
PARTICLES AND FIELDS

THIRD SERIES, VOLUME 35, NUMBER 4 15 FEBRUARY 1987

Evolution of the constraint equations in general relativity

Steven Detweiler
Department of Physics, University of Florida, Gainesville, Florida 32611

(Received 30 September 1986j

We consider the evolution of initial data in general relativity. The Bianchi identity guarantees
that data which initially satisfy the constraint equations will always satisfy the constraints. But we

often expect only the approximate satisfaction of the constraint equations, for example, in numerical

analysis. Here we study the evolution of only approximately good initial data. Under rather general

circumstances the evolution drives the data away from good data; and we give a simple example
where the traditional methods employed in numerical relativity would be likely to give erroneous re-

sults. We also present a minor modification of these traditional methods which would be likely to
remedy this difficulty.

I. INTRODUCTION

In recent years great interest in the development of
gravitational-wave detectors has grown. As this interest
continues, it becomes more important to obtain accurate
analysis of strong field sources of gravitational waves.
The complexity of Einstein's equations have forced much
of this analysis to be numerical; and, by and large, pro-
gress in the development of numerical methods in general
relativity' ' has kept pace with the progress in experi-
mental methods. "

A recurring difficulty encountered in numerical rela-
tivity is the treatment of the constraint equations. A
metric and extrinsic curvature of a spacelike hypersurface
embedded in spacetime are the data needed for determin-
ing the evolution of the geometry to a nearby hypersur-
face. But the data may not be specified arbitrarily —they
must satisfy four constraints which are consequences of
the Gauss-Codazzi equations and the Einstein equations.
It has long been known that the Bianchi identity implies
that the evolution equations will preserve these con-
straints. But numerical analysis deals with constraints
and evolution only approximately; after some time of nu-

merical evolution of initially good data, it is often found
that the constraints are no longer well satisfied. The data
are usually modified to resatisfy the constraints, and the
evolution then proceeds. It seems reasonable that as long
as the data are not allowed to stray too far from the con-
straints on any one hypersurface, then the numerical evo-
lution ought to approximate well the true physical system
being modeled.

We look in detail at this situation and develop tech-
niques for the careful analysis of evolution away from

good data. In Sec. II we summarize the initial-value for-
mulation of the constraint equations along with the evolu-
tion equations. In Sec. III we use the Bianchi identity to
analyze the evolution away from good data. In Sec. IV
this technique shows, for at least one particularly simple
example, that the traditional numerical approach to rela-
tivity is not satisfactory. And, finally, in Sec. V we give a
minor modification of the traditional methods which
seems to remedy these difficulties. York' has given a
clear and careful review of the initial-value formulation of
general relativity, and we follow his notation for the most
part. Geroch' describes some useful methods of tensor
manipulation which we have found invaluable.

II. THE INITIAL-VALUE FORMALISM
AND THE EVOLUTION EQUATIONS

Given a four-dimensional spacetime with the metric,
g,b, which satisfies the Einstein equations

1

Gab =Mab Tgab& =KT

where K=8~6 and M, b is the four-dimensional Ricci ten-
sor, one can consider a three-dimensional, spacelike hy-
persurface imbedded in the spacetime. The induced
metric on the hypersurface is

yab
——g,b+n, nb,

where n' is the forward-pointing unit vector perpendicu-
lar to the hypersurface. The imbedding is further
described by the extrinsic curvature K,b of the hypersur-
face:

1

+ab 2 ~n 7 ab ~(a b)

The symbol l denotes the projection of all following in-
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dices perpendicular to n', W is the Lie derivative, and V
is the derivative operator associated with g,b.

