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Can black holes nucleate vacuum phase transitions?
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The decay of false-vacuum states through a first-order phase transition in the presence of a
Schwarzschild black hole is studied in the zero-temperature limit. The equations of motion for a
thin-wall bubble which forms in a spherically symmetric fashion around a Schwarzschild —de Sitter
(or —anti —de Sitter) black hole are derived. The Euclidean action for these bubble solutions is cal-
culated and is found to be smaller, by up to a factor of roughly 2, than the O(4)-symmetric action in
which no black hole is present. It thus appears that a black hole can act as an effective nucleation
center for a first-order vacuum phase transition. It will then be more difficult (require more "fine-
tuning" of the potential) than was previously believed to achieve supercooling of a false-vacuum
state, provided that appropriate-mass black holes are present.

I. INTRODUCTION

Since the widespread adoption of gauge field theories
with spontaneous symmetry breaking to describe
elementary-particle interactions, it has become common-
place to assume that the Universe, in the course of its ex-
pansion and cooling, has undergone a number of vacuum
phase transitions. These phase transitions involve a
downward change in the value of the vacuum energy den-

sity as the symmetries of the fundamental gauge group
are spontaneously broken.

The basic theory of the decay of the false vacuum was
first developed by Voloshin et al. ' and Coleman. The
gravitational effects of nonzero vacuum energy densities
were first considered by Coleman and De Luccia (and ex-
tended by Parke to arbitrary vacuum energy densities),
and have been thoroughly studied since, especially since
the development of inflationary cosmologies. Essen-
tially all of these studies have, however, made the simpli-
fying assumption of (Euclidean) O(4) symmetry, thus re-
stricting the geometry to be of the de Sitter, Minkowski,
or anti —de Sitter forms.

In this paper I examine whether an inhomogeneity in
the spacetime geometry, namely, a nonrotating, uncharged
black hole, can act as a nucleation site for bubbles of the
lower-energy true vacuum. The initial state is taken to be
described by either the Schwarzschild —de Sitter,
Schwarzschild, or Schwarzschild —anti —de Sitter metric,
depending on whether the initial (false-) vacuum energy
density is, respectively, positive, zero, or negative. A bub-
ble of the lower-energy true vacuum is assumed to form in
a spherically symmetric fashion around the black hole and
subsequently expands, converting the false vacuum to
true.

The decay of the false vacuum in the presence of black
holes is studied in the thin-bubble-wall approximation in
the zero-temperature limit. The rate of formation of bub-
bles of true vacuum in a first-order phase transition has
the form

I = A exp( —B A/')[ +IO(A)], (l)
where I is the rate of bubble formation per unit four-
volume, A is a coefficient with dimensions of (length)

and B is the difference between the Euclidean action for
the bubble solution and the Euclidean action of the space-
time with no bubble (geometrical units have been chosen
so that G =c = I). This paper is concerned only with cal-
culating the exponential coefficient B. No attempt is
made to evaluate 3 for the Schwarzschild —de Sitter
geometry; such a calculation would necessarily involve ex-
amining a particular model field theory with spontaneous
symmetry breaking. The effect of the presence of black
holes on the exponential coefficient B, on the other hand,
can be determined without restriction to any particular
theory.

Without an explicit choice of model and calculation of
the change in the value of A caused by the black-hole
geometry, it is impossible to determine the precise numeri-
cal effect of black holes on the vacuum decay rate. How-
ever, whatever the change in the value of 3 is, it will be
overwhelmed by the change in exp( B/fi) when —B/fi is
large enough (i.e., in a first-order phase transition with ex-
treme supercooling). For the remainder of this paper, I
will rather glibly refer to decreased values of B as directly
implying an increase in the decay rate of the false vacuum
when, of course, knowledge of the value of A is needed to
make such a statement precise.

In the earlier works cited above, the O(4) symmetry of
the bubble solutions allowed one to easily calculate the to-
tal Euclidean action, and then perform the variation to
find the equations of motion for the bubble wall. In the
present case, with the black hole present, it proves easier
to first solve the equations of motion (in the thin-wall ap-
proximation) directly to obtain the bubble solution, and
then calculate the Euclidean action by directly integrating
the solution.

Black holes as nucleation sites for vacuum phase transi-
tions have previously been considered by Hawking and
Moss. In their studies the black hole acted primarily as a
source of thermal radiation to support a semiopaque bub-
ble of false vacuum surrounded by a true vacuum against
collapse. In the present case, attention is focused instead
on the role of the classical curved geometry of the
Schwarzschild (or Schwarzschild —de Sitter or
Schwarzschild —anti —de Sitter) metric and its effect on
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first-order phase transitions in the zero-temperature limit.
The additional outward pressure which would exist on the
bubble wall due to its partial opacity to the Hawking radi-
ation, and the finite-temperature corrections to the Higgs
potential are ignored. A criterion for determining when it
is appropriate to ignore the nonzero temperature of the
black hole will be developed in Sec. IV.

