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The conjecture that unified nonlinear equations for gravitation and electromagnetism may lead
directly to the Lorentz equation of motion for charged particles is discussed assuming a theory of
connections on a principal bundle with SL(2,Q) as the structure group. It is shown that the Lorentz
equation is a consequence of the field equations when the connection reduces to only one particular
component, which may be identified with the electromagnetic potential. The proposed equations
generalize, in a nontrivial way, the equations of gravitation and electrodynamics.

INTRODUCTION

It is well known that Einstein’s field equations of gravi-
tation imply the equations of motion of test particles!
and, on the contrary, that Maxwell’s field equations of
electrodynamics do not imply the corresponding equations
of motion. In this case, it is necessary to postulate the
Lorentz force equation, or derive it from some variational
principle. This fact is related to the nonlinearity of gravi-
tation and linearity of electrodynamics.?

If a unified theory of gravitation and electrodynamics is
constructed with nonlinear field equations, it should be
possible to derive the Lorentz equation of motion from
the field equations of the unified theory.

Within the Einstein-Maxwell theory, the desired equa-
tions of motion were obtained by Infeld and Wallace.> In
this theory, if we properly choose the stress-energy tensor
of electromagnetism T7,, the conservation of the total
stress-energy tensor T implies the Lorentz force equation.
This should be no surprise because the 7, of elec-
tromagnetism is constructed precisely to conserve the en-
ergy and momentum of a system of electromagnetic fields
and electric charges moving according to the Lorentz
force equation. In other words, the structure of T, “as-
sumes” the Lorentz equation. In the Einstein-Maxwell
theory, apart from the gravitational-geometric postulates,
we have to postulate separately the exact form of the
stress-energy tensor of electromagnetism which contains
the assumption of motion due to the Lorentz force. With
this postulate the motion of charged particles is deter-
mined by conservation, even in flat space, without use of
Einstein’s equation.*

Nevertheless, it may be claimed that the Einstein-
Maxwell theory is not a truly geometrically unified
theory. Einstein® himself was unsatisfied by the
nongeometrical character of T and spent his later years
looking for a satisfactory unified theory.

Nowadays, the need for theories of weak and strong in-
teractions revives the idea of a geometrically unified
theory. The Einstein-Maxwell theory is incomplete, in the
sense that it does not provide a geometrical structure cap-
able of representing additional interacting fields.

Most of the work done on the motion of charged parti-
cles,® including the Infeld and Wallace calculation, ac-
counts for the motion within such state of affairs. Our
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work is in line with the ideas expressed by Einstein for a
unified theory. Our purpose is not to exhaustively study
the equations of motion of matter under the ponderomo-
tive forces of some unified theory, but rather, noticing
similarities between the Lorentz force expression and the
expression for the force on spinning particles in general re-
lativity,’ to assume this fact is no mere coincidence. This
leads us to represent gravitation and electromagnetism by
the same geometrical object. By requiring the prediction
of the correct equation of motion, including the Lorentz
force, at least in a certain limit, we are able to narrow
down possible theories.

In the so-called “already” unified field theory, it is re-
quired that the curvature tensor satisfies the conditions of
Rainich® and Misner and Wheeler,” which are equivalent
to the existence of an electromagnetic stress-energy tensor.
With these conditions the Lorentz equation follows in the
same way as in the Einstein-Maxwell theory.

In Weyl’s unified theory,'® the equations of motion are
subject to the objection, first raised by Einstein,!! that
they imply that the frequencies of the atomic spectral
lines should depend on the location and past histories of
the atoms.

In the Kaluza theory,'? the Lorentz equations are ob-
tained from the geodesic equation by interpreting certain
components of the connection as the electromagnetic field
tensor and the component of the four-velocity along the
direction of the Killing vector as the electric charge. We
can object that, since it is known that the connection may
be made zero along any given curve, the electromagnetic
tensor can be made zero in properly chosen coordinates.
The physical meaning of this coordinate system is not
compatible with known experimental facts of elec-
tromagnetism.

Derived equations of motion have been discussed by
Johnson,? within the Einstein theory of the antisym-
metric field.'* In the nongravitational limit, the electro-
dynamics of this theory is not the conventional Maxwell
theory,!® although the resultant equations are compatible
with the experimentally known interaction of charged
particles over laboratory distances.

The theory discussed here gives the Lorentz equation of
motion without any of the problems indicated for the oth-
er theories. Apart from this feature, the theory offers
room for describing other interactions. From a geometri-
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cal point of view, we have the simplicity of representing
all interactions by a single geometric object. From a
physical point of view, spin and charge will play similar
roles, offering the opportunity to understand why they are
discrete quantities, conserved under external rotations and
a particular internal rotation, respectively.