Four of the ten Einstein equations for the full four-
dimensional metric involve only y, b and K,b and no time
derivatives; these are the constraint equations. Solving
these equations is known as solving the "initial-value
problem" in general relativity. The constraint equations
are the Hamiltonian constraint

V Gb, ——0. (10)

and

(LG„, ) =D "(a&G,b)+aK&G„, +G„„D,a . (12)

The components can be projected perpendicular and
parallel to n' to obtain

G„„=a 'D '(a L G,„)+aG„„K+aG,b
K'

2G„„=R+K —K,bK' =2~P

and the momentum constraint

&G„—'=Db(K ' y'K—) =~j ', (5)

These are identities for any geometry. And when the Ein-
stein equations are imposed the G's are replaced by the
appropriate components of the stress-energy tensor to ob-
tain the conservation of energy

the symbol D is the derivative operator on the hypersur-
face associated with y,b, R is the scalar curvature on the
hypersurface, and an index n denotes contraction with the
vector n'. Here and below it is important to remember
where these equations come from so we include the ap-
propriate component of the Einstein tensor for each equa-
tion. The left-hand equality in each of these expressions
is just a consequence of the Gauss-Codazzi equations; the
right-hand equality is the Einstein equation for a stress-
energy tensor T,b whose components may be projected
perpendicular and then parallel to n':

p =a( D,j '+~—' K,b +pK) —2j 'D, a,
and the conservation of mornenturn

(13)

q' =a( D,u—"+2K'bjb+q'K) ~"D,a pD a—.

(14)

III. THE EVOLUTION AWAY FROM GOOD DATA

These are essentially identical to York' s' Eqs. (40) and

(41).

Tob =pna nb +2J(a b) +~ab

where both j, and M, b are perpendicular to n'. Two
more tensor equations involve the time derivative (the Lie
derivatives with respect to an ') of y, b and K,b and deter-
mine the "evolution" of the tensors:

and

Tab = —2«ab

K, " = —a(lG, ——,y, "g' G,d) D,D a—
(7)

Z), Dba+ oR, b+ a

The Bianchi identity in spacetime is

(9)

R b+ ~KK b

The quantity a is the lapse function, a dot denotes a Lie
derivative with respect to the vector %'=an', which is

that vector perpendicular to one hypersurface of constant
time and pointing to a nearby hypersurface of a later time.
The lapse function is not determined by the geometry or
the Einstein equations, but it does determine how the en-

tire four-dimensional spacetime is foliated into its constit-
uent hypersurfaces.

Both of these evolution equations, as written above, are
identities which follow from the definitions of the Ein-
stein tensor and the extrinsic curvature, and from the
Gauss-Codazzi equations. A distinction which will be irn-

portant later is that Eqs. (7) and (8) always hold whether

the Einstein equations are imposed or not. The imposi-
tion of the Einstein equations is performed by replacing
the Einstein tensor G,b by the appropriate components of
the stress-energy tensor T,b, Eq. (8) becomes

The Bianchi identity (11) and (12) clearly shows that,
for a vacuum geometry, if the constraints are satisfied
(LG,„=G„„=O)on one hypersurface and if the evolution
equations (LG,b

——0) are satisfied then the Lie derivatives
of G„„and LG,„both vanish, so the evolved data on the
next slice also satisfy the constraints. Good data evolve
into good data. If a stress energy is allowed, then the con-
straints are evolved only if the stress energy is conserved
[Eqs. (13) and (14)].

In the real world the complexity of the Einstein equa-
tions often leads us to consider their numerical solutions.
First the constraint equations (4) and (5) are solved as cou-
pled, elliptic, nonlinear finite-difference equations. This
determines the metric and the extrinsic curvature of one
initial slice of the spacetime. Then the finite-difference
versions of the evolution equations determine the data on
a neighboring slice. In the course of this procedure small
inaccuracies are admitted, and the constraint equations
are no longer satisfied exactly but only approximately.
How do data evolve which do not exactly satisfy the con-
straint equation?

The evolution of general, vacuum data can be studied

by using only the equations above but with new interpre-
tations of p, j', and M„b.

