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This paper considers the extension of the ideas of quantum cosmology and, in particular, the pro-
posal of Hartle and Hawking for the boundary conditions of the Universe, to models which incorpo-
rate fermions in a realistic manner. We consider inhomogeneous fermionic perturbations about a
homogeneous, isotropic minisuperspace background model, by expanding the ferrnion fields in spi-
nor harmonics on the spatial sections, taken to be three-spheres. The Dirac action is thus found to
take the form of an infinite sum of terms, each describing a time-dependent Fermi oscillator. On
quantization, we find that the Wheeler-DeWitt equation for the wave function of the Universe may
be decomposed into a set of time-dependent Schrodinger equations, one for each fermion mode, and
a background minisuperspace Wheeler-DeWitt equation, which includes a term in its potential
describing the back reaction of the fermionic perturbations on the homogeneous modes. Our quanti-
zation procedure employs the holomorphic representation for the fermion modes, which permits
them to be treated in a manner very similar to the case of bosonic perturbations considered by Hal-
liwell and Hawking. We set initial conditions for the Schrodinger equations by applying the propo-
sal of Hartle and Hawking that the quantum state of the Universe is defined by a path integral over

compact four-metrics and regular matter fields. We find this to imply that the fermion modes start
out in their ground state. Particles are created in the subsequent (inflationary) evolution, and their
number, defined with respect to instantaneous Hamiltonian diagonalization, is calculated and is

found to be finite. We calculate the back-reaction term and find, after regularization, that its effect
is negligible. We construct a model of a fermionic particle detector and, in the case of an exact de
Sitter background, examine its response to the state picked out by the Hartle-Hawking proposal.
We show that it experiences a thermal spectrum at the de Sitter temperature, with a distribution of
the Fermi-Dirac form, although the distribution does not have the correct density-of-states factor to
be precisely Planckian.

I. INTRODUCTION

There has been considerable interest in the recent pro-
posal of Hartle and Hawking that one may provide boun-
dary conditions for the wave function in quantum cosmol-
ogy by defining it by a path integral over compact metrics
and regular matter fields. ' This proposal has been ap-
plied to a number of minisuperspace models, in which the
problem of quantizing the infinite number of modes of
the gravitational and matter fields is drastically simplified
by restricting attention to a finite number, typically the
homogeneous modes, on the assumption that these will in
some sense dominate. The wave functions thus obtained
have been interpreted, in the classical limit, as correspond-
ing to a superposition of solutions to the classical field
equations, which involve less arbitrary parameters than
the general solution. In most of the minisuperspace
models considered so far, the Hartle-Hawking proposal
has been seen to pick out the solutions with the most
desirable cosmological properties.

In most of these models, the matter source is taken to
be a scalar field, which is reasonable since it is this type of
matter field that one would expect to give the most signi-
ficant dynamical effects at early times. However, most of
the theories we know also involve other types of fields,
such as gauge fields, antisymmetric tensor fields, and fer-
mion fields, and thus it is of interest to extend the current
repertoire of quantum cosmological models to incorporate

these other types of fields in a realistic manner. In this
paper, we consider the problem of including fermion
fields in quantum cosmological models.

The first attempt to include fermions in quantum
cosmology was by Isham and Nelson and, more recently,
by Christodoulakis and Zanelli. These authors con-
sidered minisuperspace models involving a homogeneous
fermion field in a homogeneous, isotropic universe. In
such a universe, every point in space is equivalent to every
other point, so that one is effectively considering a fer-
mion field at a single point in space. The number of per-
missible particle states is then severely restricted by the
exclusion principle —for a Dirac field, for example, there
are just 16 possible states, including the vacuum state.
With such a small number of fermion states, one could
not claim that such models provide a physically realistic
description of the Universe in which we live.

It is clear from the above that in order to include fer-
mions in a realistic manner in quantum cosmology, it is
necessary to go beyond minisuperspace to include the in-
finite number of inhomogeneous modes of the fields. The
main subject of this paper is precisely that —to construct a
quantum cosmological model with fermions which in-
cludes all the modes of the fields. Our model may be re-
garded as an extension of the model of Halliwell and
Hawking, in which the full infinite number of inhomo-
geneous modes of the gravitational field coupled to a sca-
lar field were considered, to lowest nontrivial order in in-
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homogeneous perturbations. At this order in the pertur-
bations, the inhornogeneous modes of the bosonic fields
entirely decouple from the fermion modes, so that we may
consider the fermion modes separately.

We begin in Sec. II with a description of the Hamiltoni-
an formulation of Einstein-Dirac theory. The Hamiltoni-
an formalism for general relativity coupled to a scalar
field was outlined in Ref. 8. For the Einstein-Dirac
theory, however, the situation is considerably more com-
plicated for at least three reasons. Firstly, there is the
necessity to work with the tetrad e&, rather than the
metric. This introduces six new degrees of freedom,
namely, the freedom to perform local Lorentz rotations.
Associated with this extra freedom are six first-class con-
straints J,~

—0, where J,& are the Lorentz generators.
The second complication is due to the fact that the Dirac
action involves derivative couplings. The Dirac field cou-
ples to the tetrad through the spin connection ~z, which
occurs in the covariant derivative on spinors, D&g. This
has the effect of altering the relationship between the ve-
locities and the rnomenta in the Hamiltonian formalism.
The third complication is due to the fact that the Dirac
action is first order in time derivatives of the fermion
field, and hence involves second-class constraints which
must be dealt with by the Dirac procedure. Our treatment
of the Hamiltonian formalism follows principally that of
Nelson and Teitelboim.

We wish our model to describe ferrnionic perturbations
about a homogeneous isotropic minisuperspace model. A
particular model is described in Sec. III: namely,
Hawking's massive scalar field model. ' ' It consists of
a k = + 1 Robertson-Walker metric described by a single
scale factor e and driven by a homogeneous massive sca-
lar field P. The wave function for this model corre-
sponds, in the classical limit, to a set of classical solutions
which have an initial inflation and then go over to a
matter-dominated phase. They research a maximum size
and then undergo recollapse. It is to be emphasized, how-
ever, that the main results of the perturbed model do not
depend in a crucial way on our particular choice of back-
ground.

In Sec. IV, we describe the inclusion of fermions in the
model. The Dirac action is expanded in spinor harmonics
on the spatial sections, which are three spheres, and the
Hamiltonian is derived in terms of the coefficients of the
harmonics. The Wheeler-DeWitt equation for the wave
function of the model is given in Sec. V and is found to
involve an infinite sum of Hamiltonian operators, each of
which describes a time-dependent Fermi oscillator. The
eigenstates of these Hamiltonians are derived and their in-
terpretation as particle states is discussed, using instan-
taneous Hamiltonian diagonalization. Our quantization
procedure employs the holomorphic representation, in
which the wave functions for the fermion field modes are
analytic functions of odd elements of a Grassmann alge-
b 11,12

In Sec. VI, it is shown that the Wheeler-DeWitt equa-
tion may be approximated by a set of time-dependent
Schrodinger equations, one for each fermion mode, and a
minisuperspace Wheeler-DeWitt equation, which differs
from that of Sec. III by an extra term in its potential

which represents the back reaction of the perturbations.
This result was also given in Ref. 8, but is derived more
carefully here, since we are interested in a more detailed
treatment of the back reaction and the handling of diver-
gences.

Boundary conditions for the Wheeler-DeWitt equation
are considered in Sec. VII. We adopt the Hartle-Hawking
proposal, which demands that one sum over all compact
four-metrices and regular matter fields which match
prescribed values on a given three-surface. In the semi-
classical approximation, this involves solving the
Euclidean-Dirac equation on the interior of a three-
sphere, subject to the field matching prescribed values on
the three-sphere boundary. This boundary-value problem
is more involved than in the bosonic case, and is discussed
in some detail. It is shown that the Hartle-Hawking pro-
posal implies that the fermion modes start out in their
ground state, as was found also to be the case for the bo-
sonic modes in Ref. 8, and this constitutes our main re-
sult.

This result is used as the initial condition for the
Schrodinger equations in Sec. VIII, which are evolved to
obtain the wave functions of the perturbation modes at
the end of the inflationary phase. The particle creation,
defined with respect to instantaneous Hamiltonian diago-
nalization, is calculated and is found to be finite.

The back reaction of the perturbation modes on the
behavior of the minisuperspace background is considered
in Sec. IX, both in the massive and massless cases. The
expression for this back reaction is formally divergent and
is therefore replaced by its regularized value. The back
reaction is found to be negligible, in both massless and
massive cases. It is shown that in the massive case, the re-
sult is what one would expect, given the number of parti-
cles created.

In Sec. X, we consider a very different notion of a par-
ticle. Restricting attention to the approximation of quan-
tized fermion fields on an exact classical de Sitter back-
ground, we consider a model of a particle detector
designed to detect fermions and examine its response to
the state picked out by the Hartle-Hawking proposal ~ The
detector response depends on the properties of the Green's
functions in this state. It is argued that the state and
hence the Green's functions are de Sitter invariant, thus
allowing us to obtain expressions for these Green's func-
tions in closed form as a function only of the geodesic dis-
tance between the two points. The Green's functions are
shown to be antiperiodic in imaginary time, and have a
pole only when the two points are connected by a null
geodesic, not when they are antipodal. We thus show that
the spectrum measured by the detector is thermal, with
the de Sitter temperature and with the correct Fermi-
Dirac distribution, but does not have the correct density-
of-states factor to be exactly of the Planck form. Our
conclusions are presented in Sec. XI.

II. EINSTEIN-DIRAC THEORY: ACTION
AND HAMILTONIAN FORM

We begin with the action of Einstein-Dirac theory, con-
structed from even (commuting) gravitational variables
and odd (anticommuting Czrassmann) fermion fields.
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Since the spinor harmonics on S, into which the spinor
fields will be decomposed, have definite chirality, we use
two component spinors. The spinor conventions are those
of D'Eath, ' outlined in Appendix A. In addition to the
gravitational and fermion fields, the full action of our
model also involves a scalar field. For simplicity of expo-
sition we do not include the scalar field in this section.
Only its homogeneous mode is needed for the background
model, described by the simple Hamiltonian formalism of

I =Ip +Ig, (2.1)

the sum of a volume contribution I~ and a boundary con-
tribution Iz. I& is taken to be

Sec. III ~ Its inhomogeneous perturbations, while coupled
to gravity, do not couple at lowest order to the fermionic
perturbations studied subsequently.

The Lorentzian action of Einstein-Dirac theory has the
form

Iq f——d x eR ——fd x e(P 'eq~ D&P"+X"'e„"zD&X )+H c.— —f d x e(X&P"+P"X„) .
2K 2 P P (2.2)

We use units in which A=c=1 and ~ =8~G. The gravi-
tational field is described by the tetrad e&, where
a, b, . . . =0,1,2,3 are tetrad indices and p, v, . . . =0,1,2,3
are world indices, or ec(uivalently by the Hermitian
spinor-valued forms e& . Unprimed spinor indices
A, B, . . . take values 0, 1 and primed spinor indices 3 ',B'
take values 0', 1'. Here e =det(e') and R is the Ricci sca-
lar of the metric g„=g,&e„'e, where g, b is the Min-
kowski metric. The Dirac field is described by the pair of
spinor fields P", X" with Hermitian conjugates P ",X
Derivatives such as D&P are defined by

D y"=a„y"+ „',y', (2.3)

where the connection forms co& are expanded spinorially
as

3A 'BB' AB 3 'B' —3 'B' rf B
COp =COp 6 +CO p E (2.4)

I I I

with co„=co„and its conjugate G„=G„
Boundary contributions Iz to the action must be in-

cluded whenever boundary surfaces are present. Classical-
ly, they are needed in order that the variational condition
6I=O should lead to the correct classical solution when
data are suitably posed on the boundaries. The form of
Iz depends on the choice of boundary data. Suppose, for
example, that the boundary consists of an initial surface
SI and final surface SF. As can be seen from the Hamil-
tonian formulation below, one natural choice of boundary
conditions is to specify the spatial tetrad variables e;
(i,j, . . . =1,2,3) together with half of the fermion vari-
ables P", X, P", X on each surface. In this context,
we free P

" and X " from the restriction of being the Her-
mitian conjugates of P, X", and use a modified notation
with a tilde instead of a bar. If, say, we specify e;"",PX" on Si and e;,X, P on SF then the boundary con-
tribution is

f —f d'x h '~'trIC
F I

(2.5)
I

Here, h =det(h, i), h;J ———e„„;ej""is the spatial metric,
and trK =h,&K'', where K,z is the second fundamental
form (extrinsic curvature) of the surface. Also, n is

the spinor version of the unit timelike future-directed nor-
mal n" to the surface. It is determined by the e;
through the relations

AA'
n~qe; =0, nzzn =1. (2.6)

The variational condition 6I=O, subject to the specified
data, leads to the Dirac equations

m
e~~D P =i (2.7)

m
eAA'DpX ~ 4A'u'2 (2.&)

m
eAA'Dpf i ~ XAV2

(2.9)

. m
v'2 (2. 10)

together with the Einstein equations with the energy-
momentum tensor formed from the Dirac field. Since

,X" and P ",X are no longer Hermitian conjugates,
the classical solution e& will in general no longer be
Hermitian. This feature is expected even in the absence of
fermion fields, since the classical solution for the metric
g„,=e&e g ~ may not be Lorentzian, but rather Euclide-
an or complex corresponding to complex e„'.