Continuing our line of thought, we propose that elec-
tromagnetism enters, neither as part of the metric nor as
the stress-energy tensor of matter, but a part of a
geometric connection, as originally intended by Weyl. We
propose that the gravitational field also be represented by
the connection. In our approach we look for the possibili-
ty of enlarging the structure group of the theory to in-
corporate both gravitation and electromagnetism as part
of a unified connection, making the theory clearly dif-
ferent from the Einstein-Maxwell, the Weyl, and Kaluza,
and the antisymmetric field theories. The physical
motivation for this speculation arises from the fact that
the gravitational curvature enters in the equations of
motion for spinning bodies in the same manner as the
electromagnetic curvature in the Lorentz equations for
charged particles and the fact that a theory of gravitation
that incorporates naturally the equivalence principle
should be represented by a connection, not necessarily by
a metric. A well-known example of a nonmetric theory of
gravitation is the Newton-Cartan theory.'®*!” In any
theory of gravitation incorporating the equivalence princi-
ple, the mation of idealized test particles defines a set of
curves, called “free falls,” and a physical parameter on
each curve.'®!® By requiring these curves to be geodesics
and the parameter to be the affine parameter, a connec-
tion is naturally defined. It should be clear that a connec-
tion plays a fundamental role in gravitation. A connec-
tion derived from a metric is not a universal feature of
gravitation.

It was known to Infeld and van der Waerden,
when they introduced an spinorial connection, that there
appeared arbitrary components which admitted the inter-
pretation of electromagnetic potentials, because they
obeyed the necessary field equations. To admit this inter-
pretation we further require that the Lorentz force equa-
tion be a consequence of the field equations. Otherwise,
the equation of motion, necessarily implied by the theory,
is contradictory with the experimentally well-established
motion of charged particles, and the theory should be re-
jected.

If we desire to represent interactions by a connection,
we have to consider the way of selecting the group associ-
ated with the connection. There are two approaches to
select the group: (1) take a group related to space-time,
and (2) take a group related to some other area of physics,
i.e., particle fields. In the second case we would have to
consider how the group is related to the space-time
geometry and in the first case we would have to consider
the physical interpretation of the group.

Flat space-time is related to the Lorentz group. In
many physical theories we deal with representations of
this group, i.e., spinors representing some matter fields.
To approach unification it is desirable to work with the
group SL(2,C), for example, rather than the Lorentz
group itself SO(3,1). A gravitation theory related to
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SL(2,C) is discussed by Carmelli.?? In order to generalize
this group the simplest thing, apparently, is the group
U(1) X SL(2,C), which is the group that preserves the
metric associated to a tetrad induced from a spinor base.
It is also known that a theory of gravitation can be ex-
pressed using tetrads. In our case we would substitute a
spinor base for the tetrad. This spinor base would be a
physical representation of matter fields.

A first attempt,?* using U(1) X SL(2,C) as the group,
leads to a negative result, because the equations depend on
the commutators of the gravitational and electromagnetic
parts, which are zero. This result also follows from this
paper, as will be seen later. This indicates that it is not
possible, without contradictions, to consider that the U(1)
part represents electromagnetism as suggested by Infeld
and van der Waerden. This really means that to obtain
the correct motion we must expand the group chosen. In
compensation for the extra complications, we reach a
geometrical structure capable of incorporating additional
interactions.

Then we are faced with the problem of selecting a sim-
ple group, somehow related to SL(2,C), to express the
more general theory, and specifying a prescription of go-
ing back from the new group to SL(2,C), from which we
obtain a description of the behavior of matter fields.

In particular, we think of the group SL(2,Q), which is
the largest simple subgroup of a universal Clifford algebra
associated to flat space. This group is known not to
preserve the metric. But, if we think of general relativity
as linked to transformations which do not necessarily
preserve the Lorentz metric, it would be in the same spirit
to use such a group. Instead of general coordinate
transformations whose physical meaning is associated to a
change of observers, we have transformations belonging to
the group SL(2,Q) whose physical meaning should be as-
sociated to a change of spinors related to observers. Rep-
resentations of this group would be linked to matter
fields. If we restrict to the complex field C, instead of the
quarternions Q, we would get spinor representations
which are used in many other areas of physics. Since
SL(2,Q) is larger than SL(2,C) it gives us an opportunity
to associate the extra generators with interactions apart
from gravitation and electromagnetism. The generator
that plays the role of electromagnetic generator must be
consistent with its use in other equations of physics. The
physical meaning of the remaining generators should be
identified.

The method used to find the equations of motion gives
the equation for a test particle with multipole structure.
The next step in this direction would appear to be to find
the motion of real particles in which the action of the to-
tal field on the particle is taken into consideration. A way
to accomplish this would be to expand the field equation
and the conservation equation in terms of a small parame-
ter in a form similar to the Einstein-Infeld-Hoffmann
(EIH) method.”” In the zeroth order, the particle moves
as a test particle, in the first order the field produced by
the particle produces a correction to the motion, and suc-
cessive orders produce more correction terms.