Consider an arbitrary three-dimensional metric y, b and
extrinsic curvature K,b as initial data on a spacelike hy-
persurface of a four-dimensional manifold. On this hy-
persurface let Eqs. (4) and (5) define quantities p and j '
which are measures of how close these data come to satis-
fying the vacuum constraint equations. Clearly if and
only if p and j' both vanish, then the constraints are satis-
fied. Now if the initial data are evolved according to Eqs.
(7) and (9), with G,b =0, then we can see how both p and
j' change in time; in particular we can see whether they
grow or diminish.
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Later we wish to consider evolution equations that
differ from Eqs. (7) and (9) by substitution of the initial-
value equations. So, for the time being, let the evolution
equation (7) be replaced by

It is simple to evaluate both p and j' by Geroch's'
methods. We find

p = D D A ab DD—gA b
—R 'b~

b +aK~b~

3 ag = —2aKag +2K% ag (15) +eKp —aD,j'—2j'D, cz (16)
where A,& is a tensor which we will choose later. And,
in keeping with our reinterpretation of p and j', let the
tensor W,b on the right-hand side of Eq. (9) be similarly
unspecified. Both A, b and W, b will be chosen in such a
manner that they vanish precisely when the constraint
equations are satisfied. Hence the exact evolution of an
exact solution to the constraint equations will be the same
whether evolved according to Eqs. (7) and (9) or Eqs. (15)
and (9).

and

j' = K' Db@, K'—D'~b, Db(—a&' )+aj 'K

+2' K~' —pD'a —2~j M~' . (17)

When combined, these equations yield a useful and in-
teresting identity:

—(p2+j j ) =PD Db~b pD D A— pR A —b+j K Db~ jK D—~b —&j~j ~b+apK (~ b P'V b)

j,Db(—a&'b apy'b—)+2aKP +aj'j,K+aj'j K,b
—a D, (a pj') . (18)

is identity can be multiplied by o and integrated over the entire, three-dimensional hypersurface. Then, with the as-

sumption that the constraint equations are satisfied on the boundaries of the hypersueace all divergence te~s can be
discarded. What remains is

—,a p +j,j dV= —D' a p D A,~
—y,&A —a pR'"A, I +a j,K' DI,A —a j'K&,D,A I„

—«'j'j "A,b+a(A' py' )(D(,—a'jb, +a'PK, b)+2a Kp'+a j'j,K+ a'j'j K,b]dV .

(19)

This equation is the cornerstone of our analysis. If the
right-hand side of this equation were negative definite,
then for any set of the initial data, whether or not it satis-
fied the constraint equations, the values of p and j ' would
decrease in a global sense as the geometry evolved from
hypersurface to hypersurface. This would be a nice prop-
erty for the evolution equations to possess. The evolution
would preserve the constraint equations in a stable
manner.

But the right-hand side of this equation is of indefinite
sign. Just the existence of initial data with a positive
right-hand side of Eq. (19) does not alone guarantee diffi-
culty with evolution of the data. A perturbation analysis
of p and j' might reveal that all of the modes are stable,
but a specific combination of the modes could still give a
positive right-hand side.

f , a (p +j'j, ) dV—=f (2a p K+aj'j,K

+a j'j K,b)dV (23)

Unfortunately, under many circumstances the right-hand
side of this equation is positive. For example, if a slicing
condition is chosen to have K =0, with K,b nonvanishing,
then K,b is known to have both positive and negative
eigenvalues. A j' which points in the direction of an
eigenvector with a positive eigenvalue will yield a positive
right-hand side for Eq. (23). This does not guarantee that
evolution of such data will necessarily evolve away from
solutions to the constraint equations, but it certainly al-
lows for the possibility.