If instead we had specified the variables e;"",P, X" on
SI and e;,P, X on SF, then the fermionic boundary
condition in (2.5) would appear with the opposite sign.
Generally, a change in the chirality of a variable being
specified results in a sign change in the corresponding
boundary condition in the action. The example of boun-
dary data given here results from a local splitting of the
complete fermionic data P, X, P, X" . However, it
will be most natural when considering the wave function
of the Universe and specifying fermionic data on a single
surface, to use a nonlocal decomposition based on the
eigenfunction expansion of spinor fields on S .

The boundary contributions Iz are also needed to ob-
tain the correct path-integral expressions for quantum
amplitudes. For example, following the path-integral
treatment of fermions by Faddeev and Slavnov, ' the am-
plitude to go from initial data (e;,P,X" ) specified on
SI to final data (e;,P",X ) specified on SF is given for-
mally by
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F 4F+F I PI+I)
= f exp(iI)d [e]d [P]d [P]d [X]d[X] . (2.11)

The action I is given by Eqs. (2.1), (2.2), (2.5), and the in-
filling fields e&, ((}",P, g", X in the path integral
should agree with the given data on the boundaries. The
path integral can be regarded as a contour integral over
e&" (x), and the contour deformed such that the ez (x)
describe positive-definite metrics gz, in the case that the
boundary data e; describe positive-definite three-
metrics h,z on Sz and SF. Strictly, the path integral
should also include gauge-fixing and ghost terms. Provid-
ed that the boundary terms Iz are included, the theory
will have the property that the amplitude to go from
specified data on Sz to specified data on SF can be
recovered by inserting an intermediate surface SJ and
composing the amplitude to go from data on Sz to data
on SJ with the amplitude to go from data on SJ to data
on SF, summing over a complete set of states on SI.

In describing the Hamiltonian formulation of Einstein-
Dirac theory, we follow principally the treatment of Nel-
son and Teitelboim. The gravitational variables are split
into eo" and e;"", when we decompose the action (2.1)
with respect to a family of surfaces t =x =const. Spatial
indices are lowered and raised using the spatial metric h;~
and its inverse h'~. In particular, we use the notation
e ' =h ' ej" . A basis for the space of spinors with one
unprimed and one primed index is given by the e; to-
gether with the normal spinor n . The variables eo
can be expanded as

class constraints (2.14) and corresponding equations for
the- Hermitian conjugates, the original Poisson brackets
among the dynamical variables must be replaced by suit-
able Dirac brackets.

The Hamiltonian has the form

H = d x N~, +N'~;+MAgJ +MA g J
(2.17)

(y D yA+y A D,.yA)+H. c.

h )/2(y yA+y A'y
)

2
(2.18)

I
p7AA (y" L),.()()A+/ ( )D,.y )+H.c.

+ ,' h„a, [(y "'—y"+X "'X').kI"„„., ] . (2.19)

Here the quantities N, N' together with MA& ——M[A&~,
MA z ——M[A z ] introduced for the primary constraints
(2.15), occur as Lagrange multipliers, freely specified dur-

ing dynamical evolution. Together they specify the
amount of displacement applied normally and tangentially
and the amount of local Lorentz rotation applied to
dynamical data per unit time.

The generators A, and A; are

A „=2m h ' [~ m' ——(trm) ] — h' R
1

K

)/2h
2

(2.13)

(2.12)

where N is the lapse function and N' is the shift vector.
Proceeding in a standard way, one can calculate the

momenta pAA conjugate to the variables e;, while find-
ing that the momenta pAA vanish. Fermionic momenta
conjugate to p",X",(t) ",X are defined by a~A

——M/5p ",
etc. , with the convention that odd variables must be
brought to the left using anticommutation before the
functional differentiation is carried out. Since the La-
grangian is of first order in derivatives of the fermion
fields, these momenta are related to the original variables:

Here
1/2

vr'I = —,
' e"" 'p„A~' ——— (K'I h'ItrK)—

2K
(2.20)

and trn =h;J.~'J. The Ricci scalar of the three-dimensional
metric h;z is denoted by R. The spatial spinor derivative
is given, e.g. , by

(2.21)

where the spatial connection forms (o,". (without torsion)
are given in Refs. 9 and 13. The spatial covariant deriva-
tive on tensor densities is denoted by ' 'V;. Classically the
generators A, and A; vanish:

A, =O, A;=0. (2.22)
1 1/2

XA A nAA
2

(2.14) The form of the theory is considerably simplified by
working in the time gauge. In which the condition

while ~&A, and ~&A, are minus the Hermitian conjugates
of ~~A and ~+A. The basic dynamical variables in the
theory can then be taken to be e; ",p„'„, ()}",P", (t

and P . These are related by the primary constraints

(2.15)

as a consequence of the invariance of the Lagrangian
under local Lorentz transformations. Here

e;=0 (2.23)

is imposed on the tetrad components e, leaving only the
triad variables e; (with greek letters a,P, . . . from the be-
ginning of the alphabet denoting triad indices, taking
values 1,2,3). Equivalently, n '=5' inOthis gauge. The
conjugate momenta po are also eliminated by being set to
zero:

A'i
JAB e(A PB)A' +P(A IIQB)+~(A~XB') (2.16) po=o. (2.24)

and JA z is its Hermitian conjugate. Once the fermionic
momentum variables are eliminated through the second-

This eliminates the generators J„.=n'e; J,b of Lorentz
boosts, where Jag~JAgE'A g +JA z eA& are the generators
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of local Lorentz transformations, leaving only the free-
dom of local triad rotations with generators J p or Jj.
Classically, these generators still vanish

J p-0. (2.25)

In terms of the variables e;, their conjugate momenta p'
and the rescaled fermionic variables

[e; (x ),p~p(x ') ]*
= 6p&l6(x, x '),

[g"(x),g" (x')]*=—2in" 6(x,x'),
[k"(x),X (x')]*=—2in 6(x,x') .

(2.27)

(2.28)

(2.29)

The Hamiltonian is still given by Eq. (2.17), with e; and

po set to zero.
The theory may be quantized in the time gauge by

starting from a maximal (anti)commuting set of variables,
for example, e; (x), P (x), and X"(x), and representing
states by Grassmann-valued wave functionals
0'(e; (x ),P (x),A, "(x) ). Dirac brackets become
(anti)commutators, following the rules given by Casal-
buoni' for systems including fermions, and the remaining
variables p', g", and A.

" can then be represented by the
momentumlike operators

6p' (x)~ —i
6e; (x)

(2.30)

(2.26)

together with g" and A, ", the only nonzero brackets are

Ei gaj Ej Eai =0 (2.37)

then the constraints J p become second class. After elim-
ination of these constraints the gravitational variables can
be taken to be h;j and ~'~, while the same fermionic vari-
ables can be used. At lowest order the only nonzero Dirac
brackets are those expected between h;j and ~'~, together
with the preceding fermionic brackets (2.28) and (2.29).
Thus, it is sufficient to study only the fermionic perturba-
tions, as will be done in the rest of this paper.

work and will be chosen later for convenience.
In the application to quantum cosmology considered

here, the action and Hamiltonian can be expanded out to
quadratic order in perturbations of the gravitational field
about a Friedmann metric with S spatial sections, and to
quadratic order in fermionic variables. At this order the
bosonic perturbations and fermion fields are noninterac-
tion and can be treated separately. The wave function for
the bosonic perturbations at this order will be that found
in Ref. 8. If we fix the gauge freedom of the remaining
SO(3) local rotations. This can be done by taking a nor-
malized left-invariant basis E; of one-forms on S, such
that E; E j gives the metric of a unit sphere, and writing

e; =Q(E; +e; )

where a is the radius of the background three-sphere, and
e; are triad perturbations. If we impose the gauge condi-
tion

yA'( ) 2
AA'

6P"(x)

~2fL
H."(x)

(2.3 1)

(2.32)

(2.33)

(2.34)

(2.35)

A formal inner product between wave functions can be
found such that p' (x) is Hermitian and such that f" (x).
k ~ (x) are the Hermitian adjoints of f (x), k "(x).

In the quantum theory, the classical constraints (2.22)
and (2.25) becomes constraints on physically allowed wave
functionals

III. THE BACKGROUND MINISUPERSPACE MODEL

2 2( N2(t)dt2+ 2a{t)dII 2) E3.1)

where dA3 is the metric on the unit three-sphere, and
o. =2/(3~m~ ). The model involves a massive scalar
field (2' tr )

'
P, of mass o 'M which is taken to be

homogeneous, P =@(t) The actio. n is

I = —— dt Ne —e — +M $ (3.2)
2 N N

In this section, we describe the background minisuper-
space model about which we wish to do fermionic pertur-
bations. This is Hawking's massive scalar field
model

The metric is taken to be

For the constraints (2.34) and (2.35) which are only linear
in "momentum" operators, it is natural to choose a factor
ordering such that "momentum" operators appear on the
right in A; and J e. Then Eqs. (2.34) and (2.35) can be
shown to imply that 4 is invariant under spatial coordi-
nate transformations and local rotations applied to its ar-
guments e;, g, and A.". Corresponding properties will
hold in other representations. It is unlikely that any fac-
tor ordering can be found for the operator A, which in-
volves momenta quadratically, such that the complete set
of constraint generators ~„A;, and J ~ form a closed
algebra. This difficulty may possibly only be overcome in
supergravity models. The factor ordering in A, will,
however, not make a substantial difference to the results
of this paper, to the order of approximation to which we

from which one may derive the field equations

N — + 3P Ne =0, —
dt X

N —+ 3t2$+N—2M2$=0,
dt X

and the constraint

—2a v' M2p2 ()

The Hamiltonian is

) Ne
—3a( ~ 2+7r 2+e6aM2$2 e4a)

(3.3)

(3.4)

(3.5)

(3.6)
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—3aH 4= —Ne-'0 2
g 2

where

a2

Qp2
+ V(a, g) %(a,g)=0, (3.7)

e 6aM2$2 e4a (3.8)

This is a hyperbolic equation on the two-dimensional min-
isuperspace with metric

The classical Hamiltonian constraint is Ho ——0.
The Hamiltonian constraint is quantized to yield the

Wheeler-DeWitt equation

IV. EXPANSION IN HARMONICS

In this section we describe the fermionic perturbations
about the background minisuperspace model of the
preceding section. One may construct a complete set of
spinor harmonics, pJ(x), erg(x), and P J(x), crJ(x) for
the expansion of any spinor field and its Hermitian conju-
gate on the three-sphere. The construction and properties
of these harmonics are described in Appendix B. Since
the boundary conditions for the spinor fields must be
given in terms of the weighted fields, it is most convenient
to expand these in harmonics, rather than their unweight-
ed counterparts. One may thus write

ds =f,bdq'dq =e ( —da +dp ) . (3.9)

—3a/2

g g a~~[m„~(t)p"„~(x)+r„~(t)o z~(x)], (4.1)
np q

Here, we have introduced the notation q' and f,b for the
minisuperspace coordinates and metric to emphasize that
the results of the perturbed model, described in the fol-
lowing sections, will also be true of a number of such
models with different minisuperspace backgrounds, and
are not sensitive to the details of this particular choice of
background.

The solution to (3.8) picked out by the Hartle-Hawking
proposal is described in Refs. 3, 4, 10, and 15. The wave
function is exponential in behavior for V&0, and is then
interpreted as corresponding to a Euclidean four-geometry
in the classical limit. This region will thus be referred to
as the Euclidean region, and may be thought of as a clas-
sically forbidden region. The wave function is oscillatory
throughout most of the region V& 0 and may be interpret-
ed as corresponding to a Lorentzian four geometry in the
classical limit. This will be referred to as the Lorentzian
region. In this region, one may use the WKB approxima-
tion, in which one writes

+=Re(Ce' ), (3.10)

where S is a rapidly varying phase and C is a slowly vary-
ing amplitude. S obeys the Hamilton-Jacobi equation cor-
responding to (3.7), which has the approximate solution

S=— 1 2aM 2y2 1 )3/2
3M P

(3.11)

for
~ P ~

&&1. An equation for C may be derived, but C
will not be required.

In the classical limit, the wave function (3.10) may be
interpreted as corresponding to a set of trajectories q'(t),
which are the integral curves of the vector field

1 d =VS V
N dt

(3.12)

the dot product being with respect to the metric f,b.
These trajectories are solutions to the field equations
(3.3)—(3.5) parametrized by the coordinate time t. They
begin at a minimum size e = I/MP and then undergo a
long inflation with e = (MP) 'cosh(MPt) while
remains approximately constant. The solution then goes
over to a matter-dominated phase with e proportional to
t ~, and P oscillates about zero with frequency m. The
solution subsequently reaches a maximum size and then
collapses in a similar manner.

—3a/2

g g a~~[m„~(t)P"„q(x)+r„~(t)oz~(x)],
2

(4.2)
—3a/2

g g P"„'[s„~(t)p„'(x)+t„~(t)o ~'(x)], (4.3)
2

—3a/2
Xg —— g g P„~[s„~(t)p~~(x)+t„~(t)crq~(x)], (4.4)

2

where we have included the weight factor e and
(n +1)(n+2)

X=X X (4.5)

The label q runs over the same range as p. The time-
dependent coefficients m„p r p t p s„p, and their com-
plex conjugates m„p, r„p t p s p are taken to be odd ele-
ments of a Grassmann algebra. The constant coefficients
a~~, P„~ have been included for convenience, to avoid cou-
plings between different values of p in the expansion of
the action. They are given in Appendix B.