Nevertheless, our purpose here is not really to describe
exhaustively the motion of classical matter under the
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equations of the theory, but rather, as indicated above, to
present a geometrical theory and to require that it be com-
patible with the Lorentz motion. A further requirement
would be compatibility with modern ideas in quantum
field theory. In this sense it is better to postpone the dis-
cussion of a classical approximation until other aspects of
the theory are more developed. In particular, at the
present situation, it appears more urgent to exploit the op-
portunity provided by the theory to give a geometrical in-
terpretation of the source in terms of fundamental
geometric field objects. This direction could provide a
link with quantum theories, as will be discussed in a fu-
ture paper.

Once the geometrical nonphenomenological structure of
the source term J is known, the exact equations of motion
for the fields describing matter, including particles, would
be the conservation law for J. This relation, being an in-
tegrability condition on the field equations, includes all
self-reaction terms of the matter on itself. There should
be no worries about infinities produced by self-reaction
terms. A physical system would be represented by matter
fields and interaction fields which are solutions to the set
of simultaneous equations. When a perturbation is per-
formed on the equations, for example, to obtain linearity
of the equations, the splitting of the equations into equa-
tions of different order bring in the concepts of field pro-
duced by the source, force produced by the field, and,
therefore, self-reaction terms. We should not look at
self-reaction as a fundamental problem but, rather, as one
introduced by this method of solution.

A classical particle itself may not be the appropriate
idealization of the physical world. The theory should pro-
vide relations between interaction fields (gravitation, elec-
tromagnetism, etc.) and matter fields (masses, charges,
spinors, etc.) and specify how these fields evolve. A
modern definition of particle and its properties should rest
on the fundamental geometrical fields. It would be desir-
able that both classical and quantum aspects of the physi-
cal particle could be obtained from the geometrical
theory. Nevertheless, I believe that this is work for future
papers.

I. SELECTION OF THE STRUCTURE GROUP

To introduce the new group, we turn again to the pro-
cess that lead us to SL(2,C) in the first place, but looking
closely to find a way to generalize it. In essence, the
group was obtained by introducing a two-dimensional spi-
nor space and requiring invariance of the induced space-
time metric under the group transformation. Fundamen-
tally, the process of finding a square-root operator of the
relativistic D’Alembertian operator leads to spinors and
the group SL(2,C), essentially the square root of the
Lorentz group SO(3,1).

The D’Alembertian operator is obtained from a metric
&

P-P=ghP,P,, (1.1)

where P is the momentum operator. The metric may be
given by a scalar product in the space-time manifold M:

g (u,v)=scalar product, u,vETM . (1.2)

In order to take the square root, instead of the previous
procedure, we may introduce geometric elements ¥ such
that for each vector v €X, where X is a flat space, and set

Vi=—g(v,0) . (1.3)

These V represent the vectors v and therefore should form
a vector space. In addition, we could define a product by
the required equation (1.3), turning the vector space into
an algebra. An algebra of this type, containing isomorph-
ic copies of X and R, is known as the geometric or Clif-
ford algebra?® of X.

In our case, the vector space of interest, X, is the
tangent space at a given point of the curved space-time
manifold M. This flat four-dimensional space has the
Lorentz metric. The universal Clifford algebra associated
to this space with signature (—1,1,1,1) is the real algebra
of 2X2 matrices over the quarternion field Q.2 The
highest-dimensional simple subgroup is SL(2,Q). The
subgroup that preserves the metric is SL(2,C), which
may be obtained from SL(2,Q) by some restriction. It is
very suggestive that a natural nontrivial generalization
would be to use SL(2,Q) as the structure group of the
bundle.

We are then lead to a theory that deals with the evolu-
tion of the elements of the simple group SL(2,Q). There-
fore, we may construct a principal fiber bundle by taking
this group as the fiber and the four-dimensional space-
time manifold M as the base space. To establish the evo-
lution of the elements of the fiber, we need to take deriva-
tives and, consequently, we need a connection on the prin-
cipal bundle. The given connection has a fundamental
unifying role; we naturally define its curvature () and may
take as field equations the simplest natural geometric ex-
pression in terms of the dual *Q,

D*Q=J, (1.4)

where the current J is an sl(2,Q)-valued three-form.
Now we have, for any two-form valued on the Lie alge-
bra sl(2,Q),

DDX =[X,0] (1.5)
and, in particular,
DD*Q=[*Q,0], (1.6)

obtaining an integrability condition on J as in the case of
general relativity for T:

DJ=0. (1.7)

In gravitation, the integrability conditions, 7" conserva-
tion, imply equations of motion for particles. If a mul-
tipole structure is assumed, we get the geodesic equation
for monopoles and an equation for spinning particles
which depends on the curvature tensor.?®2?° Now, the in-
tegrability condition Eq. (1.7) also implies equations of
motion, particularly when J is expressed in multipole
terms. Since J is an sl(2,Q)-valued three-form, the mul-
tipole structure associated to it must keep these geometri-
cal aspects. The hope is that the equations of motion de-
pend on the electromagnetic part of the curvature tensor;
that is, on the Maxwell tensor F.
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II. GEOMETRICAL FORMULATION
OF THE EQUATIONS OF MOTION

By a classical equation of motion of a point particle we
mean a differential equation determining the evolution of
the tangent vector to the world line of the particle.