Consider the following simple situation. Let y,q be a
spherically symmetric, conformally flat metric with

7 ab 0 fab
4 (24)

IV. SOME SIMPLE EXAMPLES

The usual ' '' ' set of vacuum evolution equations
has A,~ ——0, and R= —8$ V Q. (25)

where
hatt

is the conformal factor and f,b is a flat metric.
For such a geometry the scalar curvature is

~ab Pj ab

With these restrictions Eqs. (16) and (17) simplify to

p =2aKp —a 'D, (a j ')

and

(20)

(21)

For the slicing conditions we let cx =1 and the shift vector
vanish. For initial data we choose /=$0, a constant, and
K,~

——0, so we start with flat, empty space and the evolu-
tion via Eqs. (7) and (9) ought to leave us with flat, empty
space. But if the initial data are perturbed slightly with

j'=aj'K+2aj K,b 2' PPb' a 'D, (a'p), —(22)——

and Eq. (19) becomes and

1

Kap =
3 K'Fag (26)
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where a is a large constant, then Eq. (7) becomes

(27) where Art�/3

0 (35)

'1( = ——,'K, (28)

and Eq. (9) becomes

K = —8g 'V'/+K'. (29)

K =(a —t) (30)

A solution to these equations, with the initia1 conditions
(26) and (27), is

the quantity e0 is a small, positive constant, and X is a
positive constant. Both the evolution of g and the Hamil-
tonian constraint are satisfied through the first nontrivial
order in e but Eq. (29) for the evolution of K is not satis-
fied, and, in addition, the perturbed geometry clearly
evolves away from flat space in an exponential manner.

We could also try evolving K with Eq. (29) and solving
the constraint (4) for t/r. Then

and
K =3/(a t)— (36)

g=l( (1 —t/a) (31)
And this instability of the evolution of flat space is also
manifest in the solution for the derivation from satisfac-
tion of the constraint equations:

p = —x '(a t)— (32)

So if K is perturbed to a constant greater than zero by
numerical error, then the constant a is a large positive
number. After a sufficiently long time, when t ap-
proaches a, K blows up and the evolution is singular. The
geometry on each individual hypersurface in this example
is flat, but the nonvanishing of K,b keeps the geometry of
the entire four-dimensional spacetime not flat.

It is clear that what might start as a small initial per-
turbation to K could easily grow into a large deviation
from the physical system being modeled. Wilson and
others have often circumvented this difficulty by re-
solving the constraint equations after every time step.
This fully constrained evolution gives accurate results but
demands a relatively large amount of computing power.

Wilson has also carefully applied a different approach
to this numerical problem. This other technique is to use
only some components of the evolution equations to
evolve only some of the dynamical components of the
metric and extrinsic curvature. The remaining com-
ponents of y,~ and K,~ are then found by solving the con-
straint equations. This modification guarantees that the
constraints will be satisfied on every hypersurface. But it
must be applied with care as this same, simple example
demonstrates.

We use the same assumptions as in the previous exam-
ple, but we evolve only l( with Eq. (28) and solve Eq. (4)
for K thereby guaranteeing the satisfaction of the con-
straints. A nontrivial solution valid through first order in
the small function e is

and

/= 1+ ,'r (a—t)— (37)

where a is a large positive constant, satisfy the evolution
of K and the Hamiltonian constraint through the first or-
der in the small quantity a ', but Eq. (28) for the evolu-
tion of g does not hold, and the departure of the geometry
from flat space grows as (a t)—

This technique, to evolve only some of the dynamical
quantities and then to solve the constraints for the
remaining ones, has been carefully implemented on prob-
lems which do not exhibit the pathologies shown in the
previous two examples. But the above examples do point
out some of the dangers which might befall a blind appli-
cation of this approach.

V. A REMEDY TO THE PROBLEM OF THE
EVOLUTION OF THE CONSTRAINTS

and

A b
———Lpy b

3 (38)

a~,b
= apl', b 2La p(K, b

—
q

K—l', b )

LD„a'jb, + ,
' Ly—,bD, (a'j '), — (39)

A different approach to this problem is to modify the
evolution equations by substitution of the constraint equa-
tions. If a choice for A, b in Eq. (15) and W,b in Eq. (9)
made the right-hand side of Eq. (19) negative definite,
then initial data, not precisely satisfying the constraints,
would always evolve toward a solution of the constraints.
In that case the evolution would in some sense be stable.
Our choices for a modification of the evolution equations
are

q=l+g+eA r /18, .