The harmonics are eigenfunctions of the Dirac operator
on the three-sphere, nz& e ' 'DJ. We have used a nota-
tion in which the unbarred harmonics have positive eigen-
values and the barred harmonics have negative eigen-
values. Associated with each unbarred harmonic in
(4.1)—(4.4) is an unbarred coefficient and associated with
each barred harmonic is a barred coefficient; thus, the un-
barred coefficients correspond to the positive half of the
spectrum of the operator nz&e ' 'D& and the barred
coefficients correspond to the negative half of the spec-
trum. As will be discussed in Sec. VII, it is convenient to
express the boundary conditions for the fermion fields in
terms of the positive and negative halves of the spectrum
of the Dirac operator on the bounding surfaces —hence,
our choice of definition of the barred and unbarred vari-
ables in (4.1)—(4.4). In what follows, we shall assume that
the barred variables m„p, snp, t„p, rnp are fixed on the ini-
tial surface SI, and the unbarred variables mnp, s„p, t„p,
r„p are fixed on the final surface SF.

Inserting (4.1)—(4.4) into the total action (2.1) and using
the properties of the spinor harmonics, one finds that the
action is
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I =Ip +If +Ifg

where Io is the action (3.2) of the background model. The fermion volume part If may be written

If If"——[m,s]+If '[t,r],
where

(4.6)

(4.7)

(]) 3If ——g dt N (mnp np +mnpmnp +snpsnp +snpsnp ) +e (n + 2 )(mnp mnp +snpsnp )™(snpmnp + npsnp )
2%

(4.8)

and

(2) —aIf —g dt N (tnptnp + tnptnp +rnprnp +rnprnp )+e (n + —, )(tnptnp +rnprnp ) m (rnptnp +tnprnp )
2N

(4.9)

The boundary term appropriate to the boundary conditions described above is

1 1

IfB ———g (m„pm„p+s„ps„p+t„pt„p+r„pr„p)s + —g (m„pm„p+s„ps„p+t„pt„p+r„pr„p)s
np np

(4.10)

The fermion action, including boundary terms, is thus a sum over n,p of actions, each of the form

1I„[x,x,y y ]= dt N (xx +xx +yy +yy ) +e (n + —, )(xx +yy) —m (yx +x y )

1+ —(xx +yy)s + —(xx +yy)s (4.1 1)

In this expression, and in what follows, the Grassmann
variables x and y will be used generically, to denote m„p
and s„p, respectively, or to denote t„p and r„p, respective-
ly. The total fermion action may thus be expressed in
terms of I„:

f +IfB g [In(mnp& np snp&snp )

np

1d x v+ +v +m x=02

Xdt N iN
(4.17)

and x and y obey the conjugate equation

I

order form for these equations. One finds that x and y
obey the same second-order equation, which is

+In ( tnp r tnp r rnp r rnp ) ] (4.12) 1d x v+ — +v +m x=0.
Ndt N iN

(4.18)

The action (4.11) describes two time-dependent Fermi
oscillators x,X and y,y which couple together through the
mass term. The problem of solving our quantum cosmo-
logical model is thus essentially reduced to that of solving
this simple system.

From (4.11), the following field equations may be de-

rived:

H„(x,x,y y) =N [v(xx+yy)+m(yx +x y)], (4.19)

where x,y, x,y obey the Dirac-brackets relations

[x,x]*= i, — (4.20)

Following the Dirac procedure, one may obtain the
Hamiltonian

~ x
i —+vx —my =0,

N

. x
i ——vX+my =0,

N

(4.13)

(4.14)

All other brackets relations yield zero. The total fermion
Hamiltonian may thus be expressed in terms of (4.19):

~f = y ~np = y [Hn ™np& mnp &Snp &Snp )

np np

i—+vy +mX=0,-y
N

(4.15)

i ——vy —mx =0, (4.16)

where v=e (n + —,
' ). These are of course, just the com-

ponents of the Dirac equations (2.7)—(2.10), when expand-
ed in harmonics. It is also convenient to have a second-

+ n( np, tnp» np& np )] (4.21)

which is of course just the expansion of (2.17) in harmon-
1cs.

For the remaining bosonic variables, variation of the
action (4.6) yields the field equations (3.3)—(3.5), but in
the case of (3.3) and (3.5), modified on the right-hand side

by terms quadratic in the fermion fields. Since the fer-
mions are regarded as perturbations, these modifications
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may be ignored, to the order at which we are working.
The total Hamiltonian is now the sum of the background
Hamiltonian (3.6) and the fermion Hamiltonian (4.21),
and vanishes,

Hp+H) ——0, (4.22)

this being the Hamiltonian constraint.
We have replaced the problem of working with the

fields p~, X~, 1I)~, X~ with that of working with the coef-
ficients m„~, s„z, etc. , defined by Eqs. (4.1)—(4.4). To
lowest nontrivial order in perturbations, these coefficients
are invariant under local Lorentz transformations and dif-
feomorphisms in the three-surface. It follows that the
generators of these transformations, namely, the Lorentz
generators J,b and the fermion part of the A; play no
role in this model. It is therefore sufficient to consider
only the constraint (4.22), to the order at which we are
working.

Bxx~ x
2 Bx

B
Bx" (5.4)

With the above choice of operator ordering, the Hamil-
tonian (4.19) becomes the operator

B B BH„=N —v+v x +y +m yx+
Bx By BxBy

g' '=Np 1+ xy, Ep ———P1,
(v+co)

(5.6)

(5.5)

It is useful to determine the eigenstates of the operator
N 'H„. The eigenvalue equation N 'H„g= Eg is easily
solved by expanding g in the Grassmann numbers x,y.
One thus obtains the following eigenstates and eigen-
values:

V. QUANTIZATION

[Hp+ HI ]'4l=0, (5.1)

where H p is the operator of the background Wheeler-
DeWitt equation (3.7). H~ is obtained from the classical
fermion Hamiltonian (4.21) by replacing the dynamical
variables with operators in a manner consistent with the
anticommutation relations

The quantum state of our cosmological model may be
be described by a wave function 4, which is a function of
the gravitational and matter-field configurations on a
given three-surface. The wave function obeys the
Wheeler-DeWitt equation

p"'=N, x, Ei ——0,
Q' '=N2y, E2=0,

(5.7)

(5.8)

f' '=N3 1+ xy, E3 ——+pi,
(v —Pi)

(5.9)

where co=(v +m )' and Np, . . . , N3 are normalization
factors. These eigenstates are orthogonal with respect to
the inner product appropriate to the holomorphic repre-
sentation, defined for any pair of functions f,g of the
Grassmann variables x,y (Refs. 11 and 12):

(f,g)= ff(x,y)g(x, y)e ~ydx dx dydy . (5.10)

(x, x] =1, Iy,y) =1 . (5.2)
Integration over x,y, x,y is performed according to the
usual rules of Berezin integration

These relations follow from the Dirac-bracket's relations
(4.20) according to the usual quantization rules for an-
ticommuting variables. ' They are satisfied by the repre-
sentation

B

Bx By
(5.3)

known as the holomorphic representation. "' With this
choice, the wave function is a function of the background
variables q' and the unbarred variables, i.e.,

1=I'%(q', m, s, t, r) where m denotes all the m„~, etc. This
choice of representation is consistent with the formalism
developed so far, in which we have assumed that the
barred variables are fixed on SI and the unbarred vari-
ables are fixed on SF, bearing in mind that we eventually
wish to calculate the wave function by a path integral
over a set of paths ending at the point specified by its ar-
gument, (q', m, s, t, r).

There is the usual operator-ordering ambiguity in going
from the classical constraint (4.22) to the Wheeler-DeWitt
equation (5.1). For the background terms, this will not af-
fect the results presented here, so it will be chosen for ease
of calculation. For the fermionic terms, there is an ambi-
guity for terms of the form xx. For such terms, we shall
adopt the so-called Weyl ordering, ' ' which in this case
involves the substitution

f dx=0, fxdx=1, fdx=0, fXdX=1, (5.1 1)

and likewise for y and y.
The eigenstates (5.6)—(5.9) may be normalized using

(5.10), thus fixing the normalization factors. One finds
that N& ——N2 ——1 and

1/2

N3 —— (5.12)

1 B m(v+~)'/2 + x
)1/2 (v+~)'/2 (5.13)

b =,/2
(v+co)'

)
1/2 Bx

m

( + )1/2
(5.14)

and their adjoints

1 m Ba~= (v+~)' 'y+
)
1/2 (v+pi)'/2 Bx

(5.15)

One may also see that x and B/Bx are adjoints of each
other with respect to (5.10), and likewise y and B/By. It
follows that the Hamiltonian operator (5.5) is self-adjoint
in the inner product (5.10).

To interpret the states (5.6)—(5.9), it is convenient to in-
troduce the operators
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1 m
b = (v+c0))"x—

(2 )
) /2

( v+ c0) ()y
(5.16)

These operators satisfy the anticommutation relations

Ia, a ) =1, Ib, bt) =1, (5.17)

with all others equal to zero. It is readily verified that
these operators are creation and annihilation operators be-
tween the states (5.6)—(5.9). Thus one has, for example,

a q(0) 0 a tq(0) q(2)

ay(2) q(0) a tq(2) 0
(5.18)

plus 12 more similar relations. The operators a and a
step between r()' ' and P' ' and between P"' and f' ', while
b and b step between P( and f(" and between P( ) and
q(3)

It is natural to introduce the number operators N, and
X~, defined by X, =a a, X~ ——b b, and the Hamiltonian
operator (5.5) may then be expressed in terms of these
operators by

N 'H„=c0(N, +Nb) —c0 . (5.19)

Since N, and Nb each commute with H„, they possess a
set of simultaneous eigenstates. In fact, the states
(5.6)—(5.9) are eigenstates of N, and Nb

N, g' '=0, N, f" =0,
N q(2) q(2) N q(3) q(3)

(5.20)

Identical relations hold for Nb but with p'" and p' in-
terchanged.

The interpretation of the states P( ', P'", g', and r()( )

is now clear. Regard a and b ' as creation operators of
particle and antiparticle states, respectively, in the mode
labeled by some value of n,p Then .1()' ' represents the
vacuum state, P") represents a one-antiparticle state, P'
represents a one-particle state, and g( ' represents a two-

particle state containing a particle and an antiparticle.
Note that here we are referring to particle states as de-
fined by instantaneous Hamiltonian diagonalization,
which leads to different definitions of what one means by
a particle state for different values of the scale factor e .
Moreover, this definition of a particle state will not in
general agree with the measurements made by a detector
moving along a geodesic, as we shall see in Sec. X. Note
also that the total Hamiltonian (4.21) contains two terms
of the type (5.5), for each mode n,p, in order to account
for both helicity states of the particle.

VI. THE SCHRODINGER EQUATIONS

——V + —e V+ QH„)II=0,1 2 1

2 2 np
np

(6.1)

where V' is the Laplacian in the two-dimensional metric
(3.9). Since the perturbation modes do not couple to each
other, a natural ansatz for the wave function is

'P='P0(q') g 'Ppp(q mpp Spp tllp rnp)
np

(6.2)

where each wave function %„z depends only on the indivi-
dual perturbation modes m„p, s„p, t„p, r„p. Inserting (6.2)
into (6.1), one obtains

The Wheeler-DeWitt equation (5.1) will be very diffi-
cult to solve, because it involves an infinite number of
variables. However, as was shown in Ref. 8. Wheeler-
DeWitt equations of this type may be approximated by
time-dependent Schrodinger equations for each mode
along the trajectories of the minisuperspace background
model. Here we repeat the derivation, partly because we
are interested in a more careful treatment of divergences,
but also because the derivation of Ref. 8 involved some
inaccurate statements, although the final result is correct.

The Wheeler-DeWitt equation (5.1) may be written

1

2

V'4, V%„,+e-"V+ g n„, —
0 np np &p

2

2

( V+0) ( V(ij„p )

2
——V (In)P„ ) =0 , (6.3)

where we have introduced the quantity A„z in the square
brackets and subtracted it in the second set of large
parentheses. Its value will be chosen later, essentially to
subtract off the vacuum energies of the perturbation
modes. It depends on the background variables q' and
the label n but will turn out not to depend on the degen-
eracy label p.

The wave functions 4'„z will turn out to be slowly vary-
ing functions of the background variables q', and thus the
term V (In)I)„p) will be small. It represents a higher-order
correction in the Wentzel-Kramers-Brillouin (WKB) solu-
tion and so may be dropped, as one can verify after expli-
cit expressions for the %„z have been obtained.

