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We discuss quark distribution amplitudes for the nucleon obtained from perturbative QCD in
connection with QCD sum rules on the light cone. Because of nonperturbative contributions these
amplitudes have a complex nonsmooth structure and are dominated by strong correlations at the
edges of the phase space. The antisymmetric part of the mixed symmetry amplitudes is found to be

enhanced.

The currently accepted theory describing the hadronic
strong interactions is quantum chromodynamics (QCD).
Considering exclusive processes of hadrons at large
momentum transfer,! it is possible to separate the short-
distance dynamics, governed by QCD perturbation theory,
from the nonperturbative contributions responsible for
quark and gluon confinement at large distances.? All
binding effects involving low-momentum interactions are
associated with wave functions for the hadrons. In the
light-cone frame, which is used for convenience, these
wave functions
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are process-independent “distribution amplitudes” for
finding the valence quarks with light-cone fractions of the
hadron’s momentum, x;=k7/p*=(k°+k?%),/(p°+p?),
integrated over transverse momenta k,;<Q, where
p¥=(p*,p~,p,) is the momentum of the hadron. In the
infinite-momentum frame (p*— ) x; denotes the longi-
tudinal momentum of the ith quark. Since the ampli-
tudes ®(x;,Q) are universal functions, they provide the
link between different exclusive reactions. Therefore,
their estimation is of fundamental importance.

A complete determination of the hadronic wave func-
tions would clearly imply the solution of the nonperturba-
tive bound-state problem in QCD. Since this is still
beyond our capabilities, some effective treatment has to be
applied. One way to reach the resonance region, where
nonperturbative effects become important, is the method
of QCD sum rules.® Recently, Chernyak and Zhitnitsky*
(CZ) developed an approach which provides the possibility
to determine nucleon wave functions incorporating non-
perturbative effects via QCD sum rules. The underlying
idea is quite simple and appealing: They reconstruct the
wave functions from the first ten moments, which they at-
tempt to fix using QCD sum rules. However, neither the
structure of the wave functions they derive, nor the con-
clusions and predictions they draw from them, seem con-
vincing to us. The reasons are mainly the following: In
the extreme asymptotic region, i.e., for Q?— o, the
quarks inside the nucleon are effectively free. Thus the
wave function which describes the valence-quark distribu-
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tion in this region is given by a positive smooth and equal-
ly weighted function centered at x;=x,=Xx; :%:
@, (x;)=120x;x,x3. Actually this function is the solu-
tion of the evolution equation in the formal limit Q?— oo
(Ref. 2). Since the dependence of the quark distribution
amplitude on the renormalization point (some typical
quark virtuality) is only weak,? the rate at which the
“true” nucleon wave function ®..(x;,Q) approaches its
asymptotic form depends strongly on its initial value:
Dy 0e(x;:,Q00). Thus, if Py .(x;,Qp) deviates crucially from
®,,, then the asymptotic form is reached only for tremen-
dously large values of Q2. Regarding ®,, as an essential
ingredient of the “true” nucleon wave function, we argue
that nonperturbative effects at finite Q2 should modify
the structure of the perturbative amplitude predominantly
near the phase-space boundaries. Furthermore, we show
that a quark distribution amplitude determined solely via
its moments obtained from the two-point sum-rule ap-
proach of CZ is not unique. This problem of nonunique-
ness can be traced back to several uncertainties entering
the calculation of the higher moments.*> While the
lowest moments can be derived independently using, e.g.,
uncorrected vertex functions, this is not possible for the
higher-order moments.>® Here, more improved tech-
niques are needed in order to check the validity of the
sum rules of CZ (Ref. 7). This fact might suggest that
one should relax the requirement that the sum rules for
the higher moments should be treated as a main input in
the determination of realistic wave functions. Indeed,
performing a complete analysis to determine the nucleon
distribution amplitude in terms of all twist-3 Appell poly-
nomials,”> we found that there is actually an infinite num-
ber of possible solutions which satisfy exactly the sum
rules of Ref. 4, but differ dramatically in their shape,
while the predicted absolute values for the electromagnet-
ic (EM) form factors vary by a factor 2—3 (Table I).
Therefore, the predictions derived from such wave func-
tions, as these proposed by CZ, are quite arbitrary,® and in
addition they are in contradiction with experiment which
shows | Gy /Gfy | <+ already at Q2~20 GeV?/c?.

