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An effective Lagrangian for a supersymmetric composite model due to Cxreenberg, Mohapatra,
and Yasue is constructed. In particular the four-fermion contact interactions for three generations
of composite quarks and leptons are examined. A geometric approach is used to couple one quasi-
Goldstone-fermion (QGF) generation to two matter generations. A heuristic argument leads to a
particularly simple form for the bilinear matter coupling terms. Isoscalar four-fermion terms con-
taining QGF's may be eliminated by a special choice of certain parameters. However, the residual
interactions are found not to reproduce weak interactions due to the presence of flavor-changing
processes and the failure of quark-lepton and e-p-~ universality. Introducing fundamental weak
forces leads to a lower bound of a few tens of TeV's for the hypercolor scale parameter.

I. INTRODUCTION

Composite models of quarks and leptons have been
studied over the last few years as extensions of the highly
successful standard model of particle interactions. The
aims of composite models include an elucidation of why
certain arbitrary parameters in the standard model (e.g. ,
Yukawa couplings) have the values that they do, and why
there exist at least three generations of quarks and lep-
tons. Our understanding of confining gauge theories with
massless fundamental fields has grown because of these
efforts, but no truly realistic and compelling model has
yet emerged.

Because experiment has not yet revealed the existence
of "preons" (i.e., the fundamental constituent particles) an
upper bound can be put on the size of quarks and leptons.
This in turn implies a lower bound on the energy scale of
the strongly interacting gauge theory of preons (A~„,„&1

TeV approximately). Quark and lepton masses are signifi-
cantly smaller than 1 TeV or so and thus the fundamental
problem in composite models arises: how do massless
composite states emerge from a gauge theory that con-
fines at a high-energy scale (the small quark and lepton
masses then ascribed to perturbations). Two main solu-
tions have emerged: (i) unbroken chiral symmetry (via the
't Hooft anomaly-matching equations; two-hypercolor-
representation models are studied by the authors in Ref. 1,
first paper, and by Davidson et al. one-hypercolor-
representation models are studied in the remaining pa-
pers') and (ii) quarks and leptons as quasi-Goldstone fer-
mions.

In both of the above approaches the gauge theory of
massless preons possesses a chiral-symmetry group G. If
G is to remain unbroken then the anomalies pertaining to
currents associated with G must be the same whether cal-
culated by using massless preons or massless spin- —,

bound states. Thus if some preonic anomalies are nonzero
then the assumption of unbroken chiral symmetry implies
the existence of massless spin- —,

' bound states. If there

cannot be found representations of G for bound spin- —,
'

states which anomaly match with the preons, then one
must conclude that G is dynamically broken.

If G is dynamically broken then Goldstone's theorem
requires there to exist massless composite Goldstone bo-
sons. If the preon theory is supersymmetric then there
will exist massless composite spin- —, particles as super-
partners of the Goldstone bosons (quasi-Goldstone fer-
mions or QGF's).

It is necessary to combine these two approaches if one
postulates that G is broken to a subgroup H which itself
gives rise to anomalies. The QGF's contribute to the
anomaly-matching equations for H since they are mass-
less spin- —,

' particles belonging to H representations.
Three possibilities arise in this case: (i) the anomalies due
to the QGF's match precisely with the preonic anomalies;
(ii) other massless composite spin- —, particles must be
added to the spectrum with the QGF's to achieve anomaly
matching; and (iii) the QGF anomalies do not rnatch and
no other representations can be found which together with
the QGF's would ensure matching. Cases (i) and (ii) yield
consistent schemes while the situation in (iii) implies that
the assumed breakdown G~H is not allowed.

There are two ways of constructing a supersymmetric
Goldstone multiplet. The fundamental supersymmetric
matter multiplet (chiral superfield) has a complex spin-0
field and a Weyl spin- —, field. The "minimal case" has
both spin-0 degrees of freedom as true Goldstone bosons.
The "total doubling case" has only one spin-0 degree of
freedom as a true Goldstone boson. The other is referred
to as a "quasi-Goldstone boson" (QGB) and together with
the Weyl QGF is kept massless by supersymmetry. In
general a theory will have both types of Goldstone super-
fields present as determined by its dynamics.