Consider next the last term in the square brackets of
(6.3), involving the square of a sum over modes. We are
anticipating the %„p to be of the form [I +f (q') y] fxor

some function f. One should of course also include an

I

overall background-dependent factor in this expression,
but such a factor may always be absorbed into the defini-
tion of )P0 in (6.2) and it is convenient to assume that this
has been done. It follows that the term in question is a
sum over terms which are quartic in the perturbation vari-
ables and moreover, involves a coupling between different
modes. However, we are working only to quadratic order
in the perturbation variables, at which the different modes
do not interact, and it would therefore be inconsistent to
include this term in our considerations without including
the quartic order contributions to the gravitational and
matter fields, which is beyond the scope of this calcula-
tion. This term will therefore be dropped. One would ex-
pect that it is consistent to neglect such quartic contribu-
tions provides that the inhomogeneities are sufficiently
small ~

Of the remaining terms in (6.3), the terms independent
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of the perturbation modes must vanish separately. More-
over, since the individual modes do not couple, each term
in the sum over all modes must vanish independently.
Equation (6.3) thus implies

—V' +e V+ QQ„p 4'p ——0,
np

(6.4)

(&+p)
np 2 +np)+np V%„, .

0'p
(6.5)

Equation (6.4) is of the form of the background
Wheeler-DeWitt equation (3.7), but modified by the term
QQ„p. This term represents the back reaction of the per-
turbation modes on the homogeneous modes. We shall
show in Sec. IX that it is small after regularization, so
that +o will be approximately the same as the wave func-
tion for the minisuperspace background, described in Sec.
III. In regions where the wave function oscillates rapidly,
one may use the WKB approximation for 4'o and write
4'p ——C exp(is). The operator on the right-hand side of
(6.5) may then be written

V%,
~ V=iVS V=i

'Pp Bt
(6.6)

where we have introduced the vector 0/Bt, for some pa-
rameter t Equatio. n (6.5) now reads

1
B4'np

(H„p —TIl,„p )qf„p =i
at

(6.7)

+np( 0 np~snp~ np np) 0n( 0~ np np)

x P„(a,P, r„p, r„p ) (6.&)

and each wave function g„will thus obey the Schrodinger
equation

1 n(H. —
4 &.p)Pn =& (6.9)

where H„ is given by (5.6). Note that P„(a,P, . . . ) is the
same function for both terms in the product in (6.8), since
the Schrodinger equation for each term has the same form
and, as we shall see in the next section, each term satisfies

The integral curves of 8/Bt are the classical trajectories
corresponding to the classical limit of the minisuperspace
background model and are parametrized by the coordinate
time t. Equation (6.7) is thus a time-dependent
Schrodinger equation for each perturbation mode along
the trajectories of the minisuperspace background.

If the back reaction is 1arge, the above derivation will
still hold and (6.7) will still be a Schrodinger equation
along the integral curves of 0/Bt. These integral curves,
however, will be the trajectories corresponding to the clas-
sical limit of the solution %p of (6.4), which could be very
different from the classical trajectories described in Sec.
III.

The Hamiltonian H„p is the sum of two terms of the
form (5.6) with x,y denoting m„p, s„p in the first and
denoting tnp, rnp in the second it follows that the wave
function %„p may be further decomposed

the same initial conditions. It will also turn out that the
function g„ is independent of p; it is thus labeled only by
n.

VII. BOUNDARY CONDITIONS

e =0, =1, P=$p, —0,de dP
d7 d7

(7.2)

at x=0.
Consider next the boundary conditions for the fermion

field. We have developed a formalism for which m, s, t, r
are fixed on SI and m, s, t, r are fixed on SF. However, the
Hartle-Hawking proposal demands that the initial surface
SI be shrunk to zero in a regular manner, thus leaving SF
as the only bounding surface. One therefore requires that
the fermion field is regular on the interior of SF, which is
a three-sphere in our model, and matches the prescribed
values of m, s, t, r on SF. Now consider what this implies
for the coefficients m, m, etc. These are defined through
the expansions (4. 1)—(4.4), which involve the weight fac-
tor e ~ and this is singular at r=0. Regularity of Pz,
X~, Pq and X„on the interior of the three-sphere there-
fore implies that

np =Snp = tnp
——rnp

mnp Snp = tnp rnp

(7.3)

at ~=0. The Hartle-Hawking proposal thus demands that
one sums over all paths satisfying (7.2) and (7.3) at the ini-
tial point r=0 which match the prescribed values of a, P,
mnp, snp, tnp, rnp at the final point ~=~', say, at which
one wishes to know the value of the wave function.

It is enlightening to discuss the boundary conditions for
the fermion fields purely at the classical level since, at
first sight, it might appear that the classical solution will
not possess sufficient freedom to satisfy all the conditions.
In fact, since the fermion action is quadratic in the fer-
mion fields, the evaluation of the path integral over the
fermion modes is essentially semiclassical. Thus, for the

We come now to the most central feature of the model,
namely, the application of the Hartle-Hawking proposal
to set boundary conditions on the wave function. This
will provide initial conditions for the Schrodinger equa-
tions derived in the preceding section.

We seek the solution to the Wheeler-DeWitt equation
defined by the path integral over the class C of compact
four-metrics and regular matter fields:

'0= d e„'d gd g dXgdXg e . 7.1

The Euclidean action I is obtained by choosing the lapse
function N to be negative imaginary in the Lorentzian ac-
tion I, and then I= —iI. For our model, the class C of
paths will be a set of paths in the infinite-dimensional su-
perspace with coordinates (a,P, m, m, s,s, t, t, r, r ) which
may be parametrized by the Euclidean time coordinate
r= fiN dt, and their initial point is conveniently taken to
be ~=0. To ensure that the paths correspond to compact
metrics and regular matter fields, conditions must be im-
posed on the superspace coordinates at ~=0. For n and
P, the appropriate conditions are
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model considered here, it is sufficient to understand the
boundary conditions at the classical level.

Let us write each of the fields (tz, Xz, Pz, and X~ in
the form Pz ——Pz +P'„' where, in the decomposition
(4.1)—(4.4), the (+ ) part corresponds to the modes with
unbarred coefficients and the ( —) part corresponds to the
modes with barred coefficients. The boundary value
problem is thus to find the solution to the Euclidean-
Dirac equation such that Pz+', Xz+', Pz+', and X„+'
match prescribed values on SF and P~, X„, P„, and X~
are regular on the interior of SF. From the Euclidean ver-
sion of the Dirac equations (2.7)—(2.10), one may derive
second-order equations for the fields P~+, X~+, P ~ ~ ', and

These may be solved on the interior of SF subject
to the above boundary conditions and the solution is then
uniquely determined. Now the Dirac equations
(2.7)—(2.10) relate the derivatives of the (+ ) variables to
the ( —) variables and vice versa, as one may see from the
expanded form (4.13)—(4.16). Equations (2.7)—(2.10) may
thus be used to determine the fields P~, X~ ',

P~
', and

' in terms of the derivatives of P'„', X~+', P „+', and
X ~+ . One should then ask whether or not the ( —) parts
of the fields satisfy the condition of regularity on the inte-
rior of SF. Since the (+ ) parts of the fields are regular
solutions to elliptic equations on the interior of SF they
will be analytic, as will their derivatives, so it follows that
the ( —) parts of the fields will also be analytic on the in-
terior of SF. The variables P~, X~, P~, and X~
will therefore satisfy the requirement of regularity on the
interior of SF. A unique solution to the classical field
equations is thus obtained, satisfying all the conditions,
showing that the boundary value problem is well posed.

It is appropriate at this point to explain why we chose
to fix the unbarred variables on SF, rather than the barred
variables, or some combination of barred and unbarred
variables. The reason for our choice is to ensure that a
regular solution exists in the massless limit. If m=0, all
the variables decouple and each one obeys a first-order
equation. The general solution for the unbarred variables
is regular on the interior of SF, and one then has the free-
dom to require the solution to match a prescribed value
on SF. The general solution for the barred variables, how-
ever, is singular at ~=0 and one is forced to take the
barred variables to be zero identically, this being the only
regular solution on the interior of SF. There is no free-
dom to match a prescribed value on SF. In the massless
case therefore, one is compelled to fix the unbarred vari-
ables on SF with the barred variables free. In the massive
case, the variables each obey a second-order equation, one
of whose solution is always regular on the interior of SF,
and thus one has more freedom in the choice of boundary
conditions. At a deeper level, what we are encountering
here is the general theory of Atiyah et ai. on the spectral
theory of elliptic operators. '

We have made the ansatz (6.2) for the total wave func-
tion, and have shown that Oo is already known. We now
show how approximate expressions for the perturbation
wave functions %„at small geometries may be obtained
from the path integral, and hence used as initial condi-
tions for the Schrodinger equations.

The path integral over the fermion modes will be of the

form

f d [x]d [x ] d [y] d [y]e (7.4)

where I„ is the Euclidean version of the action (4.11).
According to the boundary conditions described above,
the integral is taken over a set of paths
(x(r),x(r),y(r),y(r)) satisfying x=y=0 at r=0 and
x =x', y =y' at ~=~', where x',y' is the point at which
we wish to evaluate the wave function. Equation (7.4)
may be evaluated to yield an expression of the form

3 exp( I '„')—, (7.5)

where I '„' is the action of the solution to the classical Eu-
clidean field equations which satisfies the above boundary
conditions and 2 is a prefactor, evaluated by integrating
over the fluctuations about the extremizing path. The
x',y' dependence is contained entirely in the exponent, so
the prefactor will not be needed.

To obtain the wave function 1t„(a',p', x',y'), it is neces-
sary to perform a functional integration of (7.5) over
paths (a(r), P(r)) satisfying the initial conditions (7.2) and
matching (a', P') at r=r'. One would expect the dom-
inant contribution to come from paths close to solutions
of the classical Euclidean field equations. For such paths,
one may employ the adiabatic approximation, also used in
Ref. 8, in which one assumes that a is a slowly varying
function of ~. In particular, one assumes that

8cx —a«(n + —, )e
d7-

(7.6)

I'„'= —,
' [x(r')x'+y(r')y'] . (7.7)

It is now necessary to solve the Euclidean-Dirac equation,
subject to the above boundary conditions, to find x(r')
and y(r') in terms of x' and y'. The Euclidean version of
(4.17) is

0 x
dT'

GV +v +m x =0.
d7.

(7.8)

In terms of v, the adiabatic approximation (7.6) is
dv/dr

~

&&v whence the approximate solution to (7.8)
satisfying x(0) =0, x (r') =x', is

sinh(err)x 7 x
sinh(cur')

The Euclidean version of (4.13) is

(7.9)

Equation (7.6) is satisfied by all paths in the neighborhood
of r=0 by virtue of the initial conditions (7.2). Moreover,
if a(r) is the solution to the field equations satisfying the
initial conditions (7.2), then (7.6) is satisfied throughout
the whole of Euclidean region. In the Lorentzian region,
Eq. (7.6) is the condition that the mode labeled by n is in-
side the horizon of the de Sitter phase. This approxima-
tion may be used to solve the Dirac equation and hence
obtain the exponent in (7.5).

On evaluating the Euclidean action I„on the classical
path, one discovers that the volume term vanishes leaving
just the boundary term; hence,
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dX +vx —my =0,
d~

from which one may determine y(r') in terms of x':

(7.10) m' (v+ —'&.~)—v-
(u +v) (u +v)

y(r') =—[v—co coth(cur')]x' .
m

(7.1 1) (u+v)= —im
~ Xy

(u +v)
(8.2)

A similar calculation for y and x yields

x(r') = [—v+ar coth(cur')]y' .
m

(7.12)
In order that the terms independent of x and y cancel, it
is necessary to make the following choice for Q„p:

The Euclidean action (7.8) of the classical solution is thus
given by

m
Qp ———4 v+

(u +v)
(8 3)

I '„= [v—co coth(cor')]x'y' .
m

For large values of n, coth(cow') = 1, whence

(7.13) and (8.2) will then be satisfied if u obeys the equation

iu+u =v —iv+m (8.4)

(v —co), , —mI '„= Xy X y
m (a)+ v)

(7.14)

and one obtains the following approximate expressions for
the perturbation wave functions:

I t

1t „(a',P', x',y') =exp
co+ v)

mx 'y'

(~+v) ' (7.15)

VIII. EVOLUTION AND PARTICLE CREATION

We now consider the evolution of the perturbation wave
functions according to the Schrodinger equation (6.9),
subject to the initial condition derived from the Hartle-
Hawking proposal in the preceding section. We make the
following ansatz for the wave function:

g„=1+ xy
(u +v) (8.1)

for some function u (t). Inserting this into (6.9), one ob-
tains

apart from a possible prefactor, independent of x' and y'.
Comparing this with the eigenstates of the Hamiltonian
(5.6)—(5.9), we see that the Hartle-Hawking proposal
picks out the lowest-energy eigenstate for the fermion
modes, that is, the ground state.

In this section we have solved the Dirac equation to ob-
tain the semiclassical expressions for the perturbation
wave functions, using the adiabatic approximation (7.6).
This method indicates the generality of the model, that is,
the fact that it does not depend in a crucial way on the de-
tailed behavior of the minisuperspace background. How-
ever, in the limit of an exact de Sitter background, which
is a good approximation to the initial behavior of the
model, the Dirac equation may be solved exactly in terms
of hypergeometric functions. This is carried out in Ap-
pendix C, partly to check the approximation, but also be-
cause such a solution turns out to be needed in order to
solve the Schrodinger equation outside the horizon, as we
shall see in the next section.

which is of the Riccati type.
Inside the horizon,

~

v && v, and (8.4) then has the ap-
proximate solution u =+(v +m )'~ =+co. The initial
condition is that g„ is in the ground state initially, so
u = +co and 1t„remains in the ground state for as long as
the mode remains inside the horizon.