In order to discriminate between different choices of
possible wave functions, we rely on a recent analysis® of
the EM form factors of the nucleon which is consistent
with the latest high-Q? SLAC data!® showing F}/FZ ~0,
Gy ~0 and look for that solution which yields the small-
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TABLE 1. Moments of the wave function ®_, derived from (i) sum rules (SR’s), (ii) model wave function of CZ (CZ), and (iii) this
work in comparison with the asymptotic wave function ®,,. The numbers in parentheses are the values we obtained using the CZ
model wave function. The expansion coefficients B, and the strength coefficients A4; are defined in the text. a;=0.3 and
fn=5.2X10"3 GeV? (Ref. 4).

( n n,n
ninans 2017 sR) 202" (€2) 20"1"7" (This work) o 1"
A;=0 Example 1 Example 2 Favorite
A2=—672 B0=1, B1=39 Bo=1, Bl=40 B():l, Bl=4105 B():l
B,=1.9, B;=13 B,=20, B;=195 B,=2.06, B;=—4.72 B;=0
B,=9.0, Bs=18 B,=-5.0,Bs=2.0 B;=5.0, Bs=9.3 A;=0
Ay=-—13.7,4,=11.8 4,=—6.6,4,=2.1 A,=-—47.3,4,=56.2
000 1 1 1 1 1 1
100 0.60—0.75 0.63 0.61 0.62 0.63 % =0.333
010 0.09—0.16 0.15 0.15 0.14 0.14 %:0.333
001 0.18—0.24 0.22 0.238 0.238 0.236 +=0.333
200 0.25—0.40 0.4 0.35 0.38 0.29 +=0.143
020 0.03—0.08 0.025(0.024) 0.032 0.031 0.032 % =0.143
002 0.08—0.12 0.08 0.1 0.085 0.008 +=0.143
110 0.07-0.12 0.11 0.12 0.1 0.11 521- =0.095
101 0.09-0.14 0.123 0.14 0.14 0.23 22—1 =0.095
011 —0.03—0.03  0.027(0.017) 0.002 0.015 —0.003 22—, =0.095
Q*Ff (GeV?) 1.17(0.89) 0.3 0.69 0.89 0
Q*F} (GeV?) —0.57(—0.43) —0.124 —0.335 —0.086 + 0.013

est possible value of the ratio F]/F¥f. In correspondence cients in the representation for the quark distribution am-
p P P

with the sum rules of CZ for the lower-order moments, plitude.

and regarding their sum rules for the higher moments Our starting point is the helicity-conserving color-
merely as a guide, this additional criterion enables us to singlet proton Fock state to leading twist 3 in the
reduce considerably the variation of the expansion coeffi- infinite-momentum frame:>*

il

1
| p') =const X fo [dx]{ Vx| u'eput(x)d (x3)) +(12)]— T4 )] | u'(xDut(x2)d N(x3) ) +(12)]
—T(x;) | u"(xu'(xy)d x3))} (1)
[(u<>d) for the neutron] with

3 3
I—in de,' .

i=1 i=1

[dx]=8

The distribution amplitudes V' (x;), 4 (x;), and T (x;) are scalar wave functions in the light-cone frame controlling the
valence-quark distributions in the nucleon at fixed scale Q2. In the limit of strict collinear symmetry, combination of
spin and flavor leads to the symmetry properties: V(1,2,3)=V(2,1,3), A(1,2,3)=—A(2,1,3), and
T(1,2,3)=T(2,1,3). The total isospin 5 of the three-quark bound system requires 27(1,2,3)
=V(1,3,2)—A4(1,3,2)+V(2,3,1)— 4(2,3,1).

To determine the quark distribution amplitudes we make the ansatz

q)nucleon(xi )= q)as(xi )(I)nonpert(xi ) (2)

at fixed scale 1 > 1 GeV. In Ref. 2 it was shown that the general solution of the evolution equation which controls the
dynamics of the nucleon distribution amplitude can be expressed as an expansion in terms of Appell polynomials (these
constitute orthogonal polynomials on the triangle). Therefore, we look for a solution for ®qperi(x;) in the form

¢nonwn(xi)=2Bn(5n(xi) ’ (3)
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where @, (x;) are all Appell polynomials contributing to twist 3. Thus this is a complete representation of the nucleon
distribution amplitude in leading twist. It takes into account terms of the type x,-z,x,-xj (i,j =1,2,3), and thus connects
to the idea that the nontrivial structure of the QCD physical vacuum may induce correlations of the longitudinal mo-

menta of the quarks inside the nucleon.

