PHYSICAL REVIEW D

VOLUME 35, NUMBER 4

15 FEBRUARY 1987

Cartan’s contortion as a pair of massless spin-2 fields

Attila Mészaros
Department of Astronomy and Astrophysics, Charles University, Prague, 150 00 Prague 5, Svédska 8, Czechoslovakia
(Received 17 October 1985; revised manuscript received 5 September 1986)

Cartan’s contortion is either considered as a nonpropagating field hardly having any physical sig-
nificance or as a field determined by exotic very massive particles called tordions. In this paper an
essentially different alternative is proposed: the contortion is determined, among other extraordi-
nary vector fields, by a pair of standard massless spin-2 fields (¥ and W fields). It is conjectured
that the extraordinary fields are vanishing. The forms of the interactions and self-interactions of

the V and W fields are also briefly discussed.

I. INTRODUCTION

The Einstein-Cartan theory of gravitation assumes that
space-time is described by a U, manifold.! At any point
of this manifold there exists an independent metric tensor
field g;; =g;;, and the connection is given by

'ffjkzrfijr%Kfjk, f=v327G , (1.1

where I ijk are the Christoffel symbols defined by g;; in
the usual manner and K = — K/* are the components of
contortion tensor with respect to a coordinate basis.> G is
the gravitational constant having the dimension (length)?,
because I use the natural system #i=c = 1. Einstein’s La-
grangian takes the form®

2¢™* = i fm. _fm_ TJ

77(1“ ,'[j‘k]-FF S AT R mj) - (1.2)

Today it is widely accepted that the relevant gauge
fields of the Poincaré group are described by Einstein-
Cartan theory. In this paper I a priori accept this point of
view.* In fact the puzzle arises not from the gauge
behavior of contortion but from its physical significance.
There exist two points of view: contortion is either not
propagated or is determined by very massive exotic parti-
cles called tordions.’

The purpose of this paper is to propose a third, essen-
tially different physical significance of contortion.

The paper is organized as follows. In Sec. II the Hodge
theorem is discussed. This mathematical part is necessary
for further considerations. In Sec. III the decomposition
of contortion is presented, and the so-called V and W
fields are introduced and studied. In Sec. IV some
remaining open questions are reviewed. Section V sum-
marizes the main ideas of the paper.

L=—

II. GENERALIZATION OF THE HODGE THEOREM

Let F/= — F/ be the components of a tensor. Then the
Hodge decomposition theorem defines the relation

Fii— V[i;j]+yijk'"Wk.m +Gij ,

Gi=—GY, GY;=0, (W "Gyy),;=0,

(2.1)

where p %™ is the totally antisymmetric tensor.°

One requires that this decomposition be held also for a
U, manifold. This generalization may be done easily; in
addition to it, without loss of generality GY may identi-
cally be vanishing. In order to show this one may proceed
as follows.

Let (2.1) with GY=0 be considered as a system of six
first-order differential equations; FY are assumed to be
known; V¥ and W' are unknown functions of coordinates.
One has to show that ¥V and W' are determined by FY.
Let V°=W%=0 be chosen. Then (2.1) is a typical
Cauchy problem for six unknown functions. Let ¢(x)=0
be a Cauchy surface [for example, ¢(x)=x°—const=0],
and let V|4, W |4 (@=1,2,3) be given (i.e., V* and we
are known on ¢=0). Then (2.1) is solvable and V* W¢
are determined unambiguously on the whole manifold.
Oppositely, any two vector fields ¥ and W' define unam-
biguously the components FY in accordance with (2.1),
where G7=0.

We note the following.

(1) Without loss of generality the initial values V|,
and W%| 4 may be vanishing.

(2) One may substitute the conditions ¥°=W%=0 also
with other ones (for example, V' ;=W ;=0 are con-
venient), because there is a freedom in the choice of V*
and W'

Vi=Vi4 4"+ B, Wi=W'+C'+D", 2.2)
A;[ij]:M[i;j]+Hijkme'm ,

y AU ' (2.3)
C;[U]=R[':]]+}L'Jk"'Qk.m ’
M'+Q'+B'=0, N'4+R'+D'=0. (2.4)

(3) Another procedure may also lead to vanishing G,
If (2.1) holds, then the harmonic two-form G; satisfies

the relations
[uiprs(.uijkakm );j];s:O ) (2.5)
26, +2G 1+ (Wiprs W™, ;G V=0

Only the term G, j'j =0 contains the second derivative of
G,r. Let ¢(x)=0 be a Cauchy surface, and G;; |, and
Gijk | 4 be given. Then G;; are given on the whole mani-

fold. If the initial values are vanishing, G;;=0. Because
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these vanishing initial values may always be chosen, in
what follows I shall use the truncated Hodge theorem
with GY=0.