To consider the subsequent evolution outside the hor-
izon, more detailed calculation is necessary. The infla-
tionary phase is accurately described by taking the scale
factor e to be of the de Sitter form, and in this case it is
possible to solve (8.4) exactly in terms of hypergeometric
functions. This is done in Appendix C. Outside the hor-
izon, i.e., for v ~&H, one finds that the approximate solu-
tion is

2im 2im
u = —v —m tanh(Ht) — 1—

H H
(8.5)

This is equal to the average number of antiparticles (Nb ),
as one would expect, since the creation takes place as
particle-antiparticle pairs. This also corresponds to the
fact that the single particle and antiparticle states g' ' and
P"' do not play any role. The total number of particles
created, I, is then obtained by summing over all modes
and over both helicity states:

I =2+((N, )+(Nb))=4 g (n + l)(n +2)(N, ) . (8.7)
np n=0

It is convenient to split the sum over n into three re-
gions:

(i) n «n& ——me (i.e. , v«m),
(ii) n~ &&n &&n2 He (i.e. , m &&v&&H), ——
(iii) n2 «n (i.e. , v&&H) .

Thus (8.7) may be written

Given the solution (8.5), one may calculate particle
creation during the de Sitter phase. The average number
of particles in the state 1'„at fixed a and p is given by

m' ice —u i'
(g„,g„) 2'(co+v) (

~

v+u
~

2+m )

(8.6)
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n=0 n =nl n =n2

To determine whether or not I is finite, it is necessary to
consider the sum over modes in region (iii), in which
v»H so these modes are inside the horizon (the de Sitter
phase is finite in length in this model, and there will be an
infinite number of very-short-wavelength modes which
never leave the horizon). For such modes, we have shown
that the wave function is approximately in the ground
state u =co, so it appears that (N, ) =0. The question,
however, is whether or not it is sufficiently close to the
ground state for the sum gn (N, ) to be finite. To this
end, we need the more accurate solution given in Appen-
dix C, which is u =co —iH Equa. tion (8.6) thus yields

2 H(N. ) =
2'(co+v) [(co+v)'+H +m'] (8.9)

For large n, it is easily seen that (N, ) =O(n ) and
hence that gn (N, ) is finite. The contribution to I in

region (iii) is of order m e /H which will turn out to be
considerably smaller than the contribution from regions (i)
and (ii).

Consider next regions (i) and (ii). Using (8.5), one finds
that (N, ) =1 in region (i) and this yields a contribution
to I to order m e . In region (ii), (N, ) = —,', and this
yields a contribution to I of order H e, which is con-
siderably greater than the contribution from region (i). To
summarize, the particle production resulting from the de
Sitter phase is finite, and is dominated by the modes for
which m «v«H, which yield a value of I of order
~3 3(x

Finally, we consider the massless case. If m=o, the
variables x,X decouple from y,y, and the Hamiltonian
operator for each mode, H„&, is a sum of four terms, each
of the form —v/2+ vx0/Bx. The eigenstates of this
operator are 1 and x with eigenvalues —v/2 and v/2,
respectively. It is straightforward to show that the
Hartle-Hawking proposal picks out the lowest-energy
eigenstate, so that the initial condition for the Schrodinger
equation (6.7) is 4„~=1. In fact, %„~=1 for all time is
the exact solution to the Schrodinger equation, as is easily
verified, and it is necessary to choose A„z ———4v. For the
massless case, therefore, the fermion modes remain in
their ground state throughout the subsequent evolution, so
there will clearly be no particle production. This is not
really surprising, bearing in mind the fact that the rnass-
less Dirac action is conformally invariant. One may
therefore conformally transform the problem from the
Friedman-Robertson-Walker- (FRW) type universe con-
sidered here to the Einstein static universe, in which there
is no particle production because it is static.

IX. THE BACK REACTION

In the preceding section, we solved the Schrodinger
equations and obtained an expression for the quantity

nl n2

I = g + g + g 4(n +1)(n +2)(N, ) . (8.8)

This feeds back into the Wheeler-DeWitt equation
(6.4) to give the fermionic contribution to the back reac-
tion, gQ„z. As one would expect, however, this expres-
sion is formally divergent.

In an earlier version of this paper, we regularized the
quantity +II„~ by inserting a cutoff in the summation.
We then subtracted the divergent parts following a
prescription previously used by Ford in the Einstein static
universe. ' However, there are reasons for believing that
this method is not really appropriate to Robertson-Walker
space-times. The main objection is that it is not covari-
ant, and is therefore at variance with the widely held be-
lief that the regularization ought to be covariant in order
to obtain the right answer. This objection is valid, as may
be seen by considering particular calculations. For exam-
ple, this noncovariant method preserves the trace of the
energy-momentum tensor at every stage, so no trace
anomaly is obtained, contrary to the results of covariant
calculations. (There is no trace anomaly in the Einstein
static universe, so we are not questioning Ford's calcula-
tions. ) Similarly, the method yields an expression for the
vacuum energy of massless fermions in de Sitter space dif-
ferent from that obtained using covariant methods. For
these and other reasons, we now believe that our original
calculation was based on a method that does not apply.

It appears, however, that the problem of treating diver-
gences in quantum cosmology is perhaps a little more dif-
ficult than it is in quantum field theory on a fixed back-
ground. Firstly, there is the issue of regularizing the
divergences. In quantum field theory on a fixed back-
ground, one works at the level of the action, or the field
equations, at which general covariance is manifest, so co-
variant regularization is reasonably straightforward. In
quantum cosmology, on the other hand, one works at the
level of the Hamiltonian, at which it is more difficult to
maintain general covariance. Indeed, as we have dis-
cussed, one appears to be led naturally into regularizing
the divergences in the Wheeler-DeWitt equation in a non-
covariant manner.

A possible way to avoid this difficulty is to use dimen-
sional regularization. One could quite simply do the en-
tire calculation in d space-time dimensions, so that a co-
variant regularization scheme is in use from the very be-
ginning. In connection with this, the results of Hill are
encouraging. ' Hill considered scalar field quantization in
de Sitter space, using the functional Schrodinger quantiza-
tion method and dimensional regularization. The results
of his calculation of ( Tz, ) are in agreement with other
covariant methods.

There is a second difficulty concerning the subtraction
of the divergent terms, after a regulator has been intro-
duced. In quantum field theory on a fixed background,
one usually postulates the existence of higher derivative
terms in the field equations with coefficients denoted by

y, say. By renormalization of the cosmological term A,
the Planck mass mz, and y, one can absorb all the diver-
gences of (T„). One then assumes that ) ~, the renor-
malized value of y, is zero, or at least negligible.

It is not obvious, however, that such a scheme will go
through in quantum cosmology. One may include higher
derivative terms in quantum cosmological models and
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(VReS) +e V+ J d x h' &Too& =0 . (9.1)

This is equivalent to the time-time component of the
semiclassical Einstein equations. This is a useful result
since all the divergences are contained in & Too &, to which
covariant regularization techniques may be applied.

Consider therefore & T~„&„„,the renormalized expecta-
tion value of the energy-momentum tensor in the quan-
tum state defined by the Hartle-Hawking proposal. For
simplicity we will restrict attention to an exact de Sitter
background, which describes the early part of the evolu-
tion quite well. As will be argued in Sec. X, the state de-
fined by the Hartle-Hawking proposal is de Sitter invari-
ant. It follows that & T„&„„is of the form

indeed, models of this type has been considered. The
problem is that the inclusion of such terms introduces ex-
tra dynamical variables into the theory, completely chang-
ing the Hamiltonian formalism, and hence the Wheeler-
DeWitt equation. It may well be possible to correctly reg-
ularize the divergences in the Wheeler-DeWitt equation,
and then absorb them by normalization. It is not clear,
however, that one may then smoothly take the limit

yz ~0 and recover the Wheeler-DeWitt equation of con-
ventional Einstein gravity coupled to a correctly renor-
malized energy-momentum tensor. The limit may be
singular.

The handling of divergences in quantum cosmology
thus appears to be more problematic than in quantum
field theory on a fixed background. Nevertheless, the
problems are not insoluble and we hope to address them
in more detail in a future publication. Here, as a tem-
porary measure to avoid the difficulties outlined above,
we will relate the formalism we have been using to the
semiclassical Einstein equations, in which the back-
reaction problem is better understood. In Appendix D, we
show that when quantum corrections due to the matter
are taken into account, the Hamilton-Jacobi equation for
the background Wheeler-DeWitt equation is

f d xh' &T &=2&Hf& —+II„: 4+v. (9.4)
np np

This is only a formal relation since these expressions are
formally divergent, so no meaning can be attached to
them unless one specifies a regularization scheme. If one
extracts a finite expression from the term on the far
right-hand side using the noncovariant method outlined at
the beginning of this section, then one obtains a result
proportional to e . Covariant methods applied to the
expression on the far left-hand side, on the other hand,
yield a result proportional to e . This clearly illustrates
the care that needs to be taken in handling divergences.

tensor is linear in m, so assuming that this dependence on
m is not affected by the renormalization, one would ex-
pect C to be of order mH . This is supported by the re-
sults of Sec. VIII in which it was shown that the number
of particles produced in the de Sitter phase is of order
H e . If the energy density is dominated by the rest
mass, then the energy density of particles produced is of
order mH . A typical value of m would be, say, the elec-
tron mass, about 10 (Planck units) and thus the back
region is negligible in the massive case also.

One would expect that the particle production during
the post-inflationary evolution is small, since when the
modes reenter the horizon, the adiabatic approximation
again becomes valid, so the quantum state of the fermion
modes is approximately a stationary state. It follows that
the back reaction will also be small during this era.

In this section we have shown that the back reaction of
the fermionic modes has negligible effect on the behavior
of the background modes. This means that our calcula-
tion of the particle production is self-consistent, since the
particles produced do not significantly change the gravita-
tional background that caused them to be produced in the
first place.

Finally, it is instructive to compare these results with
those obtained by attempting to regularize the quantity
QQ„~ directly. In the massless case, one has the relation

& Tpv &ren=cgpv (9.2)
X. PARTICLE DETECTOR RESPONSE

e 3ap +2&H &
=e3a M2y2+ —e4a»H4

1920m
(9.3)

Since H =M/, and a typical value of H in a realistic in-
flationary scenario is about 10 (Planck units), the back
reaction is totally negligible.

For the massive case, one again has the result (9.2), but
now another scale is involved, namely m, the mass of the
fermion field. However, the classical energy-momentum

for some constant C, which has the dimensions of an en-

ergy density. In the massless case, the only scale available
is H, the Hubble parameter of the de Sitter phase, thus C
is proportional to H . In fact, explicit calculation yields
the result C =11H /1920m (Ref. 20). The potential in
(9.1) is thus given by

In Sec. VIII we considered the evolution of the state de-
fined by the Hartle-Hawking proposal and showed that
there is particle production in the massive case but no par-
ticle production in the massless case. Particles were de-
fined by instantaneous Hamiltonian diagonalization,
which is the most convenient definition in the formalism
we have been using. It is well known, however, that in
curved space-time there are many different ways to define
particles and these definitions will not in general agree. In
this section, we consider a quite different definition of the
particle concept by considering a particle detector moving
along a geodesic, and examining its response to the quan-
tum state defined by the Hartle-Hawking proposal. We
will show that the spectrum measured by the detector is
thermal, with the correct Fermi-Dirac distribution, but
not exactly Planckian.

We showed in Sec. VI that in the Lorentzian region, the
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Lt =cI1 (r)PA[X(r)i+PA [x(r)]T)"'(r)i (10.1)

full Wheeler-DeWitt equation may be approximated by a
set of time-dependent Schrodinger equations along the
classical trajectories of the homogeneous modes. We will
work in this approximation, which is equivalent to doing
quantum field theory for the fermion fields on a fixed
classical background. This background is taken to be de
Sitter space, which is formally achieved by holding the
homogeneous scalar field at a constant value. For simpli-
city, we will restrict attention to the case of massless fer-
mions, so that we need only consider a single Weyl spinor
pA and its conjugate pA .

Particle detectors designed to detect scalar particles
have been considered by Unruh and DeWitt. The idea
is that one considers a simple pointlike system with inter-
nal energy levels labeled by E moving along a geodesic
x"(r), where r is the detector's proper time. The detector
is assumed to interact weakly with the scalar field N
through an interaction Lagrangian of the form
cm (r)4[x(r)], where c is a small coupling constant and
m(r) is the detector's monopole moment. One may ex-
tend this idea to detectors which detect fermions by con-
sidering an interaction Lagrangian of the form

,E d&LI O~~, Ep (10.2)

One may solve the Heisenberg equations of motion for g
and g and the amplitude factorizes to yield

where g" and g" describe a fermionic source which cou-
ples weakly to the fermion field pA, t))A. One may now
proceed to calculate the detector response in a manner
very similar to the scalar case. A more realistic model
of a detector would involve coupling to a fermionic
current, but as discussed further in Sec. XI this will not
alter the basic thermal character of the results.