We could idealize a test particle by associating an
orthonormal tetrad to it, the timelike vector being the
four-velocity and the three spacelike vectors related to the
rotating properties of the particle. At two different events
in the world line, the corresponding tetrads should differ
by a Lorentz transformation, at most. The evolution of
the tetrad along the world line is determined by a Lorentz
transformation that evolves as a function of the parameter
on the world line. Of course, the timelike vector of the
tetrad must be required to coincide with the tangent to the
world line at all points in the world line.

Consider the principal fiber bundle constructed by tak-
ing the Lorentz group as fiber and the space-time mani-
fold as base space. If we are given a curve in this bundle,
we have precisely an element of the group evolving as
function of the curve parameter. It is clear that the given
curve determines, by projection, a curve in the base space
of the bundle. The projected curve may be taken as the
path of a particle in space-time. If we represent the evolu-
tion of the particle by the original curve in the principal
bundle, we can obtain the space-time path, but we would
have more information, associating an element of the fiber
to each point of the path of the particle.

On the other hand, we have introduced in the preceding
section a principal bundle with a larger group. Neverthe-
less, the integrability conditions determine equations for a
curve in this bundle, if we associate a classical multipole
structure to the current J. If we are able to solve for this
curve, we would have information about the path of the
particle in space-time and also information about the evo-
lution of internal elements representing the particle.
Again, this would provide more complete information
than just the space-time path of the particle.

In order to clarify the geometrical aspects involved, we
shall designate by E and E’, respectively, the fiber bun-
dles with the groups SL(2,Q) and SO(3,1) as fibers, over
the space-time manifold M as base space. Here we take
the view that the most fundamental expression of the con-
nection field is through the introduction of groups and
morphisms among them.

If we have a mapping from SL(2,Q) to SO(3,1), we may
define a curve in E' from the knowledge of a curve in E.
We could think that the curve in E represents the evolu-
tion of a complete idealized observer. This observer car-
ries a complete basis of the fiber that allows him to mea-
sure external (base space) magnitudes and internal (fiber
space) magnitudes. The curve in E’ would represent an
observer carrying a space-time tetrad whose evolution is
determined by the curve. A classical measurement may
be interpreted as the measurement of only the projected
path in the base space (space-time). This path is deter-
mined by the curve in the larger space, the principal bun-
dle E. In other words, classically we only notice the *“‘sha-
dow” of the particle. We should point out that similar
projections are used normally in physics, for example,
when we work with the field of complex numbers and re-

strict ourselves to the field of real numbers.

It is clear, then, that we could restrict the algebra
sl(2,Q) to the complex field, leading to the even subalge-
bra sl;(2,C), from which we could pass to the Lorentz
group SO(3,1) using the known homomorphism, permit-
ting us to find an equation for the timelike vector of the
space-time tetrad; that is, a classical equation of motion
for the particle.

To make things more definite, we assume there is a
mapping u:E—E’ that allows one to pass from the space
of SL(2,Q) variables to the space of SO(3,1) variables. We
repeat that we take the point of view that fundamental
equations should relate group elements; that is, points in
the principal bundles. We shall require, for physical
reasons, that u leave invariant the projection point on the
base space M. We have then

u(EM,7,G)—(E'M,7",G"), (2.1)

where G =SL(2,Q), G’'=S0(3,1), and m,7" are the projec-
tion mappings of the bundles.
If we have a curve in E,

c:R—E, (2.2)
c(AMEE, AER, (2.3)

we have its corresponding tangent vector field:
(N ETE. (3 - (2.4)

Knowledge of ¢ determines the curve ¢ up to a constant
of integration. It follows that the mapping p defines a
curve in E’ by composition:

¢'=poc , (2.5)
c'(MEE', AER . (2.6)

In order to obtain an equation for the tangent vector to ¢’,
we must use the differential of the mapping u, indicated

by py:
ux:TE—TE', 2.7)
¢(A)=pc(N) (2.8)

The equation for the tangent vector ¢ should arise from
the integrability conditions of the source as indicated be-
fore. This equation should relate to an element of the
algebra sl(2,Q), as seen from the field equations, which
determine that J is an sl(2,Q)-valued three-form. The re-
sult is an equation for the tangent vector to a curve a, in
the adjoint bundle of E, denoted by A4, where the fiber is
the vector space sl(2,Q). To obtain a curve in E, we
should exponentiate the algebra. On the other hand, what
we really need is an equation for the tangent of a curve in
a bundle 4’ with the algebra so(3,1) as fiber.