K = —2@k,

(33)

(34)

where L is a constant with a dimension of length which
remains unspecified for the moment. Equation (19) now
reduces to

—,a p +j'j, d~= & 2Kp +Kj'j.+K.bj'j
—L {2D (a p)D (a p)+[D'aJ~"'——,y D, (a j')][D~, aj

~

—b—,'
y, Db, ( ja')])

La (K' K,bp + —,
' K—p —2pj 'D, K —2' 4vpj 'j, ))dV . — (40)

The right-hand side of this expression is, unfortunately, not explicitly negative definite. However, under some rather
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general circumstances, this formulation of the evolution equations is useful anyway.
A slicing condition often employed in numerical relativity is that K vanishes on each hypersurface. In this case Eq.

(40) simplifies considerably to

2&' p'+j'j. d~= &'&~bj'j' —L .~'p D ~'p + D'&'p" —3r", &'j' D(a~'jb) 3 Vab c + j
La —( K' K,ap 2tcp —4tcp—j j, ) )d V . (41)

D(eb) —
3 r.bD.j'=o (42)

This equation was studied by York, ' who showed that
the operator on the left-hand side is positive definite and
Hermitian, and that such a j' is a conformal Killing vec-
tor. Furthermore, if we assume that E is zero, contract
Eq. (42) with K', integrate over all space, integrate by
parts, and discard the surface terms because of boundary
conditions, then we are left with

—Ij,DbK' dV=O . (43)

But, when K is zero, then D&K' =~j '; so Eq. (42) implies
that j' vanishes. With both coefficients of L negative de-
finite, L can always be chosen sufficiently large that the
right-hand side of Eq. (41) is negative unless the con-
straint equations are satisfied precisely.

The free parameter L is a mixed blessing. Usually in
theoretical physics the fewer free parameters introduced
the better. But in this case it is easy to understand the
meaning of the dimensionful parameter by analogy with a
technique sometimes used to solve Laplace's equation.

Two terms here are of third order in p and j', and these
have tc as a factor. If the initial data are only a perturba-
tion away from satisfying the constraints, then these two
terms would be of a higher order in the perturbation than
the others. The only remaining term which may be posi-
tive is the j'j K,b term, all the others are explicitly nega-
tive definite.

In fact we now show that for any given data y,b and
K,b there exists a value of L that makes the right-hand
side of Eq. (41) negative definite for nonvanishing values
of p and j'.

First consider the possibility that

1

An artificial time and a diffusion coefficient are added to
the elliptic Laplace's equation turning it into the parabolic
diffusion equation. The diffusion equation is then
evolved forward in the artificial time until a steady state
is reached, which then satisfies Laplace s equation. In our
case if the terms in the evolution equations (9) and (15)
not involving L are just discarded, then the geometry will
no longer evolve in time, but instead just evolves to a solu-
tion of the constraint equations.

In numerical relativity, if a very large value of L were
chosen then the computer would spend most of its time
checking to make sure that the constraint equations were
well satisfied. And, of course, setting L to zero means
that the computer spends no time checking the constraint
equations during evolution. Clearly a good choice for L
makes the right-hand side of Eq. (41) just barely negative.

VI. SUMMARY

The traditional methods used for the numerical evolu-
tion of Einstein s equations have often had difficulty in
dealing with the constraint equations. Our modification
of the evolution equations ensures a solution of the con-
straints by continuously nudging both the geometry and
the extrinsic curvature. We are currently using this tech-
nique both to solve the constraint equations alone and also
to evolve the full set of Einstein's equations.
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