The primary result obtained is that the Euclidean ac-
tion for a bubble solution in the presence of a black hole is
always less than the equivalent O(4)-symmetric bubble ac-
tion with no black hole. For fixed values of the false- and
true-vacuum energy densities, there is a maximum-mass
black hole for which solutions to the Euclidean equations
of motion exist; the smallest action is obtained when the
black hole has this maximum mass. The action can be as
small as —', (1—3 '~ )=0.5635 times the O(4)-symmetric
action. Thus, a black hole can act in much the same
manner as an impurity does in an ordinary material phase
transition; it can rapidly nucleate bubbles of the new
phase, greatly hastening the phase transition. The effects
of black-hole bubble nucleation will be greatest when the
exponential coefficient 8/A is large and hence the vacu-
um decay rate small, i.e., in phase transitions in which su-
percooling is expected to take place. Possible quickening
of the phase transition by nucleation may thus have im-
portant consequences for model cosmologies which in-

volve extended periods of expansion in a supercooled
false-vacuum state, as some (particularly "old") inflation-
ary models do. There may also be interesting implications
for any theory which predicts that we are living in a
(long-lived) metastable false-vacuum state today.

The rest of the paper is organized as follows. In Sec. II
the equations of motion are derived for a spherically sym-
metric thin bubble wall, centered on a nonrotating, un-
charged black hole, with arbitrary values of the vacuum
energy density inside and outside the bubble. In Sec. III
the Euclidean action for the black-hole bubble solutions is
calculated and compared with the O(4) (no-black-hole) ac-
tion. Finally, in Sec. IV, the range of validity of the ap-
proximations made in this calculation is estimated (e.g. ,
when is ignoring the temperature of the black hole reason-
able?), and the possible importance of these results is
briefly discussed.

II. BLACK-HOLE BUBBLE-WALL MOTIGNS

In the thin-wall approximation, the Higgs scalar field
(or its equivalent) is assumed to vary in a stepwise discon-
tinuous fashion from its false-vacuum to true-vacuum
values. On each side of the discontinuity the stress-energy
tensor is then simply of the form —pg&, where p is the
value of the vacuum energy density. The discontinuity it-
self is idealized as a three-dimensional timelike hypersur-
face containing a surface stress energy of the form
—o.h,b, where o. is the surface energy density and h,b is
the intrinsic metric of the three-surface. All of the poten-
tial complexities of spontaneous symmetry breaking are
thus reduced in this approximation to three numbers: the
false- and true-vacuum energy densities, and the surface
energy density.

In this section the equations of motion for a spherically

P]
d z

r 3

dr +r dA

where d A is the two-sphere metric, d A
=dO +sin Odg . Outside, the metric will have the same
form but with a vacuum energy density now equal to p2..
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The solution of the Einstein equations for the infini-
tesimally thin bubble wall consists of two parts: first,
matching the intrinsic metrics induced on the wall from
each side; and second, relating the difference in the interi-
or and exterior extrinsic curvatures to the bubble-wall sur-
face stress energy. A spherically symmetric bubble wall
will follow a path R (r), where r is the proper-time coor-
dinate of the bubble wall and R is the curvature radial
coordinate, i.e., the square root of the area of the bubble
wall at proper time r divided by 4n. . Equality of the in-
duced two-sphere metrics on the surface R(r) then re-
quires that, on the surface, r =r =R (r). The full three-
dimensional induced intrinsic metrics will then be
equivalent if the interior time coordinate T and the exteri-
or time coordinate t are related to the proper time of the
wall, ~, by

r

(3)
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3
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d~ R
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2M 8~piR1+ 1—
R 3

R

1/2

(4)

symmetric infinitesimally thin bubble wall separating two
different (arbitrary) values of the vacuum energy density
and centered on a nonrotating, uncharged black hole are
developed, using the well-known formalism for dealing
with surface layers in general relativity which was
developed by Israel. ' The treatment is similar to that of
Berezin, Kuzmin, and Tkachev;" unlike their work, how-
ever, I shall require that the Schwarzschild mass parame-
ter have the same value inside and outside the bubble.
This restriction guarantees that the bubble itself is always
formed with a total mass of zero (that bubbles are formed
with precisely zero mass, and the manner in which this is
inherent in the Coleman —de Luccia bubble solutions, was
emphasized by Weinberg' ). The calculations in this sec-
tion are all performed with Lorentzian metric signature.

The spacetime inside and outside the bubble wall is
described by some combination of Schwarzschild —de Sit-
ter (if the vacuum energy density is positive);
Schwarzschild (if the vacuum energy density is exactly
zero); and Schwarzschild —anti —de Sitter (if the vacuum
density is negative) metrics. Inside the bubble, the space-
time metric is given by one of these three metrics with
vacuum energy density p& ..
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dt 2M 8~p2R1—
d~ R 3

X 1+ 2M
R

' —1

8mp2R

3
R

r 1/2

where an overdot denotes differentiation with respect to
proper time.

