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Leading-logarithmic corrections to all first-order radiative processes are used to calculate the

branching ratio for B PX to a higher precision than has been previously achieved. The calculated

ratio is sensitive to a, and is in reasonable agreement with the experimental value.

INTRODUCTION

In a previous paper' we presented a calculation of the
branching ratio for B~fx, including all first-order (in
a, ) radiative corrections, and summing the leading-
logarithmic corrections to the Born term. As this process
is of continuing importance in the study of heavy-quark
interactions and in understanding perturbative QCD, re-
finements to this calculation are of interest. We noted in
Ref. 1 that a potentially large correction to our result
would come from the leading-logarithm corrections to the
bremsstrahlung rate, which is also of order a, . In fact, it
is possible to sum the leading logarithms in all terms with
relatively little effort. We present here the results of such
a calculation. With the improvements described here, the
predicted branching ratio is rather sensitive to cx, and is in
reasonable agreement with experiment.

Analysis of first-order radiative corrections to the basic
weak decay amplitude begins with a classification of the
three types of diagrams: vertex corrections, box diagrams,
and bremsstrahlung contributions. As is well known, the
box diagrams contain terms of order in(m~/m), where
m~ is the 8'mass, and m is a typical quark mass. These
large logarithms can be summed using a renormalization-
group approach, to yield a "QCD-correction" factor Z.
The QCD-corrected amplitude is then the basic Fermi in-
teraction amplitude Mo, multiplied by the correction fac-
tor Z, which we will discuss below in more detail.

In addition to these large logarithms, we have chosen to
keep all the nonleading terms of order a, (the logarithms
are summed to all orders in a, ), in all three types of dia-
grams. In the present calculation we combine vertex
corrections to the QCD-corrected Born term, nonleading
box-diagram corrections, and bremsstrahlung contribu-
tions. If the QCD-corrected Born term is represented by a

black box as in Fig. 1(a), then typical nonleading contribu-
tions come from the diagrams of Figs. 1(b) and 1(c). Our
decay amplitude will then have the form

M = MLLA(1+ ba)

where ILLA is the amplitude in the leading-logarithm ap-
proximation.

Our calculation resembles a next-to-leading-logarithm
calculation, in the sense that we calculate corrections to
the leading-logarithm amplitude. However, we have per-
formed no two-loop calculations. In particular, our
anomalous dimensions are computed from one-loop dia-
grams. A complete next-to-leading-logarithm calculation
has been carried out by Altarelli et al. for the massless
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FIG. l. (a) Diagrammatic representation of the QCD-

corrected 4-point weak interaction. (b) Typical bremsstrahlung
process. (c) Typical virtual radiative corrections to the QCD-
corrected 4-point interaction.
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fermion case. We have found that fermion masses play a
significant role in B decay, so we cannot use their results.

We present the details of our calculation in the follow-
ing section. Our result is presented as a graph of the
predicted branching ration as a function of cz, . This and
its interpretation are discussed in the final section.
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DETAILS OF THE CALCULATION

We look first at the logarithmic terms which appear.
We find that the four box diagrams contribute to a given
amplitude M; the quantity
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FICx. 2. Two representative virtual radiative corrections at

the two-loop level.
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where M; is the uncorrected amplitude for a given pro-
cess (vertex, box, or bremsstrahlung). p is the quark-mass
scale, taken as m, in our calculation. C; is a color factor
which takes on one of two forms and deserves further dis-
cussion.

We have adopted the point of view that the color factor
should be determined by the two-loop diagram which
leads to Eq. (1). In other words, we imagine expanding
the black boxes of Figs. 1(b) and 1(c) (or Z) in powers of
a„and insist that the order (a, ) term be that obtained
from the corresponding two-loop diagram. This will not
always give us the same correction factor Z as is obtained
in Fig. 1(a). The authors of Ref. 2 consider nonleading
corrections to MLLA without insisting on this consistency
at the two-loop level. This is an ambiguity in the
leading-logarithm approximation which one can resolve
by requiring agreement at some particular level in the per-
turbation expansion. By choosing to renormalize virtual
diagrams separately, we have made the choice that the
leading-logarithm correction to these diagrams must give
the correct lowest-order term. Similar arguments apply to
the bremsstrahlung amplitudes.