Given an antisymmetric tensor F7*=_F/* Then the
decomposition (“‘generalization of the Hodge theorem”)

Fik— ykUi 4 yierpk (2.6)

may also be done. In order to show this one may proceed
identically to the case (2.1). [Let (2.6) be considered as a
system of 24 first-order differential equations, etc.]
Nevertheless, this consideration does not prove the
uniqueness of this decomposition. In other words, it is
not certain that (2.6) is the only possible decomposition.
In addition, it is not certain that (2.6) must always be
done. In fact only the following result is obvious: (2.6)
may always be done. For the purpose of this paper this is
fully enough.

III. ¥ AND W FIELDS

First, I will consider a highly special case of contortion
when the following restrictions hold.

(a) The Riemannian part of the curvature is zero; the
metric tensor satisfies the conditions g;;=gY=m;=7Y,
and the Christoffel symbols are vanishing (“manifold with
Minkowskian metric tensor”).’

Loy=—5 (K%K +KY;K;%)

(b) fK;j are infinitesimally small on the whole flat
background.
Applying (2.6) one obtains

Kijk= Vk[i;j]+ﬂijm"ka;n , (31)
where V¥ and WY are necessarily infinitesimal here. In
detail,

V,c,.;j=V,(,.,j—§Kmk,- Vi — LK™ Ve | (3.2)

2

and the analogous relations for Wj;,; are obvious. Substi-
tuting K% from (3.1) into (3.2) one obtains the products
of form V-V, V-W. These products are negligible here.
Thus here covariant derivatives may simply be substituted
by partial derivatives.

In the general case ¥ and WY are not symmetrical.

(c) Let us assume here the fulfillment of a third restric-
tion also:

=S (VIRY 42V WV —2VIRYy VIV ) 3 (WIEW, 2 WV —2 Wk Wy — W W)

=L(o)( V)+L(0)( w),

where I introduced the term ( V=V, W =W)
LN =3[V + 200 Vi — ViV )= viv 1,
(3.6

and simply omitted some four-divergences. The Lagrang-
ian (3.6) is identical to the standard one of the free mass-
less spin-2 field.” Thus (3.5) defines a pair of massless
spin-2 free fields.

Any standard massless spin-2 free field should change
under gauge transformations as

Vieyipqhd, Wi=wippd (3.7)

where a’ and b’ are infinitesimal components of arbitrary
four-vectors.!® Therefore, the contortion should change
under the gauge transformations as

1‘(‘ijk:Kijk+a[i,j]k+#ijmnbm,nk

=Kk plik (3.8)
where p= —p/' are infinitesimal components of an arbi-
trary tensor [a’ and b‘ define pY via (2.1)]. As is well
known, under the local infinitesimal Lorentz rotation of
vierbein basis the components of contortion change in ac-
cordance with (3.8) (see the Appendix). Thus in the spe-

Vi=yi, wi=wi. (3.3)
Note that these relations, and the relations
“ijkajkm =0, Kijj -0 (3.4)
are in our special case equivalent.?
The Lagrangian (1.2) takes the form
(3.5)

r

cial case when restrictions (a), (b), and (c) hold, contortion
may be given by two standard massless spin-2 free fields
(“V field,” “W field”) by the gauge fields of the Lorentz
group.

Second, I will consider a more general case of contor-
tion when the following restrictions hold.

(a) U, is again a manifold with Minkowskian metric
tensor. Applying (2.1) one expects that (3.1) again holds.
Nevertheless, here the formula (3.1) is in fact an infinite
series of form

S e =K (3.9)
n=0
In order to show this it is enough to substitute K“* from

(3.1) into (3.2). Then new terms of the form f2KY* arise;
substituting (3.1) into it new terms of form f3K¥* arise,
etc. The same procedure is to be done also for Wj; .