The fermion field starts in the state defined by the
Hartle-Hawking proposal, which we will denote by

I OHH ), and the detector is taken to start in the state
I
Eo). (Note that we are using the Heisenberg picture

here, in which the states are independent of time, whereas
in the preceding sections we used the Schrodinger picture. )

For a general trajectory, the detector will undergo a tran-
sition to an excited state

I

E ), while the fermion field is
excited to a state

I
g). From first-order perturbation

theory, the amplitude for this transition is

~ =tc&E I~"(0) IEo& f «e ' &Wi((A[x( )]l0HH &

+tc&E ~" (0)IE.& f (10.3)

The quantity of interest is the transition probability to all possible E and f, obtained by summing
I

A
I

over all E and
over a complete set

I
P). The resulting probability is divergent as a consequence of the double integration over r. One

thus usually considers the transition probability per unit proper time, which is given by

c'g «
I

n"(0) IEo & &Eo
I

n'(o)
I

E &EB'A'« Eo)+c'g —&E
I
n" (o)

I
Eo & «o

I

e'(0)
I
E &FA B'« Eo» (1o—.4)

E E

where, introducing AE =E —Ep, F~ z' and Fz z' are given by

FB+A'(bE) = f dec ' 'GB „(x(r),x (0))

and

F„'B'(bE)= J dre ' 'GA'B'(x(0), x(r)) .

(10.5)

(10.6)

Equations (10.5) and (10.6) are the spinor versions of the detector response function and are independent of the structure
of the detector. Gz+&' and Gz z' are fermion Green's functions and are defined by

GB'A(X2 X1) &0HH I
4'B'(X2)(('A(x))

I
oHH &

GB'A (X2~X1 ) &0HH
I 4A (X 1 )4'B'(X2)

I
oHH &

( —)

(10.7)

(10.8)

Strictly, we should use a notation which indicates that the spinor index 8, lives in the tangent space at x2 while 3 lives
in the tangent space at x~. The reader should bear this in mind, but no confusion should arise since the only properties
of the Green's functions we will use do not depend on such details.

Equations (10.7) and (10.8) are calculated by inserting the expressions (4.1) and (4.2) for pA and pA, with the result

1 —3 (t 2 ) I2a—3a( t ) ) l2x2x1 = e e
4m.

x g g a„' 'a„' '[&OHH
I
m„(t2)m„z (t1)

I
OHH )pB' '(x2)pA' '(x1)+three similar terms] .

1~1~1 2~2q1

(10.9)

The expectation value in (10.9) is calculated using the holornorphic inner product (5.10), bearing in mind that m„z(t) and
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m„z(t) are time-dependent operators in the Heisenberg picture and must first be transformed to the Schrodinger picture
using the unitary evolution operator. One thus finds

(OHH
~ m„z (t2)m„,z, (t~) ~OHH) =5„,„,5&,z,exp i—(n+ —, ) J, e dt

1

where
t

Ht2 Hti
e dt =2[arctan(e ) —arctan(e )] .

Similarly, one may show that the three other terms in (10.9) are zero. The Green's function Gs+~' is thus given by

—3a(t2 )/2 —3a(t
1
)/2 1t

Gg g (x2,x ( ) = 2
e e g exp i (n—+ —, ) J e dt pg(x2)pg(x, ) .

2m.2 1

Similarly, for Gz z' one finds

( ) l —3a(t2)/2 —3a(t
&

)/2
Gs &(xz,x&)= e ' e ' g exp +i (n + —, ) e dt og(xz)cr g(x&) .

2772 1

(10.10)

(10.11)

(10.12)

(10.13)

The infinite summations in (10.12) and (10.13) will not
converge as they stand. To make them converge, one may
add a factor —i e to f e dt in (10.12) and + i e in
(10.13). These factors indicate how the poles of the
Careen's functions are to be displaced, after the series
(10.12) and (10.13) have been summed.

One may easily verify that (10.12) and (10.13) are solu-
tions to the homogeneous Weyl equation, as indeed they
should be. One may also verify that if one takes the sum
of (10.12) and (10.13) at t

& t2, a ——spatial 5 function is ob-
tained, by virtue of the completeness relation for the spi-
nor spherical harmonics. The equal-time anticommuta-
tion relations are thus respected.

Using (10.12) and (10.13), one may show that the
Green's functions are antiperiodic in imaginary time, with
period 2mi /H:

Gs-„(t2+2vn /H, x2, t (,x))= —Gs-g (t2, x2', t),xi) .(+) ~ . (+)

(10.14)

tion of this space, which is a four-sphere S, of radius
H '. Suppose one asks for the quantum state of the field
on a three-sphere S of radius e &H '. The state de-
fined by the Hartle-Hawking proposal is calculated by
summing over all field configurations which are regular
on the section of S interior to the S and match
prescribed values on the S . The resulting state will de-
pend on the geometry only through the radius of the S,

3~i/H

„2~i/H

-3~i/H

FICs. 1. The analytic structure of G&+~'(x2, x& ) in the complex
(t2 —t&) plane. It is analytic in the shaded regions, but not in
the unshaded regions. The crosses denote the location of the
poles for zero spatial separation, x& ——x2.

This important property of the de Sitter space Green's
functions is shared by thermal Green s functions in Min-
kowski space and is the main property one uses in show-
ing that the detector experiences a thermal spectrum.
From (10.12) one may also show that the Green's function
Gs+z'(x2, x~ ) is analytic in the strip between the real axis
and the line Im(tz t, ) = rrIH—, in the complex —( t2 t,)—
plane, but is not analytic in the strip between the real axis
and the line Im(t2 —t~)=rt/H. This structure repeats it-
self antiperiodically throughout the whole complex plane
(Fig. 1). Similarly for Gs „'(x2,x&), one may show that it
is analytic in precisely those regions where G'+' is not an-
alytic, and it is not analytic in precisely those regions
where G'+ ' is (Fig. 2).

To proceed further, we really need expressions for the
Green s functions in closed form and to this end, it is use-
ful to first show that the Green's functions are de Sitter
invariant. Recall that we are working in the approxima-
tion in which the background is taken to be a fixed solu-
tion to the classical field equations, namely, de Sitter
space; thus, one does not sum over background geometries
when calculating the quantum state of the fermion field,
only over the matter fields. Consider the Euclidean sec-
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)C 2vri

Re(t, -t, )

&&-2~i/H

—3' I/H

FIG. 2. The analytic structure of G& ~(x~,xl). It is analytic
in precisely those regions where G + is not analytic.

not on its location or orientation on the S . One thus has
the freedom to move the S around to different locations
on the S without changing the quantum state. These dif-
ferent locations are related to each other by transforma-
tions under the group SO(5), the isometry group of S . It
follows that the state is SO(5) invariant on the Euclidean
section. On analytic continuation back to the Lorentzian
section, one thus finds that the state is invariant under
SO(4, 1), the de Sitter group, and hence that the Green's
functions which are constructed from this state are de
Sitter invariant.

The main significance of de Sitter invariance is that we
may now use the results of Allen and Lutken, who ob-
tained explicit expressions for the most general de Sitter-
invariant spinor two-point functions. This they achieved
by finding two-point functions which solved the homo-
geneous Dirac equation but depend only on p, the geo-
desic distance between the points xi and xz (p is imagi-
nary for timelike separations). In the massless case, they
found the Green's functions to take the form (symbolical-
ly):

G'-+'(x2, x, ) =C sin (pH/2), (10.15)

where C is a constant to be determined. The right-hand
side of (10.15) should also include the spinor parallel
propagator between x

&
and X2 and the spinor correspond-

ing to the tangent vector to the geodesic between the two
points. These details may be found in Ref. 25. Equation

F +I(bE) e ma / F + (bE) (10.17)

If one now joins these two paths together at each end to
obtain a closed contour, the method of residues then im-
plies

Fii+g'( bE) F~+„' ( bE) =2'—iRii g ( bE),
where Rz & is the sum of the residues at the poles of the
integrand. Combining (10.17) and (10.18), and evaluating
the residue using (10.15), one obtains

(b.E) /H + —,

Fii+g'(b.E)= —C nii „2H ]+e 2m-hF- /H (10.19)

An identical result is also found for F~ „(b,E) and it is
convenient to write

F~ „(bE)=F~ „(bE)=nii ~f (bE) . (10.20)

Equation (10.19) implies that the spectrum is thermal,
as we may see by considering the transition rate (10.4).
The field g may be expanded in the normal way, in
terms of particle creation operators and antiparticle an-

(10.15) implies that the only poles in the Green's functions
are at p=+2~n/H, where n is an integer; thus there is a
pole if and only if x~ and x2 are connected by a null geo-
desic in the complexified space-time, as one would expect.
One might have expected that there is also a pole when x

&

and x2 are antipodal, as can happen in the massive case
and also in the scalar case, but this possibility is clearly
ruled out here.

We have shown that (10.12) and (10.13) are de Sitter-
invariant solutions to the homogeneous Weyl equation. It
follows that in the regions where the series (10.12) and
(10.13) converge, they will each converge to an expression
of the form (10.15). Along the real axis in the tz ti pl-ane,
Gii z (xz, xi ) is essentially the same as —Gii „(xz,x i ), ex-(+) ~ ~ ( —)

cept that for G'+' the poles are displaced above the real
axis, whereas for G' ' the poles are displaced below it.
The Green's functions are consistent with the equal-time
anticommutation relations which fixes their normaliza-
tion, hence, the constant C may be determined. We thus
have an expression for the Green's functions in closed
form.

Given the above information, the response functions
(10.5) and (10.6) may now be partially evaluated. Equa-
tion (10.5) involves the Green's function evaluated on the
timelike geodesic x"(r). Since all timelike geodesics are
related by de Sitter transformations, without loss of gen-
erality we may choose any, since the Green's functions are
de Sitter invariant. A convenient geodesic to use is the
one that goes straight up the de Sitter hyperboloid, with
constant spatial coordinates, so that proper time ~ is the
same as coordinate time t The resp. onse function (10.5) is
thus given by

F~+q'(bE) = f dt e ' 'Gii+~'(t, 0;0,0), (10.16)

where the integration in the t plane runs along the real
axis. Suppose we now consider the quantity F z+z defined
to be the same integral, but taken along the line
Im(t)=2vrlH. From the antiperiodicity of G'+I, it fol-
lows that this is given in terms of F'+ ' by
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f ( gE) ~2m'ZEIHf (gE) (10.22)

An identical relation holds for the absorption and emis-
sion of antiparticles. The relation (10.22) between the
rates of absorption and emission is precisely the condition
that the detector experiences a thermal spectrum at the de
Sitter temperature H/2~. This phenomenon was first
discovered by Gibbons and Hawking in the context of sca-
lar field theory in de Sitter space.

The distribution has a denominator of the Fermi-Dirac
form, but is not exactly Planckian because of the term 4

which is added to (bE) /H in (10.19). This is to be com-
pared with the results of Sciama, Candelas, and
Deutsch. In the case of massless spin s fields in the
Rindler wedge, they observed a thermal spectrum but
with a density-of-states factor of the form v +s . They
state that the reason one normally expects this factor to be
just v, is that it is computed on the assumption that the
wavelengths involved are small compared to the size of
the container. One would thus expect that in our case, the
deviation from the Planck form is essentially due to the
finite spatial size of de Sitter space.

The massive case is considerably more involved than
the massless case considered here and we have not carried
out explicit calculations. However, since the thermal na-
ture of the spectrum depends only on very general proper-
ties of the Green's functions, one would expect the results
obtained in the massless case also to hold in the massive
case.

XI. DISCUSSION AND CONCLUSIONS

We have constructed a quantum cosmological model
with a fermion matter source without neglecting any of
the modes of the fermion field. An important ingredient
in our approach was the use of the holomorphic represen-
tation for the fermion fields, in which the quantum state
of the fermion modes is described by a set of wave func-
tions which are analytic functions of odd elements of a
Grassmann algebra. This allowed us to treat the problem
in a manner very similar to the case of bosonic perturba-
tions, considered by Halliwell and Hawking. As in the
bosonic ease, our main result is that the fermion modes
enter the Lorentzian region in the ground state.

In ordinary quantum mechanics, one may define the
ground-state wave function by a Euclidean path integral

nihilation operators, and similarly for TI . Let
~
E0)

denote the vacuum state. Then it is not difficult to show
that only the first term in (10.4) contributes when

~

E) is
an antiparticle state and only the second term contributes
when E) is a particle state. The probability per unit
time for the detector to absorb a particle of energy E is
thus given by the second term:

(E ~T)" (0)
~

ED)(ED
~

r) (0)
~

E)nq ~f(AE) . (1021)

For the emission of a particle of energy E, one inter-
changes E0 and E in (10.4), and then only the first term
contributes. One finds that the probability per unit time
for the detector to emit a particle of energy E is again
(10.21) but with f (AE) replaced by f ( —bE). From
(10.19) it follows that

over paths x (r) which begin at x=0 and end at the point
specified by the argument of the wave function, where r is
Euclidean time. In view of this, it is reasonably obvious
that in the bosonic case, the Hartle-Hawking proposal
picks out the ground-state wave functions for the inhomo-
geneous modes, since regularity of the matter fields
demands that the inhomogeneous modes go to zero at the
initial point of the paths. For the fermion modes on the
other hand, it is not so obvious that the ground state is
picked out, partly because the boundary value problem for
fermions is more complicated, but also because one gen-
erally has less intuitive feel for fermionic systems than for
bosonic ones. However, given the correct way to set up
the boundary value problem, and given a little experience
with the path-integral description of simple fermionic sys-
tems, one could argue that our conclusions about the fer-
mionic modes are as obvious as the bosonic case. Indeed,
one of the motivations for developing the holomorphic
representation was to highlight the likenesses between bo-
sonic and fermionic systems. ' One way or another, the
important point is that we have demonstrated the unity of
ideas contained in the Hartle-Hawking proposal, in that
we now know that it picks out the ground state for both
the bosonic modes and the fermionic modes.