The extrinsic curvature tensor of the three-surface must
be calculated in both the interior and exterior geometries.
Let e," be an orthonormal triad constructed on the sur-
face; its components in the (T or t, r, 8,$) coordinate sys-
tem are chosen to be

1e~ =u&, e~ = 0,0, —,0'R'

1e~= 000,
R sinO

n =( —R,u, 00),
in the interior, and

n+ =( —R, u', 0,0),

(7)

in the exterior. The extrinsic curvature tensor is then de-
fined by

where u" is the four-velocity of the surface. The
outward-pointing unit normal to the three-surface has
components

of the classical solutions; thereafter they expand outward
toward infinity.

A common procedure at this point is to solve Eq. (11)
for R by squaring; one must, however, be alert to the pos-
sibility of introducing spurious solutions by this pro-
cedure. ' Thus, before proceeding further by solving for
R, it is worthwhile to examine Eq. (11) directly to deter-
mine for what range of the parameters (p&,pz, o,M, R)
solutions exist. 3 priori, the only restriction placed on
the three densities is that the surface density o. should be
positive (this is because the surface density is generated by
the derivative terms in the scalar field stress-energy ten-
sor; such terms have positive-definite sign, unlike the po-
tential terms which contribute to p~ and pq). An accept-
able solution must also have non-negative values for R
and M. The first condition which the vacuum energy
densities must satisfy is fairly obvious: if the left-hand
side of Eq. (11) is to be positive for at least some values of
R, then clearly p2 & p&. This condition is not satisfied in
the situation studied by Moss, wherein a bubble of the
(higher energy density) false vacuum is surrounded by the
lower-energy-density true vacuum. The resolution of this
apparent puzzle is that the Moss-type bubbles are support-
ed against gravitational collapse by nongravitational
forces: namely, the radiation pressure supplied by the hot
central black hole. These additional forces are ignored in
the present study. Further examination of Eq. (11) shows
that there will be not acceptable solutions for pz & 0 (decay
of Schwarzschild —de Sitter into any lower-energy-density
space) unless

+ p v +
+ab a b p; p2& p, +6mo. (12)

The Einstein equations then reduce to

b A ab f 8&Sab (10)

1— 8mp&R

R 3
+R

2M 8~P2RI—
R 3

+R'
1/2

=4moR . (11)

Solutions to Eq. (11) describe bubble walls which, clas-
sically, either plunge inward from infinity to a turning
point at some minimum radius, and then return to infini-
ty, or bubbles which begin at zero radius, increase in size
until a turning point is reached, and then collapse back to
zero radius. The second class of solutions is not of in-
terest in the current application, as collapsing bubbles
cannot complete a phase transition. Quantum mechani-
cally, only half of the classical bubble solution is relevant.
In a first-order phase transition, bubbles of the new phase
appear via quantum tunneling at the turning-point radius

where y, b is the difference between the exterior and interi-
or extrinsic curvatures, y,b

=—K,b
—Kab, y is the trace of

y,b, S,b is the surface stress-energy tensor, and h, b is the
three-metric of the surface.

In the present case, with a spherically symmetric sur-
face of discontinuity and a surface stress-energy tensor of
the form crh, q, th—e Einstein equations [Eq. (10)] reduce
to just one equation of motion for the surface:

1/2

If pz & 0 and the equality in Eq. (12) is satisfied, then the
minimum radius of the bubble is equal to the radius of the
exterior de Sitter universe; violation of Eq. (12) would lead
to a bubble with a minimum radius greater than the size
of the external de Sitter space. If pq & 0 (decay of
Schwarzschild —anti —de Sitter or Schwarzschild into
Schwarzschild —anti —de Sitter space) then there will be no
acceptable solutions unless

' 1/2 2

+1 pi
6~o.

(13)

When the equality in Eq. (13) is satisfied, the minimum
radius of the bubble is infinity.

The restrictions on possible decays of the false vacuum
imposed by Eqs. (12) and (13) are depicted graphically in
Fig. 1. Several aspects of this figure have been previously
noted, particularly the existence of the point at coordi-
nates ( —1,0) limiting possible decays of Minkowski space
into anti —de Sitter space (see Refs. 3 and 12) and the
curve in the third quadrant representing Eq. (13) (see Ref.
4). The constraint described by Eq. (12), or equivalently
the straight line proceeding diagonally upward from the
point ( —1,0) has, however, escaped the notice of several
workers in this area. The papers of both Coleman and De
Luccia, and of Parke, state that the minimum (critical)
bubble size is always less than or equal to the size of the
exterior de Sitter universe when p2&0. Direct examina-
tion of the bubble-wall equation of motion, before squar-
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P~ 0
6m cr

R
&
-2M~0. Bubbles formed at the outer radius expand

forever, while those formed at the inner radius collapse
into the central black hole. For any nonzero value of M,
the outer radius is less than in the zero-mass case. As the
mass of the black hole is increased, Ro decreases and R

&

increases, approaching each other, until they meet when
the roots of the cubic equation coalesce; for still larger
values of M there are no solutions of Eq. (14) for R =0
and R & 0. Thus, bubbles can only form at rest and subse-
quently expand if

M&M=—3 P (16)

If equality holds in Eq. (16) then the bubble forms at
R =3M„and stays there, neither expanding nor collaps-
ing (it is, however, in unstable equilibrium).

ing [Eq. (11)] clearly shows that this is incorrect. It
should be emphasized that the restrictions on vacuum de-
cay illustrated in Fig. 1 apply only to the thin-wall, zero-
temperature approximation. It is interesting to note that
the mass of the black hole does not enter into these re-
strictions on the vacuum energy densities in any interest-
ing way. '

If Eq. (11) is now solved for R, one obtains

R 2=P2R~ +R
where

(14)

2
P2 —P )

—6~O. 8mP22 +3' 3
(15}

It should be remembered that since Eq. (11) was squared
twice to yield Eq. (14), it contains extraneous solutions
which do not satisfy Eqs. (12) or (13}.