The emerging VY and WY in the general case are not
symmetric.

(b) Therefore, let us assume that also a second restric-
tion holds:

Vi=Vi, wi=wi, (3.10)

Note that these restrictions, as it seems, in the general
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case, are not identical to (3.4).
Here the Lagrangian (1.2) takes the form

L=3 f"Lin » (3.11)
n=0

where L ) is given by (3.5). Terms L ,), n > 1, have obvi-

ous physical significance. They define the self-

interactions and interactions of the ¥ and W fields.

In order to illustrate this self-interaction consider the
case when W7=0 and L,), n >2, are negligible. Omit-
ting the four-divergences one obtains, after a long but
straightforward calculation,

L= %Vik;ij[i;j]—%Vj[i;j]Vﬁ:m]
=L o)(V)+fL (V)

:L(O)( V)+ g Vi[j’k]( I/tj[m,k]l/vim + l’/j[m,i] Vlzn)

+—f—lf}i’j1( Vemly VY i) (3.12)

2

The self-interaction of the W field may be described
analogously. In the general case L ;) contains, aside from
the two terms L;)(V) and L (W), the term L, (V,W).
This term describes the coupling of the V field to the W
field at the lowest order of f. [In order to write down
L ,,(V,W) one has to use (3.2) and the similar relation for
Wik, and to separate the terms f-V-V-W and
f-V-W-W. This is a trivial but long procedure.]

Because of the dimensional character of f, neither the
self-interaction of the V field ( W field) nor the interaction
of the V field with the W field is renormalizable. The
self-interactions are highly similar to the self-interaction
of the graviton.!!

Third, I will consider the most general case. Let the
potential describing the graviton be UY=U’ i.e., the
metric tensor be given by the relations'?

gl=n"+sUY,
) (3.13)
gijznij'_fUij"'f (--- ) IR
Applying (2.6) one obtains agairi (3.1). Denoting
vi=1p) i Ly gi—plil |
Ri—= W[ij], Qisz[i;j]+#ijmnNm.n , (3.14)

RU=pliily yimng

it is obvious that in the most general case Lagrangian (1.2)
again takes the form (3.11), and defines seven interacting
and self-interacting fields: three standard massless spin-2
fields (graviton, V field, W field; the relevant potentials
are UY,v%,wY) and four extraordinary vector fields
(relevant potentials are M’, N', P!, and S’). These four
vector fields hardly can be interpreted as standard spin-1
fields. This follows from the fact that L, here contains
the second derivatives of M‘, N’ P, and S’ the relevant
field equations are fourth-order differential equations.

I think that any discussion of the properties of these
four extraordinary vector fields is not needed, because
they hardly can be fields with physical significance (see
the next section). Therefore, in this section I shall assume

the fulfillment of

M'=N'=P'=S'=0. (3.15)
In order to describe the interactions of our three mass-
less spin-2 particles one obviously has to begin with La-
grangian (1.2) and use (1.1), (3.1), (3.2) (of course, also the
similar relation for Wj;.; ), (3.13), and (3.15). I would like
to discuss the interaction of graviton and contortion parti-
cles separately. I would like to remark only that the term
ik
- gf-K Yitjk)
gives no interaction between Einstein’s gravity and contor-
tion.!* Obviously, the coupling of gravity to the contor-
tion particles is again a badly nonrenormalizable interac-
tion.

In order to illustrate the coupling of contortion to
matter fields consider the following case. Let Einstein’s
gravity be vanishing, and let a Proca field (standard mas-
sive spin-1 field; m=£0) be given which is interacting with
contortion. In accordance with the general procedure,
“introduce the contortion into covariant derivative, if it is
possible.”!* Then one obtains the Lagrangian

(3.16)

PO 2 .
L(P,V,W)=—L+X"IX,  + mTX'Xi +L=Lp+L,
(3.17)

where X' is the vector potential, and L is given by (1.2).
The interaction of contortion with the Proca field is deter-
mined by

2 . P PR
Lp= —";—X‘Xi —+xhiX,  + %X"JX'"K,,,U-

2

- _S“XerKmin"] .
The last two terms determine the interaction; it is again
badly nonrenormalizable. A more detailed study of cou-
pling of contortion to matter will again be given separate-
Iy.]5

(3.18)

IV. PROBLEMS OF INTERPRETATION

In the previous section a new interpretation of contor-
tion was proposed. Of course, I do not allege that the
presented physical significance is correct in any sense.
Here I would like to survey the remaining open questions.