In the QGF scheme one must find groups G and H
such that the breakdown G —+H yields QGF's with the
group-theoretic properties of quarks and leptons. Since
the standard-model gauge group SU(3) X SU(2) X U(1)
should be contained in G (and possibly also in H) one is

35 1050 1987 The American Physical Society



35 EFFECTIVE-LAGRANGIAN STUDY OF THREE GENERATIONS. . . 1051

led to consider 6=SU(5) and larger groups. Indeed the
breakdown SU(5)~SU(3)„&,„XU(1), yields exactly one
generation of quarks and leptons as QGF's in the total
doubling situation. In Ref. 3 the four-fermion interac-
tions of these QGF's were studied using an effective-
Lagrangian approach. It was found that the known low-
energy four-fermion interactions of quarks and leptons
could be approximately reproduced for special choices of
certain parameters in the effective Lagrangian. In partic-
ular it was possible to arrange quark-lepton universality
and approximate SU(2)L invariance. However since these
parameters are in principle calculable from the fund-
amental dynamical theory it would require the dynamics
to yield these special relationships "by accident. "
One generation also emerges in the minimal case
for SU(5)J XSU(5)+~SU(3)L XU(l)I. XSU(3)z XU(1)z.
Only the neutrino multiplet doubles, and so the lack of ar-
bitrariness together with broken SU(2)L probably renders
the effective four-fermion interactions nonstandard.

Enlarging G to SU(6) or SU(6)1 XSU(6)~ solves the
above problem. In the total doubling case one generation
emerges from SU(6)~SU(4)XSU(2)XU(1), and in the
minimal case one generation is obtained from

SU(6)L XSU(6)~ ~[SU(4) XSU(2) XU(1)]L

where U~(1) is the supersymmetric R symmetry. The
massless composite spectrum contains one minimal QGF
generation and two other generations required by anomaly
matching. There also exist four totally doubled neutral
Goldstone multiplets which hopefully induce a novinolike
mechanism. It is of considerable interest to see what the
effective four-fermion interactions of a three-generation
model are.

The plan of this paper is as follows. In Sec. II we re-
view the Greenberg-Mohapatra-Yasue (GMY) model. In
Sec. III we discuss the topic of effective Lagrangians, and
in particular, of supersymmetric o. models coupled to
matter. In Sec. IV we apply the techniques of Sec. III to
calculate the effective Lagrangian to fourth order. Sec-
tion V is devoted to a phenomenological discussion of our
results and Sec. VI is a conclusion.

II. THE GREENBERG-MOHAPATRA- YASUE MODEL

This model features an SU(6)~c-hypercolor gauge in-
teraction which is assumed to confine at a phenomenolog-
ically acceptable scale. The preon degrees of freedom
consist of six chiral superfields and six antichiral super-
fields in the fundamental representation of SU(6)uc.
There are no mass or other superpotential terms. Thus
the chiral-symmetry group G is

X[SU(4)XSU(2)XU(1)]& .
G =U(6)1. X U(6)g X Ug (1), (2.1)

Quark-lepton universality is guaranteed by the SU(4)
Pati-Salam symmetry and there remains an unbroken
SU(2)l subgroup. [Of course in the minimal case one is
dealing with SU(2)1 X SU(2)R, that is, a left-right-
symmetric model. ]

Thus SU(6) plays a special role in composite models
with one generation of quarks and leptons as QGF's. (It
is also possible to have three or more generations as
QGF's by considering large exceptional groups. )

One remaining problem in SU(6) models is the existence
of an isoscalar four-fermion term in the effective
theory. ' In the total doubling case this may be
suppressed by the special choice of a parameter. In the
minimal case the isoscalar term is of the same strength as
the phenomenologically relevent isovector term and thus
the known low-energy interactions are not reproduced.
Buchmuller et al. have shown that the isoscalar term is
suppressed in a very natural way in a slightly extended
theory based on U(6)~U(4) X SU(2) or more realistically

U(6)L XU(6)g ~[U(4) X SU(2)]L X [U(4) X SU(2)]g .

Because of a broken U(1) a neutral totally doubled Gold-
stone multiplet joins one minimal QGF generation. This
"novino" multiplet alters the effective interactions in such
a way that the isoscalar contribution is small or zero.