Comparing the evolution described by Eq. (14) to the
previously known bubble solutions, for which M =0,
there are several interesting changes. First, for small
values of M, there are two zeros of the right-hand side of
Eq. (14), and hence two radii at which bubbles can form.
The outer radius at which R =0 will be called Ro, and the
inner radius R&. In the limit as M~O, Ro goes to the
previously known value, /3 ', and R

~ approaches zero:

-2

P)
6~era

FIG. 1. Possible false-vacuum decays by the formation of
thin-wall zero-temperature bubbles. The horizontal axis is the

energy density of the true vacuum, the vertical axis is the energy
density of the false vacuum. Both are rendered dimensionless

by dividing by 6mo. . The shaded region is forbidden; no solu-

tions to the equations of motion exist in that region. The upper
right quadrant, labeled I, represents decays of de Sitter space
into de Sitter space; the upper left quadrant labeled II,
represents decays of de Sitter space into anti —de Sitter space;
and the lower left quadrant, labeled III, represents decays of
anti —de Sitter space into anti —de Sitter space. The boundary of
the forbidden region is given by Eqs. (12) and (13).

III. EUCLIDEAN ACTION CALCULATION

B=SE(@) SF(N+ ), — (17)

In this section the Euclidean action will be calculated
for the Euclidean metric signature equivalents of the solu-
tions found in the last section, and compared to the Eu-
clidean actions for the bubble solutions in the absence of a
central black hole.

The Euclidean signature equivalents of the solutions
found in the last section are easily found. The Euclidean
Schwarzschild —de Sitter-type metrics are related to the
Lorentzian metrics by simply making the replacement
T=iT in Eq. (2), and t =it in Eq. (3). If the Euclidean
time coordinate, T (or t), is then identified with period
2m.lc ', where Ic is the surface gravity of the event horizon,
then the metric is completely regular at that horizon.
Note, however, that if p ~ 0, and M&0, then there will ex-
ist two event horizons with different surface gravities; no
choice of period for T (or t ) will allow the metric to be
regular at both horizons. The horizon for which the
period does not match the surface gravity will be a conical
singularity.

The Euclidean signature equivalents of Eqs. (4) and (5),
relating T and t to the Euclidean proper time, 7.=i~, and
the equation of motion for the bubble wall, Eq. (14), are
obtained by simply substituting —iT, —it, and —H for
T, t, and r, respectively. Redefining R as R =dRidr,
the signs of the terms in Eqs. (4), (5), and (14) containing
R changes, since R =dR /d7= —idR /d~ now. This
change of sign for R changes the character of the
motion described by Eq. (14). Bubble solutions in the Eu-
clidean sector do not expand forever or collapse to zero
radius (unless M =0). Instead, they oscillate between Ro
and R&. Again, as the mass approaches the critical value
given by Eq. (16), the inner and outer radii approach each
other, until in the limiting case the bubble wall just sits at
R =3M. In the Euclidean case, however, this constant ra-
dius solution is in stable equilibrium.

The exponential decay coefficient, 8, is simp1y the
difference between the Euclidean action of a solution to
the Einstein equations containing a bubble and the action
for the same spacetime (asymptotically) in the absence of
a bubble, i.e.,
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where SE(@)represents the Euclidean action for a bubble
solution, in which the Higgs scalar field varies between its
true-vacuum value at r =0 and the false-vacuum value at
infinity, and SE(@+) represents the Euclidean action of a
purely false-vacuum spacetime with the Higgs field (and
hence the vacuum energy density) everywhere equal to
their false-vacuum values.

The Euclidean action for a solution of Einstein s equa-
tions with stress-energy tensor proportional to the metric
tensor is given by

SE= p — dV,R
(18)

where R is now (in this equation only) the Ricci scalar
curvature, not the radius of the bubble wall, and the in-
tegration is performed over the full four-volume of the
Euclidean space.

It is natural to divide the integration to evaluate the Eu-
clidean action into three parts: inside the bubble wall
[0& r &R (r)], the wall itself [r =R (7)], and outside the
bubble wall [R (7.) &r & oo].