Two examples of second-order virtual corrections are
shown in Fig. 2. Note that the inner box is going to con-
tribute a logarithmic term, and the other gluon, being a
correction to this, must attach to quark legs outside the
box. This limits the number of two-loop diagrams we
must consider. The color matrices in the two diagrams
have different structures, namely,

Here N=3 is the number of the quark colors. The color
factors differ in large part because the two charmed
quarks are assumed to form a color singlet. It is in this
respect that our calculation differs (in Ref. 1 as here) from
that of Kuhn et al.

Because we have two types of diagram at the two-loop
level, we will have separate renormalization factors. Z&
(corresponding to C&) is the same Z as in Ref. 1:
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We now calculate the decay rate to order Z; and a, ac-
cording to the following prescription:
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The notation here is as follows: Mo is the Born-term am-
plitude, M;J the amplitude due to virtual gluon connecting
quark lines i -j, M& the bremsstrahlung amplitude for
gluon emission from quark line i, and F and F' are the
appropriate kinematic factors. Details regarding these
amplitudes are presented in Ref. 1.

Equation (6) incorporates the leading-logarithm correc-
tions to all the diagrams to order a„and as such consti-
tutes a substantial improvement over the calculation of
Ref. 1. Numerically it was only necessary to sort out the
different combinations which occurred in our earlier cal-
culation and multiply by the appropriate factor of Z&,
Z2, or Z(Z2.

The branching ratio is obtained by adjusting I d;„„for
cascade decays and dividing by the theoretical total decay
rate (the theoretical rate is used so that unknown mixing
angle factors cancel). In the present calculation we use
the familiar QCD-corrected rate '

r=r, [—,'(2C +C 2)],

where

with d =16, b„=(33—2n)/3. The second factor Z2 is of
the same form with d~d2, where
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In Ref. 1 we used a result due to Guberina et aI. which
is, in fact, an order-a, calculation. To order a„ the lead-
ing logarithms cancel, as can be seen by expanding Eqs.
(7) and (8) in powers of a, . However, the authors of Ref.
4 were not suggesting that their result is a more accurate
estimation of the total rate. Equation (7) is, in fact, more
reliable.
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RESULTS AND DISCUSSION

2 lt (a, =0)
P'(0) =

1 —16', /3m
(9)

For a, =0.2, the denominator is (1—0.34). Clearly, the
(a, ) correction is important, perhaps on the order of
10%.

(3) QCD corrections of order a, might be expected to

The results of our calculation are presented in Fig. 3 as
a plot of the branching ratio versus a, (p). Shown also are
the most recent experimental data which give
B=(1.09+0.16+0.21)%. We note that the ratio is a
rather strong function of a„and that agreement with the
data only occurs within a relatively short range in a, .
The commonly quoted value a, =0.2 is within the accept-
able range given the uncertainties of our calculation,
which we discuss below. As it happens, the two major
improvements of this calculation tend to cancel one
another, so that our results are similar to those of Ref. 1.

Although our treatment of the leading logarithms has
substantially improved the reliability of our calculation,
there remain a number of uncertainties. The most signifi-
cant of these are the following.

(1) The width 1 +, which determines the normali-

zation of the 1( wave function, is known only to within
+16%, experimentally. This is also the major systematic
error in the data to which we have compared our predic-
tion in Fig. 3.

(2) The radiative QCD corrections to the tt wave func-
tion are strongly dependent on a, . Specifically, an order-
+, calculation gives
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FIG. 3. The branching ratio for B~l(x as a function of the
QCD coupling a, (p). The experimental value is shown with its
statistical and systematic errors added.
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change our results by another 5—10%%uo, based on our ex-
perience with the lowest-order terms.

In summary we note that our analysis confirms, again,
the importance of QCD corrections in bringing the
branching ratio down from around 2% (Ref. 8) nearer to
the observed value of 1.0%. The non-Abelian nature of
the QCD corrections introduces some ambiguity when the
renormalization-group technique is applied. We have
resolved this ambiguity by insisting that two-loop dia-
grams be treated properly. As the effects only appear at
the level of a, ln(m ~/p), the ambiguity is not significant
numerically. Unfortunately, our result is still uncertain
by at least 20%, so that it cannot be used as an accurate
determinant of a, .
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