In Sec. VIII given the above initial conditions, we
evolved the wave functions using the time-dependent
Schrodinger equations and found that in the massless
case, the modes remained in the ground state. This is
what one would expect, bearing in mind the conformal in-
variance of the massless theory and the fact that the back-
ground metric is conformally static. In the massive case,
the fermion modes evolved away from their ground state,
thus leading to particle production. Defining particle
states using Hamiltonian diagonalization, we calculated
the average number of particles produced and found it to
be finite and of order H per unit volume. What is not-
able is not the actual number, but the fact that it is finite,
since the technique of Hamiltonian diagonalization is
known to give divergent results in the case of scalar parti-
cle production. The fact that our result is finite is essen-
tially due to the initial conditions. The finiteness of the
particle production depends on the behavior of the very-
high-frequency modes. These modes never leave the hor-
izon in our model, and thus remain in their initial state.
Since this state is the ground state, they make no, or at
least little, contribution to the particle production.

In Ref. 8, the effect of the scalar-field perturbations on
the isotropy of the microwave background was investigat-
ed. This was done by choosing a gauge in which the per-
turbations in the scalar field are zero, but the scalar per-
turbations in the metric are nonzero. The resulting inho-
mogeneity in the metric on the surface of last scattering
manifests itself as anisotropy in the microwave back-
ground. The above gauge choice—the "no density pertur-
bations" gauge —is possible because there is a coupling be-
tween the inhomogeneous modes of the metric and the in-
homogeneous modes of the scalar field. This coupling
oeeurs because one writes the scalar field
N(x, t)=P(t)+5/(x, t), where P(t) is the "large" homo-
geneous mode and 5P is a small perturbation. In the ex-
pansion of the scalar field action to quadratic order in the
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perturbations, one thus encounters couplings of the form
P(t)5$(x, t)5g(x, t), where 6g is the metric perturbation.
In the fermion case, however, all the modes of the field
are inhomogeneous perturbations —there is no large
homogeneous mode analogous to P(t). It follows that to
this order, there is no coupling between the inhomogene-
ous modes of the metric and the fermion field modes; thus
we conclude that the fermion modes have negligible effect
on the isotropy of the microwave background. Similarly,
one would expect that their effect on density perturbations
is also negligible. The fundamental reason for both of
these results is presumably the exclusion principle, which
forbids too much fermionic rnatter from being assembled
in one place.

In Sec. IX, we calculated the back reaction of the per-
turbation modes on the homogeneous minisuperspace
background and found that it has a negligible effect in
both the massless and massive cases. In the massless case,
the back reaction was just the energy density of the vacu-
um, as one would expect, since the field remains in its
ground state. In the massive case it was found to be the
same order of magnitude as the energy density of the par-
ticles produced, again as one would expect. The fact that
the back reaction is small implies that our calculation of
the evolution of the wave function and particle production
is self-consistent, since the behavior of the homogeneous
background is not significantly modified.

It is worth noting that for a particular choice of opera-
tor ordering for the fermionic variables, there is no back-
reaction term in the massless case. This is because one
may shift the whole spectrum of the Hamiltonian by an
arbitrary multiple of v by taking an appropriate linear
combination of xx and xx in place of the combination
(5.4). In particular, one may shift the eigenvalue of the
ground state to zero, whence the back reaction, which is
essentially the vacuum energy density, is zero. One may
therefore wonder why we did not do this. The point is,
however, that there is only one particular choice of opera-
tor ordering which has zero vacuum energy —an arbitrari-
ly made choice will lead to a back-reaction term. The
choice (5.4) firstly, is quite a natural choice, and secondly,
is representative of the general case. Strictly, one should
go to the Hamiltonian from the path integral and derive
the measure and, hence, the operator ordering, but this is
beyond the scope of this paper and is clearly not necessary
for the applications considered here.

The calculation of the back reaction requires a regulari-
zation procedure to subtract off vacuum energy diver-
gences. As discussed in Sec. IX, consistent application of
this approach leads to higher-derivative gravitational
theories, and hence possibly to a totally different quantum
theory. One of the initial motivations for including fer-
mions in quantum cosmology was the hope that the vacu-
um energies of the bosonic and fermionic modes would
cancel, so that, in the one-loop approximation considered
here, there would be no need for regularization and in-
clusion of counterterms in the action. However, even in
locally supersymmetric theories with equal numbers of
bosonic and fermionic degrees of freedom, the one-loop
divergences do not in general cancel. Nevertheless, such
theories, do have attractive properties, such as the possi-

bility of the operator ordering being defined naturally by
supersymmetry. ' A model based on %=1 supergravity
coupled to matter is currently under investigation. '

In Sec. X, we constructed a model of a particle detector
designed to detect fermions and examined its response to
the quantum state selected by the Hartle-Hawking propo-
sal, in the approximation of a quantized fermion field on
a classical de Sitter background. We showed that the
detector experiences a thermal spectrum at the de Sitter
temperature H/2~, with the correct Fermi-Dirac denomi-
nator. The spectrum deviated from the Planck form,
however, as a consequence of the finite spatial size of de
Sitter space.

After completion of this work, we became aware of
similar works by Hinton and Takagi, who also con-
sidered models of particle detectors designed to detect fer-
mions. The models considered by these authors are dif-
ferent from ours in that they used a trilinear interaction
Lagrangian of the form m 1t p, where tt is a four-
component spinor and m is the usual monopole moment.
Their calculations are thus more complicated than ours,
since they involve four-point functions rather than two-
point functions. With the bilinear interaction Lagrangian
(10.1), our derivation is really no more complicated than
the scalar case. Hinton and Takagi found, as we did, that
the detector response depends essentially on response
functions of the form in (10.5) and (10.6); hence, their re-
sults are very similar to ours.

An important step in our derivation is the argument
that the state, and hence the Careen's function, is de Sitter
invariant. It is worth remarking at this point that the ar-
gument is clearly not restricted to fermion matter sources
and one would expect it to be true of any type of matter
field. In other words, if for a given matter field, one or
more de Sitter-invariant vacuum states exist, then the
state picked out by the Hartle-Hawking proposal will cor-
respond to one of these states.

It is of interest to enquire as to the relation between the
definition of particles according to the Hamiltonian diag-
onalization technique of Sec. VIII, which yielded zero-
particle production in the massless case, and the detector
response of Sec. X, which was quite definitely nonzero.
In instantaneous Hamiltonian diagonalization, one consid-
ers a spacelike section of de Sitter space and considers the
quantum state of the field over the entire surface. We
showed in fact, that all the modes of the field on such a
surface are in the ground state, in the massless case. An
observer moving along a geodesic, however, cannot mea-
sure all of these modes, since some of them have wave-
lengths greater than the size of his horizon. It is this lack
of knowledge of the entire state of the field which causes
him to perceive a thermal spectrum.

In conclusion, we have constructed a quantum cosmo-
logical model which incorporates all the modes of a fer-
mion matter source. Our main result is that the boundary
conditions proposal of Hartle and Hawking implies that
the fermion modes start out in their ground state. We
have also show how to calculate quantities of interest such
as the back reaction and the particle production. From
these calculations we may conclude that fermions do not
play a significant dynamical role in quantum cosmology.
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One may anticipate that their main role is technical in na-
ture, such as, the cancellation of vacuum energy diver-
gences, but this is a topic for future investigation. pv AA ' BB' AB&A 'B'

(A10)

In particular the metric g„„corresponds to the spinor—
~AB ~A'B'
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APPENDIX A: SPINOR CONVENTIONS

We use Lorentzian conventions, in which the space-
time metric gp is given in terms of the tetrad ep of basis
forms by

a b
gpv = 'gab e pe (Al)

where g,b
——diag( —1,1,1,1) is the Minkowski metric.

Space-time indices p, v, . . . and tetrad indices a, b, . . . run
from 0 to 3. Space-time indices are raised and lowered us-
ing g and g„, while tetrad indices are raised and
lowered using g' and g,b. Because of the choice of sig-
nature + 2 for the tetrad metric, our two-component spi-
nor conventions differ from those of Penrose and
Rindler.

Tetrad vectors are related to spinors via the Infeld —van
der Waerden translation symbols o, , here taken to be

op ——— I, cr; = X; (i =1,2, 3),1 1

2
' '

2
(A2)

where X; are the Pauli matrices. For example, the basis
forms e„' correspond to the spinor-valued forms

AA' a AA'
(A3)

where spinor indices A, B, . . . take values 0, 1 and A', B'
take values 0', 1'

~ Spinor indices are raised and lowered by
I I

the alternating spinors e, eAB, e, eA B, each of which
is given by the matrix (

&
p). For example,

A' A 'B' Bl
0B'~ kA' 0 e8'3' .

The inverse of Eq. (A3) is then

(A4)

(A5)

Throughout the course of this work we have benefited
from conversations with Bruce Allen, Gary Gibbons, and
Stephen Hawking. We are also grateful to Paul Davies
and Ian Moss for bringing Refs. 32 and 33 to our atten-
tion.

while the inverse relation [spinor version of Eq. (A I)] is

AA ' BB'
gp = —&AB&A'B'ep (A 1 1)

In a Hamiltonian decomposition, the spatial tetrad
forms e;"" determine the spatial metric

AA'
h,j ——— (A12)

where i,j, . . . =1,2,3. They also determine the spinor ver-
sion n of the future-directed unit timelike normal n"
to a spacelike hypersurface x =const, through the rela-
tions

AA' AA'
nAA e. =0, 7lAA n = 1

The normal obeys the useful relations
AB' & M' BA'

(A13)

(A14)

Provided that the tetrad ep is real, corresponding to a
Lorentzian metric gp, the ep will be Hermitian, as will

AA'

Passage to the Euclidean regime can be achieved by ro-
tating the basis from e„~—ie„, while still using
Lorentzian conventions for the tetrad metric g,b and for
spinors: the space-time metric gp then becomes positive
definite. In the Hamiltonian treatment, one can instead
rotate the lapse function N~ —iN. In that case, it is con-
venient to define the Euclidean normal spinor
,n = —in, which corresponds to a unit spacelike
normal vector e" . It will be anti-Hermitian, obeying

AA'
e& = —en

APPENDIX B: SPINOR HARMONICS
ON THE THREE-SPHERE

We seek a complete set of harmonics for the expansion
of any spinor field on the three-sphere S . Scalar, vector
and tensor harmonics on S have been constructed by
Lifshitz and Khalatnikov. We will use their method to
construct spinor harmonics.

One begins by considering flat Euclidean four-space E,
which in Cartesian coordinate x",p =0,1,2,3, has metric

a a AA'e p ~AA'e p (A6) ds =5„+x"dx (Bl)
Under an infinitesimal local Lorentz transformation act-
ing on the tetrad indices of ep, the e p change by

The metric may also be written in spherical coordinates
r,X,O, Q:

AA' NA BA' +N A' AB'
B'ep (A7) —dp. +y (B2)

TAA' . . DD' AA' DD'TP& ' '
Prt

pn

with inverse relation

(A8)

where NAB ——N~AB~ is symmetric and N~A B ~
is its conju-

gate. A similar transformation law holds for a spinor of
any index type. Thus, any tensor T ' " defines a spi-
nor

where d A3 is the metric on S:
dII3 ——dX +sin X(dO +sin Odg ) . (B3)

Harmonics on S are then obtained by considering the
following homogeneous polynomials in Cartesian coordi-
nates x"= —cr~„xAA'.

I r

TF&'''Pn
( 1)ne 1 . e n TAB". . DD'

(A9) (B4)
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where TAA A A, A, is a constant spinor of rank

(2n + 1), totally symmetric in all its indices and hence
traceless. It follows that (B4) is a solution to the Weyl
equation in E:

The harmonics pf and o T or erg and p 7 form a com-
plete set for the expansion of any spinor field or its Her-
mitian conjugate on S .

Orthogonality and Xormalization. We denote the in-
tegration measure on S by

AA'PD
(

n (B5)
dp=sin XsinOdXdOdg . (B14)

since D& is simply Bz in Cartesian coordinates. This
equation is now rewritten in terms of spherical coordi-
nates (B2), yielding the result

eAA'J (3)D (
Il )+ ~

AA' + (rlt ) 0
r Br 2r

(B6)

where ' 'D; is the spinor covariant derivative on S .
i=1,2,3 and, n is the Euclidean normal. Differentiat-
ing out (B6), and then restricting to the three-sphere, one
obtains the desired eigenvalue equation for spinor har-
monics on the S:

(B7)

where S„, „, , is a spinor of rank (2n + 1)

which is totally symmetric on all its indices. As above, it
is easily shown that o.

A satisfies

e Djo~ —(n + —, ),——n ogAA'j(3) 3 AA' (B9)

Harmonics with eigenvalues of the opposite sign may
be constructed from pA and o.

A by complex conjugation.
One thus obtains new harmonics pA and o.