After replacing the Ricci scalar curvature by its value
obtained from the Einstein equations, R =32~p, and per-
forming the trivial 8 and P integrations in Eq. (18), the in-
terior action for the bubble has the form

SP'(4&)= 4'~ —f f r drdT,
TO ]r+

where, r+ is the interior (black-hole) horizon radius for
the true-vacuum metric with energy density p&. The bub-
ble is assumed to form at its minimum radius R& at time

I

—To, expand to its maximum radius Ro at time T=O,
and then recontract to R& at time To. The actual Eu-
clidean solution, of course, oscillates between Ro and R]
for all values of T from —oo to + oo,' in order to yield a
finite action the integration is performed over only one
period of the oscillation [i.e., the Euclidean time coordi-
nate is identified with a period (2TO) determined by the
equation of motion for the bubble wall]. The integration
is cut off at the radius of the event horizon because the
Euclidean Schwarzschild —de Sitter-type spaces actually
end at the event horizon. Since the Euclidean time coor-
dinate is being identified with a period determined by the
motion of the bubble wall rather than the surface gravity
of the black hole, there will in general be a conical singu-
larity at r = &r+ ', this mild singularity has no effect on the
evaluation of the action integrals.

The integral over the interior region in the absence of a
bubble has essentially the same form as Eq (18.):

tp

SF."'(@+)= 4trp~ f —f r dr dt, (20)—Ep 2r+

where now 2r+ is the interior (black-hole) event horizon
radius for the false-vacuum metric with density p2, and
2to is the period of the bubble-wall motion in the exterior,
false-vacuum metric, time coordinate. Since R(T) and
R (t ) are at this point not known in explicit form, it is
easiest to proceed by converting the time integrations into
integrations over the radius of the bubble wall, e.g,
d T = (d T/dR )dR, since the derivatives d T /dR and
dt/dR are known from the Euclidean versions of Eq. (14)
for dR/d7, and Eqs. (4) and (5) for dT/dr and dt/dr.
The integral in Eq. (18) then can be rewritten as

Rp

3 Rl + dR
8' i p2 —p] +6~o. p

2

3 3' Rl

(R —2M —P R )'i

(R '
,r+ ')R '"dR—

8~p,
R —2M—

3

and that of Eq. (20) as

(21)

SP'(&b+ ) =—8mp2 p 3 3 t 8np2 p2 —p &

—67To p
2

(R 2r+ ) dR—=
3 ~i dR 3 3cr

R —2M—

(R —2r+ )R dR

8mp2R

3
(R —2M —/3 R )'

(22)

The Euclidean action of the bubble wall itself is of the
form

s""'=f ~ ~dw—
8~

(23)

where the integration is over the three-dimensional hyper-
surface of the bubble wall. Equation (23) is somewhat dif-
ferent than the expressions in the earlier works of Cole-
man, De Luccia, and Parke. In their papers, an expres-
sion was given for the action of the bubble wall (including
the effects of gravitation) which did not include the

second term in Eq. (23); this made it appear that gravity
has no effect on the action of a boundary surface layer.
Equation (23) is in fact the correct total action for the
bubble wall; the apparent lack of a gravitational term in
Refs. 3 and 4 is due to those authors having performed an
integration by parts of the action before separating the to-
tal action into interior, wall, and exterior contributions.
As a result, an interior boundary term was included in the
wall action which exactly cancels the gravitational contri-
bution of the wall. Their final results are correct; it is
only the splitting of the action into interior and wall con-
tributions in Refs. 3 and 4 which is misleading. Replac-
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Ro

RI

5/2d= —4n.o.
i (R —2M —P'R')' ' (24)

The exterior integral [r & R (7.)] is trivially disposed of,
as the spacetime geometry and stress energy outside the
bubble wall are identical to that of the purely false-
vacuum spacetime. Thus the two integrated actions in
Eq. (16) will be equal for R (7.) & r & ao, and there will be
no contribution to B from outside the bubble wall.

Finding the value of the exponential decay rate con-
I

ing y by its value determined from Eq. (10), 12vro, per-
forming the integration over the two-sphere, and simplify-
ing the integral by converting the integral over proper
time into one over the radius of the wall yields

stant, 8, is thus reduced to performing the integration in
Eqs. (21), (22), and (24). While it is conceivable that these
integrals can be explicitly written in terms of expressions
involving elliptic integrals (the wall action integral cer-
tainly can be; however, the resulting expression is approxi-
mately one journal page long, and still contains a number
of elliptic integrals), it is far easier to evaluate them
directly numerically for the cases of interest.

One special case in which the integrals can be easily
evaluated is the critical case when equality holds in Eq.
(16), M =M„and the bubble wall is stationary at
R =3M. In this case the integrals in Eqs. (19), (20), and
(24) are trivial; all one needs to know are the periods To,
to, and io. These are easily evaluated by expanding the
integrals around the critical solution to lowest order in
@=M,—M. In this limiting case, when the mass of the
central black hole is as large as it can be, the integrals
have the values

p2 —P&+6~~S'"'(4&)= —24m
0

27M, —Ir+
Mc

1 —72mpIM,
(25)

Sg"'(4+)= —24~ pp

Sg' ' ———108& OM,

p2 —p I
—6&0 2 27Mc —2r+

M,
1 —72~p,M,

(26)

(27)

where M, is given in terms of pl, p2, and cr by Eqs. (15)
and (16).

