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Radiation of Goldstone bosons from cosmic strings
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It is shown that the interaction of global strings with Goldstone bosons can be described by a
model of strings coupled to an antisymmetric tensor field with a particular choice of the coupling
constant. This formalism is applied to calculate the rate of Goldstone-boson radiation from a class
of closed-loop trajectories. The lifetime of a typical loop is found to be very short, about twenty os-
cillation periods, in agreement with an earlier estimate by Davis.

Cosmic strings could arise as a random network of line-
like defects at a phase transition in the early Universe.
Strings formed as a result of gauge- or global-symmetry
breaking are called gauge or global strings, respectively.
Both types of strings have condensed-matter analogues.
Quantized tubes of magnetic flux in superconductors and
vortex lines in liquid helium are closely analogous to
gauge and global strings, respectively. The cosmological
evolution of strings has been studied extensively, especial-
ly in relation to the string scenario of galaxy formation.
In this scenario galaxies and clusters of galaxies condense
around oscillating loops of string, while the loops gradual-
ly radiate away their energy. For a recent review of
strings see Refs. 1 and 2. The main mechanism of energy
loss for gauge string loops is the gravitational radiation,
while for global strings it is the radiation of Goldstone bo-
sons. The radiation rate, which determines the lifetime of
the loops, is of crucial importance for cosmological
scenarios. For the gravitational radiation it was calculat-
ed in Refs. 3—5. In this paper we shall develop a theory
describing the interaction of global strings with a Gold-
stone field and apply this theory to a calculation of the ra-
diation rate from various loop configurations. Our results
are in agreement with an order-of-magnitude estimate by
Davis.

The prototypical model that gives rise to global strings
is the Goldstone model of a self-interacting scalar field P:

The U(1) symmetry of this model is spontaneously bro-
ken, and tt acquires a vacuum expectation value with

Strings are described by solutions of the classi-
cal field equations in which the phase of P changes by 2'
around a string. The magnitude of P is substantially dif-
ferent from g only in the string core of radius

where R is the cutoff radius. For a closed loop, the cutoff
is given by the loop size.

Outside the string core, P can be represented as
/=gal exp[i8(x)]; the effective Lagrangian for 9,

L =g BpOB"L9, (4)

Fpvu =~pA vu + c)vA ap +~uA pv

der" =(x "x' —x "x'")dgdr,

is the surface element on the string world sheet x"(g,r);
overdots and primes stand for derivatives with respect to
r and g, respectively, and

der=( —,'der Po" )'—
P

The last term in Eq. (5) is the Nambu action for a string
with a bare mass per unit length po. The logarithmic con-
tribution (3) is due to the interaction. The field equations
for the tensor field are obtained by varying (5) with
respect to A„:

describes a massless Goldstone field. Variations of
correspond to a scalar particle of mass m =X' g. In
general, massive and massless scalar fields and the strings
are all described by the same complex field P with the La-
grangian (1). However, in the low-energy limit, when the
curvature radius of the string is much greater than 6, the
massive excitations are not produced. Then the Goldstone
field is coupled to strings only through the requirement
that 0 changes by 2m. around a string. Now it will be
shown that this very unusual interaction is equivalent to
the interaction of strings with an antisymmetric tensor
field: '

A& ———A &. The corresponding action is

S= —, Fp F" d x+g Ap d(7" —po der, 5

where

g —1/2 —1
(2) "d F" =g J 6' '[x x(g, r)]do":4~j—"". . —

The energy per unit length of a straight string is logarith-
mically divergent:

p= f ~
VP

~

2trr dr=2trq ln(R/|i), (3)

To establish the relation between the tensor field and
the Goldstone field 0, we define'

F i gvcJT FPvg ePvc71F
p 6 p~ry
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Using Eq. (8) it is easily seen that, outside the strings,

a„F a—g„=O . (10)

dp„/d0=2co„j „'„(k,co„j)"(k,co„),

j""(ka))=—I dt e " J d xe ' "j""(xt) .

(20)

(21)

Ap ~Ap +BpA —() Ap .

A convenient choice of gauge is

(14)

3 A =0, x.x'=0, x +x' =0, z=t . (15)
With this choice, the string trajectory can be written as
x(g, t) and the field equations and string equations of
motion take the form

Hence, F& is a gradient of a scalar, '

Fp ——gBp0,

where the coefficient g is chosen so that the energy-
momentum tensor of the field F„

Tp ——Fp~pF ~——,5pF~pyF ~~

=2&'(a„ea"e——,
' s„a.ea e),

is the same as the energy-momentum tensor one would
obtain from Eq. (4). The coupling constant g is deter-
mined by the requirement that 0 changes by 2m around
the string. Using the Stokes theorem, we have

(t), dna„e=g-' f dr'a„F.
7T g d X 6pvcT7J (12)

where the surface X is bounded by the curve C. For any
curve enclosing the string, the surface X can be chosen so
that it crosses the string world sheet in the perpendicular
direction. Then it is easily shown that the last integral in
(12) is equal to g/m. , and thus

g =27TYJ . (13)
The action (5) is invariant under arbitrary reparametri-

zation of the world sheet and under gauge transforma-
tions

Here, dP„/dO is the power radiated per unit solid angle
at frequency co„=4vrn /L in the direction of k;

~

k
~

=co„.
We have calculated the radiation power for several

loops from a simple family of trajectories found by Bur-
den:

x(g, t) = —,[a(g —t)+b(g+t)],
a(g) =a '(e~sinag+e3cosag),

b(g) =p '[(e~cos1(+ezsin1()sinpg+e3cospg] .