(1) Decomposition (3.1) is based on the key relation
(2.6). This relation need not hold in any case. Neverthe-
less, it is highly reasonable that applying this “natural”
decomposition contortion may be defined by standard
fields.'®

(2) The convergency of Lagrangian (3.11) is in the gen-
eral case an open question. Nevertheless, Einstein’s La-
grangian itself has the form (3.11); its convergency is also
an open question. Thus the situation is not worse than in
quantum gravity.

(3) Introduction of constant f in (1.1) leads to nonrenor-
malizable interactions and self-interactions. Nevertheless,
the situation is again not worse than in quantum gravity.
[Constant f is necessary from dimensional reasoning; L g,
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cannot contain constants with the dimension of length.
The Lagrangian describing a standard free field is given
by the potentials only; compare (3.5).]

(4) If the contortion is defined by the pair of massless
spin-2 fields, is the proposed decomposition in any sense
unique? Indeed, it seems to be “natural.” (For example,
it can be done in any coordinate or vierbein system; self-
interaction is highly similar to the case of graviton, etc.)
Nevertheless, on the other hand, there is no exact proof of
uniqueness.

(5) What about the extraordinary vector fields? In my
opinion they do not exist; in (3.1) ¥7 and WY are always
symmetric. Some theoretical arguments can be given in
order to support this conjecture. (a) Any known free
fields are determined by the Klein-Gordon equation. (b)
How do we define the dynamical invariants for these vec-
tor fields? (c) Contortion may well be the gauge field of
the Lorentz group also for symmetrical ¥/ and WV,

(6) If one accepts the nonexistence of these vector fields,
the contortion must have some additional constraints. [In
the special case of infinitesimal K ik when the metric ten-
sor is given by Minkowskian tensor, we know them; see
(3.4). But what about the general case?]

V. CONCLUSION

Today it is not clear whether gravitation is described by
the Einstein-Cartan theory. This question was not studied
here. I a priori assumed that the contortion—the gauge
field of the Lorentz group—was nonvanishing. Not the
gauge behavior, but the physical significance of contortion
was investigated.

The main result of this paper is that contortion may be
determined by a massless spin-2 field twin. These parti-
cles seem to be highly similar to the graviton. If this al-
ternative physical significance is accepted, contortion nev-
er has strange and exotic properties.

In my opinion there are three possible areas for further
study.

(i) One should try to clarify the open problems listed in
the previous section.

(ii) How can we detect the V field and W field empiri-
cally? Obviously, this question has an essential impor-
tance.!’

(iii) One should attempt to study the impact of the ex-
istence of contortion on supergravity. If contortion does
exist in nature, then there may exist three different spin-2

particles; the present supergravity could drastically be
changed.

I hope that this will encourage others to continue in
these studies.
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APPENDIX: LOCAL LORENTZ ROTATIONS

This appendix contains no new results. It is added for
the reader’s convenience only.

Let e be the components of the ath vierbein vector.
Components of connection with respect to this vierbein
basis are given by

Cobe = —Vabe + {Km : (A1)
where

Yabe =7 (Aabe = Mbac —Aeas) » (A2)

Aabe =3a[i,j]eliecj (A3)

are well-known quantities. Let a new vierbein basis be in-
troduced by local Lorentz rotations

=i

€a= Aba eli s Mab :Aca Adb Ned - (A4)

In this basis the connection is given by

—fabc =—%Vabc + %Eabc

= Ada,gAdb A,

+ ”?’dgh+LKdgh A% NS AR, (AS)

2

Especially if g¥=%" (i.e. e/=8, may be chosen) and
K,pe are infinitesimal, then after the infinitesimal local
Lorentz rotations

A% =85 +p%, p*=—p", (A6)
where p“b are infinitesimal, one obtains
I_ﬂabc =§ abe +Pab,c - (A7)
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