If M =0, then the bubble solutions (and the Euclidean
metrics) have O(4) symmetry and the integrals are easily
expressed in terms of elementary functions. Let the decay
coefficient for M =0 be called BI, if pI and p2 are both
nonzero its value is"

(p2 —pl) +6~cr (p2+p, ) 3cr/3(p2 p, )— —
BI ——

48crp Ip2/3
(28)

where /3 was defined in Eq. (15). If either p& or p2 is zero,
then the above expression reduces to

27K CT

(p) =0),
p2(p2+6mcr )

(29)

or
—277K 0

(pp ——0) .
pl(p)+6vrc7 )

(30)

The expressions given in Eqs. (21), (22), and (24), and
their values in the M =M, case, given by Eqs. (25), (26),
and (29), will yield the value of the decay coefficient B for
any given values of the four parameters pl, pz, o., and M.

The ratio 8/BI is dimensionless and independent of
the value of fi; it then can only depend on dimensionless
combinations of the four-dimensional parameters pI, p2,
o., and M. One convenient choice is to let 8/BI be a
function of pI/6mo. , p2/6~a. , and Mcr. There is thus a
three-dimensional parameter space on which 8/BI is de-
fined.

In the remainder of this paper I will only discuss the

I

values of 8/BI in the two special cases treated by Cole-
man and De Luccia: the first is history, namely, that an
early Universe positive vacuum energy density false vacu-
um has decayed into the zero energy density vacuum of
today, i.e., that p2&0 and pI ——0; the second is catas-
trophe, namely, the uncomfortable possibility that we are
living in a false-vacuum state today, so that p2

——0, and

pl (0.
In the first case a Schwarzschild —de Sitter spacetime

decays into an ordinary Schwarzschild spacetime. The ra-
tio of the decay coefficient, 8, to the decay coefficient in
the absence of any black hole, 8&, is shown in Fig. 2 for
several different values of the de Sitter (false-) vacuum en-
ergy density, and for a full range of possible
Schwarzschild masses. The value of 8/BI is seen to be
less than 1 for all values of M, and is in fact minimized in
the extreme case when M=M, . The reduction in the
value of 8 is largest when the decay is most inhibited; as

pz approaches 6~cr, BI becomes large, so that the rate of
bubble formation becomes very small. It is precisely in
this case, however, that a nonzero mass makes the largest
difference in the value of 8, and hence the largest differ-
ence in the rate of bubble formation. Since the minimum
values of B (for fixed p2/6~cd ) always occur for M =M„
in Fig. 3 8/BI is plotted for a wide range of values of
p2/6~cT for M =M, . The limiting values of B/B& for
M =M„as p2~ 6~a. or p2~ ao, are obtainable by
evaluating the limits of the integrals in Eqs. (25), (26), and
(27) in those cases As p2~. 6mcr, B/B~ approaches
—, (1 —3 '~

) =0.5635, while as p2~ oo, B/B, approaches
88/3 =0.6272. The largest effects are again seen to
occur when pz is near its critical value, 6mcr (slow decay;
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FIG. 2. The ratio 8/BI for the decay of a positive energy
density false vacuum into a zero-energy-density true vacuum as
a function of the black-hole mass for several values of the false-
vacuum energy density. For any fixed value of the false-
vacuum energy density, the minimum value of 8/B& occurs
when M =M, .

FIG. 4. The ratio 8/8& for the decay of a zero energy densi-

ty false vacuum into a negative energy density true vacuum as a
function of the black-hole mass for several different values of
the true-vacuum energy density. Again, for any fixed value of
the true-vacuum energy density, the minimum value of 8/8&
occurs when M =M, .

minimum bubble radius nearly equal to size of de Sitter
universe).

In the second case, our present-day Minkowski (or ordi-
nary Schwarzschild) spacetime is destined to decay into a
negative energy density Schwarzschild —anti —de Sitter
spacetime. The value of the ratio of the exponential decay
coefficients, 8/B~, is shown for several different values
of p~/6mo, and a full range of possible masses,
M, & M & 0, in Fig. 4. As in the first case, it appears that
the value of 8/8

&
in the presence of any mass black hole

is less than in the zero-mass case. Again, the maximum

reduction in the value of the B for a fixed difference in
vacuum energies (value of p&/6m. o ) occurs when the
black-hole mass is maximized: M =M, . Figure 5 shows
the value of 8 /8

&
for M =M, and a wide range of values

of p &
/6mo. . The asymptotic values for B/B &, with

M =M„as p~~ —6~o for p&~ —ap are, respectively,
4/3 =0.7698 and 88/3 =0.6272. In this case the
largest changes in the value of 8/8

&
occur when the coef-

ficient 8& is small (or, equivalently,
~ p, ~

/6m. o is large).
It is also interesting that the reduction of the value of 8
for M =M, is always less in the second case than in the
first; in fact, the minimum value of 8/B~ in the second
case (obtained when p~~ —oo) is equal to the maximum
value in the first case (obtained when pz~ co ).

0.65 .8 i

B 0.60
I

B .T
BI

0.55
IO

P2
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IO IO IO IO IO'

FIG. 3. The ratio 8/BI for the decay of a positive energy
density false vacuum into a zero energy density true vacuum for
M =M, as a function of the energy density of the false vacuum.
This curve, shows, for a given value of p2, the maximum de-
crease in 8 /B &

caused by nucleation around black holes.