Now, the mapping u, restricts one naturally to a map-
ping from bundle A4 to bundle A4’. Consider the vertical
subspace of the tangent space at a point e € E, which we
shall indicate as T'E,. Restrict i, to this space,

frwe:T’E,—T E o, . (2.9)

For meUCM, gE€G, g'€G’, a trivialization ¢ of E,
1 (U)—-UXG , (2.10)
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t(e)=(m(e),ple))=(m,g), (2.11)
induces a trivialization of E’,

7w ~(U)—»UXG', (2.12)

t'(ule))=(m"(ule)),d'(ule)))=(m,g"), (2.13)

where g'=¢'opo ¢~ !(g). In particular, for a trivialization
at the point (m,I), we obtain

tampTE, —TE, [ . (2.14)
Since the tangent space of a Lie group space, at the identi-
ty, is isomorphic to the Lie algebra of the group, we ob-
tain

Bxm1:Am—Am (2.15)
which can be written as the bundle mapping
,u'*I:A“*A’ . (2.16)

To specify the mapping u, it is convenient to do it in
two steps. First, we pass from E to a bundle E” with
SL,(2,C) as structure group and then we pass from E” to
E'.

It is known that any element of a universal geometric
algebra may be uniquely expressed as the sum of an even
part and an odd part. We may introduce an equivalence
relation in SL(2,Q) by defining equivalent points if

exp[even(a)] =exp[even(b)] (2.17)

for points exp(a), exp(b)ESL(2,Q0). Using the
homeomorphism, from 7~ '(U) to UXG, we may define
another equivalence relation R, in E, as follows: points
are equivalent if they are equivalent in G and project to
the same point in the base space. We can construct, then,
the quotient of the bundle E by this equivalence relation

R and show that it is a principle bundle:
E/R=E". (2.18)

There is a natural projection from E to the equivalence
classes E"’,

p:E—E", (2.19)

which preserves the projection on the base space m(e):

m(p~e"))=m, e"EE" .

(2.20)
We shall define the mappings 7'’ by
T"E"—>M |, (2.21)
7' =mop . (2.22)
Then 7" is a projection on M:
m'(e")=m"(p(e))=mle)=mEM . (2.23)

Consider the following diagram. Because of the iso-
morphism between G and 7~ '(m)=E,,,

é
E, — G

p l 5 1 Pr>

E, —G"

where p, indicates projection to the equivalence classes in
the fiber, we can define the mapping ¢" so that the dia-
gram commutes:

"'~ (m)—SLy(2,C) , (2.24)

¢ op=prod . (2.25)
Now we have a trivialization on E"’ by defining ¢"":

" N U)—>UXG", (2.26)

t"(e")=(7"(e"),d"(e"))=(m,g") . (2.27)

The equivalence classes may be characterized by the pair
meEMand g"'E€G".

The group G may be considered to act on E" by the
definition

t”(e”'g”):(7T"(e”),¢”(e”)g”) . (2.28)
It is clear that
ﬂ'll(e”‘g”):'n",(e”) R (2.29)

and E” is a principal fiber bundle over M with SL(2,C)
as structure group.

To pass to SO(3,1) we notice that we have the following
group quotients:

SL(2,C)=SL,(2,C)/U(1),
SO(3,1)=SL(2,C) /I, —1I) .

(2.30)
(2.31)

Because of the isomorphism between ="' ~!(m) and
SL,(2,C), we can construct similar quotients in E"'. We
have

E"/(U(1)xI,—I)=E", (2.32)

and can define a natural projection homomorphism onto

the equivalent classes:
h:E"—E'. (2.33)

In a similar way as was done before for E’’, we can de-
fine a projection 7,

mE' —-M , (2.34)

7 =m"oh"", (2.35)
and a mapping ¢’,

¢"E'—>G', (2.36)

d'oh=hsod", (2.37)

where hy is the corresponding group homomorphism of
the fibers. With the trivialization ¢,

tw ~NU)—>UXG',
t'e")=(m'(e'),d'(e')),

(2.38)
(2.39)
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the group action may be defined by
t'(e"g')=(7r'(e'),¢'(e’)g’) ,

and E’' may be recognized as a principal fiber bundle over
p with SO(3,1) as structure group.

We see that the mapping u needed to go from the fun-
damental equation obtained from multipole analysis to the
equation for a Lorentz rotation is the composition of the
two previous mappings:

(2.40)

u=hop . (2.41)

Now we use a definite trivialization to write explicit ex-

pressions for the mapping and its differential. The action

of p may be simply stated, on e =exp(a), by
p(e)=exp[even(a)]=exp[cola)], (2.42)

where co indicates taking the complex part. It is clear

that the differential mapping py, acting on the tangent
space to the group space near the identity, means to take
the complex part of the Lie algebra. For simplicity we
omit the f in p, since there should be no confusion. We
have

Parsl(2,0)—sl(2,C) ,
a€sl(2,0) .