In this paper we study a model proposed by Greenberg
et al. which features the breakdown

U(6)L XU(6)g XUg(1)~SU(4)L XSU(2)L XSU(4)g

where U~(1) is a supersymmetric R symmetry. Uz(1) and
the axial group U(1)~ =U(1)1 z suffer from gauge-
gauge-current anomalies. However one linear combina-
tion of QR,~ and 3 generates an anomaly-free group
U(1)». Thus anomalies break G to G', where

G'= SU(6)1 x SU(6)g x U(1)v x U(1)» (2.2)

and U(1)~=U(1)L+z is the preon-number group.
It is now assumed that the hypercolor interaction

causes the formation of certain condensates which dynam-
ically break 6' to H, where

H =SU(4)1 X SU(2)L x SU(4)g X SU(2)g . (2.3)

This breakdown implies the existence of Goldstone bosons
(GB's) which belong to the following representation R oB
of H:

RoB ——(4, 2, 1, 1)+(1,1,4,2)+(4,2, 1, 1)

+(1,1,4,2)+4(1,1, 1, 1) . (2.4)

There is no Goldstone boson associated with the
anomalous U(l).

It is assumed that the nonsinglet Goldstone bosons are
arranged in minimal Goldstone supermultiplets while the
neutral Goldstone bosons totally double. Thus the left-
handed QGF spectrum is given by

The four neutral Goldstone bosons are associated with the
following broken U(1)'s: U(1)L, U(1)z, U(1)v, and U(1)»,
where U(1)1 ~ comes from the breakdown

SU(6)L R ~SU(4)1 g XSU(2)L g XU(1)L g .

X SU(2)R, RQoF —(4,2, 1, 1)1.+ (1,1,4, 2)L +4(1, 1, 1, 1)L . (2.5)
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[SU(4)L B]: 2(l( —12+i, )=6. (2.6)

Here l~, 12, and 13 are the 't Hooft indices for (4,2, 1,1)
and (1,1,4,2), (4,2, 1,1) and (1,1,4,2), and (4, 1,1,2) and
(1,4,2, 1), respectively. Clearly l~ ——3, 12 ——13 =0 is a solu-
tion for (2.6) which yields precisely three generations of
quarks and leptons. Obviously other solutions also exist
and thus the choice made is a dynamical assumption
which is in principle falsifiable. However it is consistent
to assume on the basis of present knowledge that this
model yields one QGF generation and two generations
which are kept massless by chiral symmetry alone. The
fact that one generation is kept massless by two separate
mechanisms while the other two are only protected by one
may be a useful feature for obtaining a generational mass
hierarchy.

It is clear that this model has some very interesting
properties which all require further study (e.g. , inter- and
intragenerational effective interactions, mass hierarchy,
left-right-symmetry breaking, and supersymmetry break-
ing). In this work we focus attention on the effective in-
teractions using techniques which we now discuss.

(4,2, 1,1)L contains one generation of left-handed quarks
and leptons while (1,1,4, 2) yields the left-handed anti-
quarks and antileptons.

The anomaly-matching equations are now used to yield
information on which other fermions remain massless
with the QGF's. Since H contains no U(1) factors and all
representations of SU(2) are anomaly free, there is only
one anomaly-matching equation, which arises from trian-
gle graphs containing three SU(4) currents:

+~28/ +88F (3.4b)

+ , R p—rT,(g~g )(P Pr),
where the covariant derivative D„ is defined by

D„q =a„q +a„Ai'r„q&,

D„q =a„y +a„Air~, q&,

with the connection coefficients obeying

(3.5)

(3.6a)

(3.6b)

py
—g g p8 (3.7a)

~a 5a
py g gyp y

D and D are the usual supersymmetric covariant deriva-
tives. R p ~ are the components of the curvature tensor
and they obey the equation

(3.7b)

aP75 XY $8a
0'7—gap, yS g ga~, ygaP, S . (3.8)

The manifold is actually a symmetric space due to the
existence of G invariance in the fundamental theory. The
generators T of G generate infinitesimal isometry
transformations:

in the chiral representation of superspace, L,~f may be
written as

a 2L rt= —„D D D K
l g 8 o

g.,—(a„A-~a~A +,' iq i'F7q. )

5A = iez[T",A —]=@„R"(A), (3.9)

III. EFFECTIVE LAGRANGIANS FOR GOLDSTONE
FIELDS COUPLED TO MATTER

&ap, y
—

&yp, a gap, y
—gay, p (3.1)

where g p are the components of the metric tensor.
Equations (3.1) imply that the metric may be derived
from a function K, called the Kahler potential, in the fol-
lowing way:

8 K(A, A)

aA aA~
(3.2)

The effective Lagrangian is just the D term of E as a
function of the Goldstone superfields P and P:

L n'=K(4 0)
l Bags .