FIG. 5. The ratio 8/8& for the decay of a zero energy densi-

ty false vacuum into a negative energy density true vacuum for
M =M, as a function of the energy density of the true vacuum.
This curve shows, for a given value of pl, the maximum de-
crease in 8/8

&
caused by nucleation around black holes.
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IV. DISCUSSION

An issue which has been ignored in the mathematics of
the previous two sections is the physical size of a
subcritical-mass black hole (M & M, ); two important
questions need to be addressed. First, what is the
maximum-mass black hole around which a bubble can nu-
cleate in a realistic field theory with spontaneous symme-
try breaking (in particular, is it greater than the Planck
mass)? Second, when can the nonzero temperature of the
black hole be safely ignored in calculating the decay rate
of the false vacuum?

In the case of Schwarzschild —de Sitter space decaying
to Schwarzschild space, the maximum (critical) mass is
given by

M, =3 ', (pi ——0) .
p2+ 6~o.

(31)

This critical mass will be large when pz/6~o. is small
(only slightly larger than 1). This is also when B, will be
large, and supercooling would be expected. As p2/6~o.
approaches 1, the critical mass approaches

M, ~(72~p2) (32)

This is the largest-mass black hole which a de Sitter
universe with energy density p2 can contain; when
M =M, =(72rrp2) ', the black-hole event horizon and
the cosmological event horizon are coincident. In this
case, then, bubbles can form around any black holes
which can fit into the false-vacuum de Sitter universe.
Any primordial black holes present in the early Universe
could then be potential nucleation sites for bubbles in a
strongly first-order vacuum phase transition. And, of
course, as long as the false-vacuum energy density is
much less than the Planck density, this critical mass will
be much greater than the Planck mass.

In the case of the possible decay of our present vacuum
state, in which Schwarzschild space would decay to
Schwarzschild —anti-de Sitter space, the critical mass is
given by

(p, =o) .
p)+ 6rro.

(33)

This will be large when
~ p~ ~

/6~cr is only slightly greater
than unity, which again implies a large value for B~ and
expected supercooling (slow decay rate). As p, ~—6~a,
the critical mass diverges to infinity. It is then possible
that if we are currently living in a false-vacuum state, ar-
bitrarily large (astrophysically sized —solar mass or larger)
black holes could possibly nucleate bubbles of the negative
energy density true vacuum. The longer lived the false
vacuum is (i.e. , the closer

~ p, ~ /6mcr is to unity), the
larger M, wi11 be.

If, instead, p2/6~a. or
~ p~ ~

/6~o is large, then it is
not possible to estimate M, without making some as-
sumption about the underlying field theory and its spon-
taneous symmetry breaking, to fix the ratio of p to o..
These cases are intrinsically less interesting, since B&/A
and B/A are expected to be small, the vacuum decay rate
more rapid (no supercooling), and governed more strongly
by the value of the unknown coefficient A. The simplest

field theories with spontaneous symmetry breaking have
essentially one energy scale E, which defines the dynamics
of the symmetry breaking (there is certainly more than
one scale in an absolute sense; however, for many grand
unified and other theories, all of the relevant energy scales
are within roughly an order of magnitude of each other).
In such a theory, the difference in the energy densities of
the false and true vacua is of order E /A, and the
bubble-wall surface energy density will be of order E /A .
The critical mass is then of order

M, -o/p-A/E, (34)

p ~
36 864m M" (35)

or roughly equal to the Compton wavelength of the Higgs
particles. Again, as long as the energy scale is below the
Planck scale, the black-hole masses will be large compared
to the Planck mass, and thus can be treated semiclassical-
ly.

When the nonzero temperature of the black hole be
safely ignored in calculating the decay rate of the false
vacuum? Since the area near the horizon, where a bubble
of true vacuum wi11 first form, is significantly heated by
the Hawking effect, it is probable that the effect of in-
cluding the finite-temperature effects will be to lessen the
decay rate, since high temperatures can stabilize the false
vacuum.

It is clear immediately that there are some situations
where the finite-temperature effects may be ignored: for
instance, in the decay to anti —de Sitter space described
above in which the black holes may have stellar masses.
A second example is in the supercooled decay of
Schwarzschild —de Sitter space described above. As M,
approaches the value given in Eq. (32), the temperatures
of both the cosmological and black-hole event horizons
approach zero. The zero-temperature approximation is
then at least justified for the range of black-hole masses
(M & M, ) which cause the largest decrease in the value of
B is precisely the cases of most interest: when the O(4)-
symmetric theory predicts a slow vacuum decay rate and
substantial supercooling.