In terms of the expansion coefficients B, the amplitudes are given by

V(x,-)=<l>as(x,-)[ (B() +Bz—5B3—SB5)

++(12B3—4B, —28Bs) (x> +x,%) + +

=@, (x;)[A41(x; —x2)+ 45(x,°—x,9)],
T(x,~)=(l>as(x,- )[(B0+B2—5B3——535)+(

Considering the computation of nucleon form factors it
is more convenient to use the mixed symmetry wave func-
tions

<D(+)(X )—Z[V +A4(x )] (7)

with the property ®((1,2,3)=®_(2,1,3).

Following now the procedure described above, we deter-
mine the coefficients B, using the moments of the wave
functions defined by

! np M N3
=f0 [dx]x; 'x; “x3  ®P(x;) . (8)

(D(nlnzn3)

The results for the coefficients B,, the wave-function
moments, and the predictions for the EM form factors of
the nucleon are presented in Table I.

The wave functions we propose (denoted “favorite” in
Table I), have a complex “bump-dip” structure, which is
illustrated in Figs. 1(b)—1(f). Comparison with the
asymptotic wave function ®,, [Fig. 1(a)] reveals that at
the edges of the phase space, correlation effects become
significant. They are accentuated by nodes and are cer-
tainly to be traced to nonperturbative interactions of the
quarks inside the nucleon with the vacuum fields. Note
that because the antisymmetric amplitude A is enhanced
[Fig. 1(d)] compared to the symmetric amplitude ¥ [Fig.

b)], it strongly specifies the structure of the mixed sym-
metry amplitudes ®+). Thus a parametrization of the
form @ onpert(x;) ~(x1x,x3)7 with 7 some constant?
seems to be ruled out. This was first pointed out by CZ
(Ref. 4).

In order to clarify the physical content of our wave
functions, we show their pattern on the Mandelstam plane
for the variables x,x,,x3 constrained by x; +x, +x3=1
(Fig. 2). In the asymptotic limit Q?— oo, when A be-
comes negligible and V becomes totally symmetric under
particle exchange, ®+,—>V—>®,, and T—>d,, as re-
quired by perturbative QCD (Refs. 1 and 2). It is worth
noting that the maximum of the symmetric amplitude V
coincides exactly with that of ®, at x,=x,=x;=+7
[Fig. 2(a)].

We emphasize that a small ratio F} /F¥ corresponds to
an enhancement of the antisymmetric amplitude 4 (Table
I). Since A plays a crucial role in the determination of the

—3B,+7B3+7Bs)x3+(8B3+ 2 Bs)(x 2 +x,%) +

+3(By—3B,+11By+B,+21Bs)(x; +x,)—(B; +B,)x;3
(24B3+4B,+14Bs)x;>— (4B +14B5)x x,] , @
A (x;)=Pp(x;)[5(—B1—3B,+3B3;—B4—TBs)(x; —x;)+ ¢

—12B;+4B,+28Bs)(x2—x,2)]
©)
(4B3-+—14B5)X1X2] . (6)

mixed symmetry amplitudes @4 the strength coefficients
A, and A,, defined in Eq. (5), are listed in Table 1.

It is clear from what has been said above that more pre-
cise experiments on electron-neutron scattering at Q%> 10
GeV?/c? are desirable. Especially the separation of elec-
tric and magnetic form factors of the neutron would be of
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FIG. 1. Illustration of the quark distribution amplitudes pro-
posed in this work in comparison with the asymptotic form. As
a scale the maximal and minimal values of the functions are
displayed.
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FIG. 2. Pattern of our quark distribution amplitudes on the Mandelstam plane (triangle) for the variables x,x,,x; with
x1+x3+x3=1. The main maxima (&) and minima (O) are indicated. The black dot marks the central point (x,=x,=x;= %) of

the triangle where @, has its maximal value.

great value.!! In addition, further improvement of the

sum-rule techniques could help to narrow down the uncer-
tainties in the higher-order moments of the wave func-
tions.
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