(22}

(23)

(24)

Here, a =2rtN
&
/L, P=2vrN2/L, N~, and N2 are relative-

ly prime integers, e; is a unit vector along x axis, and the
period of the loops is T=L/2N&N2. We used the same
combined analytic and numerical technique as in Refs. 4
and 5. The result for the total power is

P =vg (25}

P„=const Q n (26)

where K is a numerical coefficient which depends on the
loop's trajectory, but not on its size. ' The values of ~ for
several loops of the family (22)—(24) are given in Fig. l.
Note that the power vanishes for N

~

——Nz ——1, P =n. . A
loop with such values of parameters is simply a rotating
double line. The currents j""are equal and opposite for
the two coinciding lines, and so there is no radiation.
Apart from this very special case, v is typically -50.

The large values of ~ are due partly to the large-n con-
tributions to Eq. (19). For "normal" sources of radiation,
P„decreases exponentially in the large-n limit, while for
the loops an asymptotic analysis shows that (for
Ni N2 ——1)——

a.a A~.=4~j~. ,

j ""(x,t)= —,g f dg5' '[x—x(g, t)](x "x' —x "x'~),
(16)

(17)

Po(x~ —x ~ ) =477'gF~v~x x (1&)

In the last equation F„ includes the external field, as
well as the field produced by the string element itself.
The effect of the latter is, in particular, to renormalize the
bare mass density pp.

We shall calculate the radiation rate from oscillating
loops assuming that the back reaction of the radiation on
the loop is small and using noninteracting loop trajec-
tories for j"' in Eq. (17). This assumption is justified by
our final results. Neglecting interaction, it can be shown"
that a loop of mass M oscillates with a period T =L/2,
where L =M/p is called the invariant length of the loop
(in fact, the period can be smaller than L /2 for some spe-
cial loop trajectories). The total power P and the angular
distribution of radiation from a periodic source can be
found from the following equations:

P/~'
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~ N, =I
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AN, =g

P=gP„=g f dQ,
dp„

(19) FIG. 1. Radiation power for the family of loops (22)—(24)
with N~ = 1,%2 ——1,2, 3 for several values of g.
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The difference can be attributed to the singular behavior
of the string near the points of luminal motion. ' Large
amounts of radiation are beamed from those points in the
direction of luminal velocity. Analysis similar to that in
Ref. 4 shows that near the beam

dP/df), = gdP„/d0~g (27)

where 7 is the angle between the beam and the wave vec-
tor k. The radiation intensity diverges as +~0. Howev-
er, the divergence is integrable and the total power is fi-
nite, except in a few degenerate cases, such as the circular
loop (X~ =%2 ——1,/=0) (Ref. 14).

The lifetime of a loop is, using Eq. (3),

r-M/P 2vri-r 'L ln(L/o) =KL, (28)

where K —10. The fraction of the total energy radiated in

one period is (2K) '-0.05 «1. The smallness of this

number justifies the use of noninteracting loop trajectories
in our calculation of P.

Radiation emitted by individual loops adds up to a sto-
chastic Esoldstone-boson background. Loops decaying at
time —t during the radiation era have length L -t/K and
number density' nL —(Lt) They p.roduce waves of a
typical frequency —L ' and energy density

p~ -pLnL -K' pt . Noticing that p~ red-shifts in the
same way as the electromagnetic radiation density, pz, we
obtain

f)b(co) 30K GpQ, r 100Gpflr (29)

where G is Newton's constant, Qb(co) =(co/p, )dpbldco is
the energy density in units of the critical density p, per
logarithmic frequency interval, 6&——p&/p, =2)& 10 h
and we assume that the total density of the Universe is
p=p, . Equation (29) applies for waves of frequency

greater than co,„-10 " sec '. The upper bound de-
pends on the mass density of strings, ' p. The string
scenario of galaxy formation requires'' Gp —10; then
co~~ 10 sec

The most stringent constraint on the value of p comes
from the isotropy of the cosmic microwave background
Gp &10 . Using Eq. (29) it can be shown that global
strings with such values of Gp are consistent with nu-
cleosynthesis. (The nucleosynthesis constraint for gauge
strings has been discussed in Refs. 17 and 18.)

The main difference in the evolution of gauge and glo-
bal strings is the different lifetime of closed loops. For
gauge strings ~-L /yGp, where y —100. With
Gp —10 this gives ~-10 L. The lifetime of global
string loops is much shorter, ~- 10L. In the string
scenario of galaxy formation with a baryon- or neutrino-
dominated universe, density Auctuations on scales down
to —10' Mc) can be preserved due to the long lifetime of
gauge string loops. Baryons and neutrinos erase their own
fluctuations by photon viscosity and free streaming,
respectively, but then fall in the potential wells of surviv-
ing loops. ' '' With global strings, however, this mecha-
nism is not sufficient to preserve galactic scale density
fluctuations. In a universe dominated by cold dark
matter, the mass accreted by loop seeds is practically the
same for gauge and global strings, but the mass distribu-
tion and the shapes of the resulting objects may be dif-
ferent. For example, we do not expect the formation of
tightly bound nuclei in clusters of galaxies seeded by glo-
bal string loops.
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