(2.43)
psrla)=cola), (2.44)

Consider now the homomorphism h, and its differen-
tial, omitting the f as before:

J 4

+

J

*J/J,A

’
a, A

’
a
-V 1

a; ¥a, an[T

We decompose the first two multipole terms as
g =g'mip+mih, (3.3)
YA =y + 84+ E B Y, (B4

where the following relations hold:
=1, (3.5)

mAp=14prE, , (3.6)

|
(x—x= [ d

*® A B
[ dsvieag et il

A B (x —x' dS— f Va[Ta'plA’ SgiAfB

’ a- ‘-
582

hyysl(2,C)—so(3,1) , (2.45)
hB(e")=~1trie' T e'aP) , (2.46)
hB, p(a)=2tr(b Yoa0f+aoboP) (2.47)
ha*I(a):%tr(aaaaﬂ+a*0aaﬁ) . (2.48)

Then the composition mapping p may be written, with
the chosen trivialization, as

,u”(a)z%tr[aaco(a)oB+co(a*)aaaﬂ] . (2.49)

This mapping allows us to obtain an equation for the
tangent vector to the curve a’ in A4’, from the knowledge
of an equation for the tangent vector to a in A4, as dis-
cussed in detail in a later section.

III. EQUATIONS OF MOTION

To obtain the equations of motion, we shall give to *J a
multipole structure in terms of delta functions. Using a
method given by Tulczyjew,’® we shall obtain equations
relating the multipole terms starting from the conserva-
tion equation:

DJ=0. (3.1)

The multipole structure is, along a curve x'(s) with

tangent vector &,

(x —x")]ds+ -

AR (x —x")]ds . (3.2)

[
' =m"5£.E, (3.7)
Mg =, — Aty (3.8)
gt =r"pE,— &g, (3.9)

so that m, 17;, and 7, are orthogonal to &*.

The method to get the equations of motion is based on
the following lemmas, which are still valid in the present
context.

Lemma 1,

AaB’ )58 AaB

BA'a’f - (x —x) . (3.10)

An expression of 8’s has meaning after integration over its argurnent. Contracting with arbitrary ¢4 BaB and integrating,

the expression can be verified.
Lemma 2. If we have

‘lll.l""#’A,B"" #]"‘A
2 Jdsv, V-V, [T 5!

3 T

f NAB

B d x=0,

C(x—x"], (3.11)

A

(3.12)

where the expressions v are symmetric in the u indices and orthogonal £, then the vanishing of the v is a necessary con-

dition,

u#..‘u AB..‘
Vv k =0.

To verify this lemma, we contract with arbitrary K 45 ...

(3.13)

and integrate by parts,
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> (- DV, KW =0,

(3.14)

and then go over the rest system and make use of the arbitrariness of K, assuming that all space derivatives of order

lower than k vanish.
Using lemma 1, the conservation equation

V# *J;JAB =0 (315)
may be transformed to obtain
D A uvyA ’ A D A p ’ A (pv) ’ ds =0 3.16)
J 25 0m e = [95#1 s [8x x4+, |m b= o (N8 —x) | =9V, [ #8x —x")] [ds=0, (3.
[
where The mapping n maps the curve ¢ onto a curve poc in
E’. The differential u, defines an equation for the
A p_gp A 4 4 *
N2t ="+ "+ " (3.17) tangent vector to ¢’ in E’,
SAghy=nq gl (3.18) G =pesd =pa([Q,S]), (4.3)

From Eq. (3.16) we obtain the multipole equations, using
lemma 2:

,qAB(,uv):O , (3.19)
mAagh— :JD;NAB"=O ,
;DS“mAB—[Qp,v’S'uV]AB:O . (320)

The last equation determines the evolution of an ele-
ment of sl(2,Q) in terms of a parameter s associated with
a given curve x* in the base space-time manifold M. On
the other hand, the object of the calculation is to obtain,
precisely, the curve x in M. If this curve is not known a
priori, Eq. (3.19) is not sufficient to determine the com-
plete evolution of m“y. Additional information is need-
ed. If we impose the physical requirement of identifying
the tangent to the curve x with the timelike vector of the
tetrad induced by m“g, Eq. (3.19) expresses the evolution
along the integral curve tangent to the timelike vector of
the tetrad. In particular, this requirement is sufficient to
obtain an equation for the evolution of the timelike vector
along its own direction. The integral curve determined in
this form is the space-time curve desired, indicating the
motion of the particle.

IV. LORENTZ EQUATIONS AT MOTION
FOR CHARGED PARTICLES

Since E is a principal bundle, there is a natural action
of the structure group G on the bundle by right multipli-
cation. In particular, a curve in the Lie algebra of the
structure group induces a vertical curve on E.