Now consider again the general case, where
~ pq ~

/6~o.
or pz/6~o. may be large. The largest temperature effects
will occur when the radius of the bubble is smallest (com-
pared to the radius of the black-hole event horizon); i.e.,
in the M=M„R =3M limit. The zero-temperature ap-
proximation will be justified if the difference between the
false- and true-vacuum energy densities, pq —p&, is much
larger than the quantum stress energy associated with the
"hot" black hole at r =3M. A rough estimate of the
quantum stress energy in this case may be obtained from
the work of Howard and Candelas, ' ' which calculates
the expectation value of the stress-energy tensor for a con-
formally coupled massless scalar field in the Hartle-
Hawking vacuum state in the Schwarzschild geometry.
The roughness of the estimate lies in my applying their
rigorous results to the case of a Schwarzschild —de Sitter
(or —anti —de Sitter) black hole. The quantum energy
density measured by a static observer at r =3M is approx-
imately
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The actual quantum energy density will also depend on
the number of fundamental fields present; in a typical
grand unified theory there are —10 fundamental fields; if
each contributes roughly as much to the quantum energy
density as a conformally coupled massless scalar field
does, then the total quantum stress energy density, might
be

pH —10 itt'/M (36)

I i V ATp exp( —B/A') 1 (37)

Equation (36) is given as an upper limit since inany of the
fundamental fields may be massive and not contribute
substantially to pH, depending on the particular parame-
ters of the field theory and the phase transition. The
zero-temperature approximation will be justified if p2 —

p&
is much larger than pH as given in Eq. (36). For the "one
energy scale" theories described above, with p2 —

p&
=E /A, p2 —

p& will be much larger than pH if 1~&10
Naively it then appears that the zero-temperature approxi-
mation will always be valid; however, the actual energy
density and critical mass in such a theory might very well
differ from the crude estimate of Eq. (34) by several or-
ders of magnitude; in which case, a detailed examination
of the particular theory will be needed to determine the
limits of applicability of the zero-temperature approxima-
tion.

In the absence of a calculated value for the decay coef-
ficient A, the precise effect of a black hole on the vacuum
decay rate cannot be determined. The only new dimen-
sional parameter is the mass of the black hole. As was
shown above, in some cases the natural mass scale is
roughly equal to the Compton wavelength of the Higgs
field, and thus no new length scale is introduced (at least,
in terms of the order of magnitude of the scale). In any
case, the range of possible masses is determined by Eqs.
(15) and (16); the black-hole masses are simple algebraic
functions of the energy scales already defined in the O(4)-
symmetric problem. The change in the value of A might
then be reasonably expected to be at most an order of
magnitude or so. The most confidence can be placed in
the results for the case of a very slow vacuum decay,
where

~ p& ~

/6m. cr or pz/6m. cr is close to unity. In that
case, B/A is likely to be a very large number, and the ef-
fect of reducing B by a factor of 0.5 to 0.75 owing to the
existence of a black hole will be large.

As an example, consider a theory in which the current
zero energy density vacuum state in which we live is a
false-vacuum state, and the energy scale of the symmetry
breaking is of order E. Then, on simple dimensional
grounds, the coefficient will be of order (E/fi) . Suppose
that the bubble nucleation rate is such that our false-
vacuum state is just today on the verge of decaying, ignor
ing the effect of black holes as bubble nucleation sites (i.e.,
using Bi to determine the decay rate); then the product of
the bubble nucleation rate and the four-volume of the ob-
servable Universe must be about equal to one:

where the approximate four-volume of the observable
Universe is set equal to the Hubble time to the fourth
power. This limits the value of B&.

Bi &4%1n
ETo

(38)

If it is now assuined that black holes are present with
some distribution of masses, and the possibility of nu-

cleating a bubble around a black hole is considered, then
B can be smaller than the limiting value in Eq. (38) by at
least a factor of about 0.77. Assuming (perhaps naively' ?)

that the value of A is not significantly changed by the ex-
istence of black holes, this implies a bubble formation rate
which can be considerably larger than the original no-
black-hole rate

ETO
I /I

&

——exp[(B& B)/fi]—= (39)

If E —100 GeV, then I/I&-10 . The time required to
create one bubble within our past light cone is reduced
from about 20X 10 yr to

r,
TbUbb/e — To 10 sec" '=r (40)
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If E—10' GeV, then I /I
&

—10 ', in this case the time to
create one bubble within our past light cone would be re-
duced to the order of the Planck time: 10 sec.

Whatever the change in the coefficient A is, it is obvi-
ously not likely to be comparable to the change in
exp( —B/A') in this sort of case. Thus it is possible to
conclude with confidence that black holes can speed up at
least some strongly first-order phase transitions.

In conclusion, it has been shown that black holes can
act as nucleation sites for the creation of bubbles of true
vacuum in a first-order phase transition, and that the vac-
uum decay rate can be significantly increased by the ex-
istence of appropriate mass black holes. The largest effect
is in the case of the decay of a Schwarzschild —de Sitter
spacetime to a Schwarzschild spacetime, as might occur
in the early Universe; in this case an extreme supercooling
may be much more difficult to achieve than in the ab-
sence of black holes. Another case of interest is the possi-
ble decay of our present vacuum, which, if unstable, cer-
tainly seems to be in a long-lived supercooled state.
Again, the presence of black holes can greatly accelerate
the decay of the false vacuum; in this case, astrophysical-
sized black holes of stellar mass or even larger may poten-
tially play an important role. Precise predictions of the
change in the decay rate will require applying the results
of this work to specific model theories with spontaneous
symmetry breaking.
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