A satisfying

e""~' 'D p~ ——(n+ —') n""p

e"" ' 'D cr~ =(n+ —
) n"" cr.„

(B10)

(Bl 1)

Spinor harmonics with primed indices may be obtained
by considering the polynomials

I

„(X,O,Q)=S„„„, „,„, ' ' " ", (B8)

Using the eigenvalue equations (B7) and (B9)—(Bl1) one
may derive the orthogonality relations

n AA' my

dPP" e OB ——0,
(B15)

(B16)

for all n p, m, q. Hermitian conjugation yields similar
equations. In these and the following orthogonality rela-
tions, it is more convenient to use the Lorentzian normaln, rather than its Euclidean counterpart, n, since it
is the former that appears in the expressions we wish to
expand.

One may also derive the relations

f dppJn"" p~~=o" Hg',

f dp pJe"~pP'=6™A~',

f dpo gn" cr„~=6" HP,
np A'B' mq pnme pq

(B17)

(B18)

(B19)

(B20)

Hermitian conjugation of (B18) and (B20) yields two more
sets of relations. The sets of numbers Hpq and Apq de-

pend on the normalization of the harmonics, which we
discuss below. First, we show that they are related by a
consistency condition.

From (B17), one may see that for each n, the HP con-
stitute the elements of an Hermitian matrix, denoted by
H„, of dimension (n +1)(n+ 2). Likewise, the AP con-
stitute the elements of an antisymmetric matrix 3„,of the
same dimension. Any spinor field %„(x) on S may be
expanded in harmonics:

(p„(x)= g [a„~pT(x)+b„~o f(x)]These equations follow from (B7) and (B9) using the fact
that the Euclidean normal is anti-Hermitian (see Appen-
dix A). Harmonics with eigenvalues of the opposite sign
may also be constructed from pA and o.

A by multiplica-
tion by, n"" . Using the property that ' 'Dz(, n"" ) =0,
one thus obtains harmonics, nAB pB and, nA o.B, satisfying

(B21)
np

for some coefficients anp, b„p. The coefficients anp may
then be determined using either (B17) or (B18). From
(B17) one obtains

an = dp+A x n'A' pA' H„—' qp

q

(B22)

(B12)
and from (B18) one obtains

(B13)
a„=f dp (Ii„(x)e g peq(A„')~ .

q

(B23)
There is a linear relation between the harmonics obtained
by these two different methods, as we shall show, so it
does not matter which ones we use. We choose to restrict
attention to the ones obtained by complex conjugation, o.

A

and pA .
Each harmonic will be labeled by an integer n

(n =0, 1,2, . . . ) corresponding to its eigenvalue. Further-
more, it follows from (B4) and (B8) that the degeneracy
for each n is (n +1)(n + 2). Each harmonic will thus be
labeled by a second integer p, where p = 1,2, . . .(n
+ 1)(n+2).

Since OA is arbitrary, one may equate the integrands of
(B22) and (B23), and after some rearrangement, one ob-
tains

(B24)

The existence of the inverses A„', H„' follows from
the linear independence of the harmonics in the degenera-
cy label p. Taking the Herrnitian conjugate of this equa-
tion and then substituting into the right-hand side of

e ' 'Dq(, ng ps)=(n + —, ),n"" (,ng ps),
I 3e" ' 'DJ(, n„crt )=(n+ 2 ),n "(,n~ oB) . .
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(B24) one obtains the consistency condition

~n Hn~n Hn 2 In (B25)

One may proceed, as in Sec. VII, to derive the following
form for the wave function (Cl):

where 1„ is the n )& n identity matrix. Note that (B24) also
provides the relation between the harmonics pz and
,nz pz mentioned earlier.

We now consider the normalization of the harmonics.
Since Hn is Hermitian, it may be diagonalized by taking
linear combinations of the pg for each n, and then by
suitable normalization, we may take H„~=8' . This
choice still leaves the freedom to bring the antisymmetric
matrix 3„ to block-diagonal form, with blocks (, 0) for
some constant a. By multiplying the harmonics by suit-
able phases, a may be taken to be real. The consistency
condition (B25) then implies that a =+v'2. We make the
choice a = +~2, and write Ap =v 2' ~ where Cp is
block diagonal with blocks ( ~ o),

Finally, we give the coefficients a~~, p„~ introduced in
Sec. IV to avoid couplings between different values of p in
the expansion of the action. For each n, they may be re-
garded as block-diagonal matrices a„, p, say, of dimen-
sion ( n + 1)(n + 2) with blocks ( I &) for a„and
(

'
~ I ) for p„. They satisfy the relations

V„(a,P,x,y) = 1+ 'rl (r)+v ' (C3)

df dv +v+m f=0
dr (C4)

recalling that v = (n + —, )e . Introduce the variable
z = —,

' (1 cosHr—) and let

y (z) =exp f v dr =(n + —, )ln(tanHr)f (r) . (C5)

where f (r) is a solution to the Euclidean-Dirac equation
(7.9) satisfying f(0)=0. In Sec. VII, we used the adiabatic
approximation to solve (7.9), partly to avoid an excess of
technical details, but also to indicate the generality of our
approach, yielding the result f'(r)lf (r) =co. Here, how-
ever, given the form (C2) for e, one may solve exactly for
f (r) in terms of hypergeometric functions, thus allowing
a check of the adiabatic approximation and also providing
the solution in regions where it is not valid.

The Euclidean-Dirac equation (7.9) is

a„=P„=21„, a„P„=—P„a„=2C„,
a„C„P„=—P„C„a„=21„, (B27) z(1 —z) —(n +1+z)

dz2 dz

Then (C4) becomes
(B26)

m
y =0. (C6)

where C„ is the matrix of coefficients C~~.

To summarize, the only nonzero orthogonality relations
are (B17)—(B20), and their Hermitian conjugates, where
H„=P'q and 3„=v 2Cp. These relations provide suffi-
cient information to perform the derivations presented in
the main text.

Of the two linearly independent solutions, only one is con-
sistent with the initial condition f(0) =0. This is

y(z)=z" + zF~ n +2+,n +2 ™;n+3;z, (C7)H' H'

APPENDIX C: SOLUTION OF THE DIRAC
AND SCHRODINGER EQUATIONS

%„(a,P,x,y) =exp( I '„'), — (Cl)

In this appendix we give exact solutions to the Dirac
equation (7.9) and the Schrodinger equation (6.8), taking
the homogeneous background to be an exact de Sitter
space.

The x,y dependence of the perturbation wave function
0„ is contained entirely in the saddle-point approximation
to the path integral

where 2F& is the hypergeometric function.
From (C5), the denominator in (C3) is given by

f'(r) H . y'(z)+v =—sin(Hr)f (r) 2 y(z)

and (C7) then implies that

y'(z) (n +2) (n +2) +m IH
y (z) z (n +3)(1—z)

+

2F&(1 im IH, I—+im IH;n +4;z)
X

2F, (1 im IH, 1+im IH—;n +3;z)

(C8)

(C9)

where I '„ is the Euclidean action of the solution
a(r), P(r),x (r),y(r) to the Euclidean field equations satis-
fying the initial conditions described in Sec. VII and end-
ing at the point (a, P,x,y). To a good approximation, the
Euclidean version to the field equations for the back-
ground (3.2)—(3.4) have the solutions

P(r) =const, e '= —sin(Hr)
H (C2)

for large
~ p ~

where H =M/, which is just the Euclidean
section of de Sitter space. Moreover, this solution will
continue to hold when continued into the Lorentzian re-
gion, for the duration of the inflationary phase. This con-
tinuation may be achieved by writing r=~/2H +it, yield-
ing e =H 'cosh(Ht).

The solution (C8) may be continued from the Euclidean
region (e &H ') to the Lorentzian region (e &H ').
For modes inside the horizon, i.e., for v&&H, one may use
the fact that

~

z
~

In is small to expand the hyper-
geometric functions in (C9). One finds that, in an obvious
notation,

2F&(n +4) (1+m IH~) Z2=h- z+0
2F~(n +3) (n +4)(n +3) n

(C 1 1)

and through (C8) and (C9) one obtains

where we have used the following property of the hyper-
geometric function:

2F&(a, b, c)=(1—z)' ' 2F~(c —a, c b;c;z) . (C10)—
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f'(r) 1 m e+v=2v+ — —iH+ .
f(r) 2 n

Assuming v»m, one may write

m 2ea
co+v= 2v+ — +

2 n

(C12)

(C13)

expansion. Inserting this in (6.4), one obtains

—iV Sp+(VSp) +2(VSp) (VS))

+e ' V+ gQ„, + =0. (D2)
np

So is chosen to satisfy the Hamilton-Jacobi equation

It follows that, inside the horizon, the perturbation wave
function (C3) is

(VSp) +e V=O (D3)

'P„(a,g, x,y) = 1+
co+ v —LH

(C14)
One may then split the remaining terms in (D2) into real
and imaginary parts, yielding

zF)(n +4)
2F&(n +3)

n +3 1+im/H 1

n +2+im/H 1 —2im/H z

Thus, apart from a small imaginary part, the perturbation
wave functions are indeed of the ground-state form inside
the horizon, as was indicated in Sec. VII. Note that it is
reasonable to assume that v»m inside the horizon, i.e.,
for v»H since a typical value of H is the grand-unified-
theory scale, 10 (Planck units), whereas a typical value
of m would be for example, the electron mass, about
10 . Outside the horizon, however, v«H and there
will be modes for which v«m.

The solution to the Dirac equation also yields the solu-
tion to the Schrodinger equation. It was shown in Sec.
VIII that (8.1) is a solution to the Schrodinger equation
providing u (t) satisfies the Riccati equation (8.4). Com-
paring (8.1) with (C3). It is easily seen that
u (t)=f'(r)lf (r) is a solution to (8.2), where
r=nl2H+it .and moreover, this solution satisfies the
correct initial conditions, since we have shown that
f'(r)/f(r)=co inside the horizon. The expression (C3)
thus provides the correct solution to the Schrodinger
equation throughout the inflationary era. The solution
outside the horizon may thus be obtained by expanding
the hypergeometric functions in (C9) for

~

z
~

)n One ob.-

tains

—V Sp+2 (ImS~)+Im g Q„=O,
c}t np

np

2—(ReS~ )+Re g Q„p ——0,a

np

(D4)

(D5)

%'„p =exp iP„p(t)+ —,
' f ImA„pdt (D6)

where f3„p(t) is a (real) phase, which is to be chosen.
satisfies the condition (V„p,@„p)=1,which %„p did not
satisfy, since we made the ansatz (8.1). V„p satisfies the
Schrodinger equation

dP„p B+„p
Hnp 2 ReQnp +np = ~

dt at
(D7)

It is convenient to choose fj„p such that

1 dP„p
e+np + (+nptHnp+np )

dt
(D8)

where r)ldt is defined by (6.6). ImS& gives the usual
WKB prefactor, with a correction due to the term
Im(QQ„p). We are concerned solely with corrections to
the oscillatory part of the wave function, which are given
by ReS& ~

Consider now the Schrodinger equations (6.7). It is use-
ful to define a new wave function 4„p, given by

+0 z' (C15) Equation (D8) may now be used to eliminate Q„p from
(D5), yielding

and one may then show through (C8) that the solution to
the Riccati equation is 2—(ReS~ ) —2 g + g (V„p,H p%'„p) =0 .

np np

(D9)

u +v= —m tanh(Ht) — 1—2im 2im
H H

for v«H.

APPENDIX D. DERIVATION OF THE
SEMICLASSICAL EINSTEIN EQUATIONS

(C16) P„p may then be absorbed into S
& by defining

S) ——Sr —g P„p .
np

S& thus satisfies

2—(ReS) )+2(Hf ) =0,
at

(D10)

(D 1 1)

alp exP(iSp+i——S~ + ), (Dl)

where the ellipses indicate higher-order terms in the WKB

In this appendix we indicate how the semiclassical Ein-
stein equations emerge from the semiclassical limit of the
Wheeler-DeWitt equation. The wave function (6.2) obeys
the Wheeler-DeWitt equation (6.1). This was decomposed
into the background Wheeler-DeWitt equation (6.4) and
the Schrodinger equation (6.7). It is convenient to expand
+o in a WKB expansion

ql =exp(iS) + ql„
np

(D12)

where (Hf ) is the expectation value of Hf in the state

IInp +np.
The point of all these seemingly complicated redefini-

tions is quite simply to transfer part of the phase of 4'o to
the perturbation wave functions, which originally had no
phase. For, as a result of these redefinitions, the total
wave function may now be written
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where S =So+S~+ . . and 4„z satisfies

(0„,—(H„, ) R„,=t
at

Most importantly, the real part of (D2) now has the form

(D13)

(V ReS)'+e 'V—+2(Hf)+. . . =0. (D14)

(Hf ) =—fd'xh '~'(Too), (D15)

thus (D14) corresponds to the time-time component of the

Equation (D14) is the Hamilton-Jacobi equation for the
background variables modified by a back-reaction term.
One has the relation

semiclassical Einstein equations.
It is to be noted that only by splitting the phase of 4'

between +o and the 4„& in a particular way is one able to
cast the real part of (D2) in the form of the semiclassical
Hamilton-Jacobi equation. The Wheeler-DeVA'tt equation
(6.1) determines only the total phase, so the phase may be
divided between +o and +„& in an arbitrary way, depend-
ing on what one wishes to regard as the background wave
function and what one wishes to regard as a perturbation
wave function. The choice made here is a desirable one
since it achieves what we set out to achieve, namely, to
show how the semiclassical Einstein equations emerge
from the Wheeler-DeWitt equation. Similar derivations
have previously been given by Moss and Hartle.
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