It follows that a tangent vector a to a curve in 4 maps
into a vertical tangent vector on E’ by right action of the
algebra at some point e’ € E":

¢L=c'd’. 4.1)

The equation we have obtained in Sec. III for the

tangent vector a, Eq. (3.20), is of the type
a=[Q,S], (4.2)

where () is the curvature and S is a tensor defined in Eq.
(3.18).

¢'=c'ia([Q,S]) . 4.4)

In other words, the mapping u, allows us to find an equa-
tion for a curve in E’.

We are interested only in the evolution of the four-
velocity of the particle associated with the tetrad. Fur-
thermore, we should make the tangent vector £ to the
path in space-time, correspond to the timelike form of the
tetrad, 6°. We have

DeE=D.6°=6° . (4.5)
Using Eqgs. (4.4) and (2.49) we obtain

éﬁ:%tr[(coa)*a,g(r“—kaﬁ(coa)o“] . (4.6)
Considering the equation for the tangent vector, Eq. (4.2),
we get

é%:%tr(co[Q,S]ToB—i—aﬁco[Q,S]) . 4.7)

In order to obtain the Lorentz equation of motion, the
commutator [£,S] must satisfy certain requirements. For
this purpose we expand the curvature () in terms of the
generators of the Lie algebra sl(2,Q). We shall single out
one generator as the one related to electromagnetism and
indicate it by the symbol E. The curvature two-form as-
sociated to E will be identified with the electromagnetic
tensor F,,. Additionally, we express the tensor S in
terms of its defining multipole terms 7“z* as indicated in
Sec. III. The explicit calculation of Eq. (4.7) leads to vari-
ous terms. We shall assume that the terms not related to
E are small and therefore we shall keep only the elec-
tromagnetic terms of interest. We have

6°= 1 6°F, & tr(col E,n*] 0 g+ 0 geo E, n*])
+other terms . (4.8)

In the Appendix it is found that there are two
equivalent possibilities for the electromagnetic generator
if, for simplicity, we impose the requirement that it
should be one element of the chosen basis of the Lie alge-
bra. Choosing then, for the ansatz,

0 J

E=|_; ol (4.9)
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a direct calculation leads to
[EP]1=g80, —inP?, (4.10)

where the following conditions are required for Egs.
(A18)—(A20), in terms of a constant g:

PO=8q , (4.11)
PR =8 (4.12)
P =_8q . (4.13)

Then it follows that, substituting Eq. (4.10) in Eq. (4.8),
6=+ 6PF,,,&"tr] co(gdio®— 8P Yi)og

+ogeolgdyo® =8P+ - -,

(4.14)

éoz%quvgveﬂtr(S‘a‘a“03+8ﬁaﬂo“)+ - (4.15)

=qF, £Y0P(8: —8h53) =q0PF g6+ - - -, (4.16)
which is equivalent to

Ds (4.17)

ds

:qF;ngv-{» SR
i

or, in other words, to the Lorentz equation for a particle
with electric charge g. Thus we have obtained, in this ap-
proximation, the correct equation of motion for charged
particles from the conservation law for J.

V. INDUCED METRIC AND CONNECTION

We shall designate by frame e’ in M an ordered basis
(eg,e,e5,e3) for TM,,, the tangent space to M at m €M,
at all points m € U for a neighborhood UCM. The ma-
trix formed by taking the vectors of the basis as columns
is an element of the group SO(3,1). We see that a frame is
a section in the principal bundle E’. A plain theory of
gravitation is compatible with SO(3,1) as the structure
group.31:32

The mapping u, previously defined, maps a given point
in E to a point in E’. A section in E is mapped by u into
a section in E’. It follows that a section in E canonically
defines a frame. Furthermore, using 6, the dual basis of
e, the given section in E canonically defines a metric in M
by

g=6mo , (5.1)
where 7 is the Minkowski metric. In component form,
8uuv="ap046% - (5.2)

With the same trivializations used in the preceding sec-
tion, we can write, for a spinor basis ¢ ESL(2,C),

62 =+tr(¢o,40%) , (5.3)
and in component form,
8uv=Tapd 705N b5 0L dT0) (5.4)

=6AC€§B'}/:§'}/$B . (5.5)

The elements ¢ are obtained from a given point in the
original bundle E by the action of the mapping p as
described in Sec. II. We see that a section in E determines
the metric in M in this canonical way.