In terms of component Cxoldstone fields defined by

(3.3)

Consider a theory which features the spontaneous (or
dynamical) breakdown G ~H. The Goldstone boson
fields 3 form coordinates for a manifold endowed with a
metric, and the effective Lagrangian is the invariant line
element. For a supersymmetric theory the appropriate
class of manifolds to consider are the Kahler manifolds,
with the A and their complex conjugates 3 being the
complex coordinates for the manifold. A manifold is
Kahler if it satisfies the conditions

where the ez are infinitesimal group parameters and the
R are Killing vectors. The Killing vectors form a Lie
algebra, that is,

[R"RB]&=R"PR & —RBPRA(x fABcRca (3.10)

where the f" are the structure constants of G:
[T",T ) =if" T When the is.ometry transformations
are restricted to lie in H then the Killing vectors are sim-
ply the adjoint representation matrices of H acting on the
3's. When the isometry transformations lie in G/H then
the Killing vectors are nonlinear functions of the Gold-
stone fields and by virtue of Eq. (3.10) yield a nonlinear
realization of G/H.

For the effective Lagrangian to be invariant under in-
finitesimal isometry transformations we must demand
that

K (P, (h)~K (P,P)+F (P)+F(P), (3.1 1)

where F(P) is a chiral superfield formed from the P's.
This powerful restriction on E may be implemented
through the Killing equation,

a2
R "r(A) +R "~(A) K(A, A)=0.

aw asap any

(3.12)

P =A +~28$ +88F (3.4a)
We will use this equation to determine the Kahler poten-
tial to order four for the CxMY model.
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We now wish to couple other chiral and antichiral
matter superfields to the Goldstone superfields in such a
way that the symmetry structure of the original super-
symmetric (SUSY) o model is preserved. In particular
general coordinate invariance should be retained. This
problem has been discussed by van Holten and we now
review and extend the relevant sections of his analysis.

The starting point is to notice that in order to have L,ff
invariant under general coordinate trans formations

~A' (A) we must require that the QGF's transform
as a contravariant coordinate vector:

(3.13)

tial is introduced:

Kz(g, g, w, w)=K(P, P)+C,g &w w

+C2R pw ~w +
where R

&
is the Ricci tensor

ySR p=g~R ~ p

(3.17)

(3.18)

and C&, C2, . . . are arbitrary constants. The ellipsis indi-
cates that all independent rank-two covariant tensors are
a priori allowed to implement bilinear coupling, of which
there are only two explicitly displayed. Among these are
contributions like

It can easily be checked that the supersymmetric partner
of A' is the g'~ given by Eq. (3.13), so this interpretation
is consistent with SUSY. Thus the theory defined by Eq.
(3.5) can be considered as the coupling of a bosonic o
model to fermionic matter. One may similarly couple
other matter fields by demanding that they transform as
coordinate tensors and then forming invariant interaction
terms by contracting with coordinate tensors formed from
the metric and the curvature.

Of particular relevance to us will be chiral and an-
tichiral matter superfields transforming as contravariant
vectors:

~Q (BQ yQ GQ)
(3.14)

Equation (3.14) implies that B is a contravariant vector
though g is not:

aA" ~ 1 a'A"
X +~2 aA~ &2 aAi'aA&

(3.15)

However a contravariant spinor field 7 may be defined as

i'—=X +r B)'qr.
Py (3.16)

General coordinate invariance is preserved if we can write
the matter-coupled supersymmetric Lagrangian in terms
of B, 7, covariant derivatives and tensors like g &,
R p ~, and so on. Also, the new Lagrangian must yield
the original SUSY o. model when the matter fields are set
to zero.

Of course, to maintain supersymmetry the new Kahler
potential must be written in terms of superfields. If the
matter coupling terms are also written as coordinate sca-
lars in superfield form, e.g. ,

K(g, g, w, w) =K(P,P)+Cg &w
i w

then it is guaranteed that the new Lagrangian (which is
the D term of K) will also be a coordinate scalar. Thus
the D term will automatically be expressible as a function
of purely tensorial objects. This situation is to be con-
trasted with the case where a superfield tensor is not a
scalar, for instance w . Then, as Eq. (3.15) shows, it is
not true to say that all the component fields are also ten-
sor s.

