n
n n n,.n-

l (J
2~~ z2 & &2~~ 3

2 ~1~ ~~ 91n,.9 ln, 90n. 3 n —1 2 ~1~ ~~ 9 ln, 3 n, —lq ln. 9 in-
n. n.

l J n,-n

l(J l (J
2 2 2 2 2 1 1

2 ~1~ gg qOn, . Vn, —lq ln 'q In +~ gg 'gin, Vn, —I'gin Vn —I +~ . gg 'qon, Vn;+ IqOn .Vn. —I.
n n.j n n.

z j n, n-

l (J l (J l (J
4 3 & 2 4

+3 ~ g qlnVn —I+~ g qOnVn —I z eI~ g~ qln, 'q ln, qln Vn .—I.
n n n,.n

l (J
2~~ &2~~ 4

2 ~1~ ~~ q' ln, q ln. qOn 1 n. —1 p ~1~ ~~ q 1 n, 3 n, —lq ln 9 ln.
n n-

l J n,.n.
l (J l (J

2 3 2 2 2
2 ~I~ gg qOn, . Vn, . —Iq ln q n+I~ gg 'qln, Vn, . —I'qOn Vn —I +~ . ~~ qOn, Vn, —Iqln. V. n. —I r.

n,. n

l (J
n, n.
l (J

n,-n

l &J
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5 4 i 2 5
a4 ~ g 'qlnVn —I+~ g qonl n —I 2 el~ gg 'qln;'q ln qln Vn —I

n n n, n

l (J
2 4 & 2 5Yel~ ggqln;qln qon V.n —I 2 el~ ggqln; Vn, —I'qln 'qIn

n,. n. n n.
l (J l (J

p E1 ~~ qpn, l n, —lqln q ln. + ~~ q1n;3 n; —lqln 7n. —1+
n,.n. nl nJ

l (J l (J
6 2 6

5 ~ g 'q InVn —I+~ g qon 1 n —I 2 el~ gg 'q ln;'q ln;q In Vn —I
n n n, n-

i (j
2 2 6

Y 1~ gg 'qln;'q ln;qon Yn —I 2 el~ gg qln; Vn, —Iqln. q In

nl nJ n, n.
l (J l (J

2 5 3 3
2 el~ gg qon; V'n; —I'qln 'q ln +~. gg 'qln, Vn, —Iqon Vn —I+

~~ qpn, Fn; —lqpn Xn. —1

n, n

l (J

Q2 gg qon, Vn, —I'qln Vn —I
3 3

n,.n.
l (J

n,. n.
l (J

n,.n.
l (J

Taking the logarithm of (64), the first five coefficients of the expansion (52) are seen to be

2
Q&

1 3
C1 =Q1, C2 =Q2—,C3 =Q3 —Q1Q2+ 3 Q1

2 i 2 i 4
C4 ——Q4 —Q1Q3+Q1 Q1 ——,Q2 —

4 Q1

2 3 2 & 5
C5 ——Q5 —Q1Q4+Q1 Q3 —6Q1 Q2 —Q2Q3+Q2 Q1+ —,Q1

(66)

Now to make a transition to the continuous limit we consider as before 5~0, N~oo, AN =L =const, which then
yields that the above c; s are the renormalized versions of the classical integrals of motion:

dx(eIqoq I +eoq I qo»
OO

+ — «eoqoqo+ 4el qlql* +I—(qlql —qlql. )
00 4

D = ——, «( eoq0 q I„—eIqoq I„),(3) (67)

(4) 2 I 2«eIq I qI +I eo(qoqo —qoqo )+(eIq I qo+eoqoqI ) — eI qIq—I (qI q» —qIqIn)

H= —, dX —Epq1 qp +E&q& qp + q1 Epq1 qp —E1qpq1 + VpV1

where

Vp ——E1qpq1 +Epq1q0
2

2

VI. EXPLICIT FORM OF EXCITATION SPECTRUM

Similar to Eqs. (38) and (39) we observe that the eigen-
value E(AJAJ ) corresponding to the multipseudoparticle
states is given by

—A 2L'
E(A;A, )=e

a(A;Aj)

Pi ——

E1 ——

A1

2

A, 4

2

3 2 1——,A1 + —,A1,

A 3A

2 8

1

160

(69)

where

2(A; —A) )
a(A;AJ ) =

1+2(A; —Ai )

To ascertain the nature of the eigenmomenta and energy,
A, L'

we consider the in[e ' E (A;Ai ) ] and expand in inverse
powers of A where the coefficient of A gives us the
eigenmomenta and the coefficient of A gives us the
eigenenergy. Thus, for a one-particle state,
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For a two-particle state

2 T(A1 +A2 ) Y(A1 +A2 )+ 8 (At+A2) r

E2 ———,(A, +Aq ) ——,(A, +A2 )+ —,(A, +A~ ) ——„
(70)

model. We hope to formulate the exact lattice equivalent
model in a future communication and then discuss the nu-
merical solution of the integral equation for the Fermi
momenta KF and the density of states p(K) On.ly in that
situation is it possible to get an actual expression for p(K).

VII. GROUND-STATE ENERGY

From Eq. (44) we observe that if p(K) is the density of
states then the number of particle is given by

(71)

where the ground-state energy is given as

KF
Eo ———I K p(K)dK .

L —KF
(72)

It is interesting to note that our Eq. (44) is similar to that
of a usual nonlinear Schrodinger equation except that the
inhomogeneous term is proportional to A rather than a
constant. The explicit solution is rendered difficult by the
finite limits of integration in (72). Also there may be
some divergence difficulty due to the first-order lattice
(terms only up to b, ) approximation of the continuous

VIII. DISCUSSIONS

In our above computation we have presented the QISM
for the extended version of DNLSE. The original
DNLSE being nonultralocal, it cannot be treated in the
usual formalism and still no method exists to quantize it.
The analysis of Eqs. (44) and (48) for the study of string
configuration is under way and will be the subject matter
of the next communication. At this point it is interesting
to note that there is no way to compare the reproduced
spectrum with the actual excitations in the derivative non-
linear Schrodinger system because even up till now there
is no method for quantizing nonlocal theories.
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