In addition, a connection @ in E also induces a connec-
tion in E’. We shall recall a definition for a connection in
a fiber bundle.’®> A connection is a Lie-algebra-valued
one-form o on a principal bundle, such that

w(o(a))=a , (5.6)

where a € 4, the Lie algebra of the group G, and o is the
natural vertical vector induced by the algebra. Further-
more, it is required that

w(Rgav)=ad(g " No(v) , (5.7)

where v €ETE, R, is right multiplication by g, and ad is
the adjoint map. If we define the induced connection in
Ell by

w'":TE" —s1,(2,C) , (5.8)
0" (pev)=py (V) , (5.9)

in terms of the given connection w and the projection
mapping p, we have, in some trivialization,

pim,g)=(m,g"), (5.10)
where
g"ESL,(2,C) . (5.11)

We can define a vector field o'’ over the subspace of E
determined by G'' DG, by the restriction of o to this sub-
space. Then the connection may be expressed in terms of
the even part of the algebra:

0" (0" (pe19))=0"(ps10(q)) , (5.12)

where g €s1(2,Q) and p, ;9 €sl,(2,C). The commutation
is possible because 0"’(p,¢q) is complex (not quarternionic).
It follows from the definition of '’ that

@"(0"(psq)) =psjo(0(q))=pysq , (5.13)

’

and " satisfies one of the requirements to be a connec-
tion. Furthermore,

@"(Rgry [P V) =0" (P Rgry0) =p 4 jo(R'0)
1

"

=pu8 lo)g" =g 'p. 0" (v)g

"~Hal(pe) ,

(5.14)

=g" “lw(p,v)g"’=ad(g

and o'’ satisfies the second requirement to be a connection
on E”.

In the particular trivialization chosen, the definition of
o' gives

"' (cov)=co[w(v)] (5.15)
and it follows, in component form,
ot =colw? )y SByts +colwPr )y ity (5.16)

which coincides with a definition for an s1,(2,C) connec-
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tion used in previous work.** It is known that a connec-
tion of this type satisfies

D"y=0, (5.17)
which, in turn, implies
D"'g =0. (5.18)

The metric and affine structures canonically induced
from the frame in M are compatible.

CONCLUSIONS

We have shown that it is possible to obtain the Lorentz
equation of motion from the conservation law implied by
the field equation of the unified theory under considera-
tion. This theory was constructed by identifying the grav-
itational and electromagnetic fields with a connection on
the principal fiber bundle with SL(2,Q) as structure group
and space-time as the base manifold.

In addition, the field equations give in the proper limit,
when the structure group is reduced to a U(1) subgroup,
the Maxwell field equations for electromagnetism. Also,
when the group is reduced to SL(2,C), we obtain a theory
of gravitation which includes as a solution the
Schwarzschild space-time and therefore leads to Newtoni-
an motion under a 1/r gravitational potential for weak
fields.

It appears possible to find additional predictions related
to the rich algebraic and geometric structure of the princi-
pal fiber bundle, which ties together in a nontrivial way
the gravitational electromagnetic and other interactions.

APPENDIX

We shall look for a possible generator Z that leads to a
Lorentz equation of motion. One possibility is that the
commutator in Eq. (4.8) contains the Pauli matrices in a
manner similar to

[Z,7P]1=8&0, . (A1)

For simplicity, let us assume that Z is one element of a
basis for the algebra, taken of the form k,kg, where k,, is
basis for the quarternions and k, a basis for the matrices;
that is,

ko=1, k=i, k,=j, ky=k, (A2)
Ko=0¢, K|=0|, K;=Ii0, Ky=03. (A3)
We have the following three possibilities.
Case 1:
Z=kokp=kKp , (A4)

1223

[Kb ’npvukykv] = ”’vaky [Kb ’Kv]
= ﬂwnk# €pnrKy -

Because of the presence of €, we see, by inspection, that
one of the k matrices does not appear in the final expres-
sion. This case is not possible because it does not give the
desired result.

(AS5)

Case 2:
Z=kgKo , (A6)
[kako 1Pk yiey ] =Pk [ ks Ky, ]
="K Eamr Ky (A7)

This case is not possible because, since the 7 are real, only
the 0, matrix appears.

Case 3:
Z:kaKb H (AS)
[kaKb’T]p'uvkyKv]:npyv[kaKbyk,qu] . (A9)

It can be determined that, if b =1, k; does not appear.
Also, if b =3, k3 does not appear. Therefore b =2 and, in
this case, for a =1, the expression gives zero. Then we
have only two choices. Choice b =2, a =2,

[Z, )= Yo+ P —nPPlos (A10)

p0=1, pB=1, p2=_1 (A11)
Choice b =2, a =3,

[Z,m]=—noy+mo1—n03, (A12)

PP—_1, ' ¥=1, pP'=_1. (A13)
We notice that the two possibilities are

Z =kyrz, (A14)

Z=kjk; . (A15)

Consider now that Z is given by Eq. (A14). The com-
mutator gives

[Z, 7P ]=n""TkoKo ki)

mQ . 2m
= V026018 + 1P (€ 1K1+ €2 3K3)

— P 2y (A16)
and the most general 7¥ corresponds to
P0=¢8, (A17)
wE=¢8&, (A18)
= —¢8%, (A19)
giving for the commutator,
[Z,mPl=qoP—in"3? . (A20)
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