To form bilinear matter couplings a new Kahler poten-

R. gW~W +R. ~W~W

which are pairs of non-Hermitian terms, where R is the
curvature scalar: R—:R . These types of terms must
feature covariant derivatives of the curvature so that ten-
sors with unequal numbers of barred and unbarred indices
are obtained.

Cubic couplings may be introduced through covariant
derivatives of rank-two tensors (e.g. , R &.„), and through
rank-three tensors formed by contracting a covariant
rank-(n+ 3) tensor with a contravariant rank-n tensor.
Note that the simplest such terms, g ~. and g ~. , actu-
ally vanish.

Linear matter coupling terms may be implemented
through covariant vectors formed by contracting rank-
(n + 1) covariant tensors with rank-n contravariant ten-
sors. The highest-order couplings to be discussed are
those of order four. The simplest examples of such cou-
plings are

C&g ~g~w w w w +C~R p~w w w w

In the GMY model there exist two generations of
matter fields. To preserve covariance it is necessary to
consider two contravariant vectors of supersymmetric
matter. An immediate consequence of this is that a new
set of four neutral massless supersymmetric multiplets
(and their charge conjugates) need to be introduced with
each matter generation in order to form a contravariant
vector. Thus the number of novinolike particles in the
model increases from four to twelve. Clearly their ex-
istence is not in conflict with the anomaly-matching equa-
tions because they are totally neutral with respect to H
[see Eqs. (2.3) and (2.4)]. Also, with two independent con-
travariant matter vectors in the model, cross terms [e.g. ,
g ~(w ~w2+w2w~ )] are a priori possible.

The above considerations make it clear that many pos-
sible interaction terms exist a priori, coupling via many
arbitrary parameters. ("Arbitrary" in this context means
that they cannot be determined by symmetry arguments
alone. Of course, the GMY model dynamics is principle
yields definite values for all these numbers. )

However, a physically motivated argument may be
presented which indicates that most of the couplings
a priori present are actually small, i.e., that most of the
constants (e.g. , C2) are small. To illustrate the argument
consider bilinear coupling through the Ricci tensor:
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(3.19)K(p, p, tv, w)=K(p, p)+C2R ~w w + .

To calculate R ~ the inverse metric tensor g ~ is needed:

g ~Hg g~ g &Hg ~P

In general any coupling tensor will be formed from g &,g, R ~pyg, R ~pqg. y, R ~pyg. —, and higher covariantaP

derivatives of the curvature. A schematic argument illus-
trates the basic idea. Consider the Kahler potential as a
power series in the Goldstone field P:

K(4)-"0'+f34'+f44'+fs4'+fed'+ . . (3.20)

The metric tensor is schematically the second derivative
of K:

g(p)-2v +3f3$+4f4$ +
The inverse metric tensor is then

(3.21)

1
g '(p)—

2 2

3f3
4v'

f4 9f3'
, p'+

16U

(3.22)

The curvature is of the form

-ro(u', f3,f &+r, (v,f3,f4,fs)4

+r2(u f3 f4 fs feed'+ ' ' ' (3.23)

where ro, r &, r2 are the coefficients of each order in the
power series. So the Ricci tensor is schematically

(tt)-R(P)g '(tt)

—ro(v, f3,f4)+rI (u,f3,f,fs )0

+r2(v', f3 f4 fs fe)4'+ . (3.24)

Thus the fourth-order coupling term in Eq. (3.19) is of the
form

oK-C2r2(u, f3 f4 fs fe)4' w (3.25)

Hence a fourth-order term depends explicitly on fs and

fe which are coefficients relating to higher-order process-
es among the Goldstone fields, namely, fifth- and sixth-
order processes.

The point of this analysis is that from a physical
viewpoint it is difficult to see how the strength of fifth-
and sixth-order processes among Goldstone fields should
be strongly related to fourth-order Goldstone-field—
matter interactions. Consider Figs. 1—6. It is physically
reasonable to suppose that two of the QGF's in Fig. 1

may be replaced by matter fermions (whose quantum
numbers are identical to the QGF's) to obtain a fourth-
order coupling of similar strength (Fig. 2). The contact
interaction in Fig. 3 may yield a fourth-order interaction
only if a loop is created. However this procedure is disal-
lowed because all possible processes that contribute to

FICx. I. Feynman graph of four-QCxF contact interaction of
strength f4.

fourth-order interactions have already been accounted for
in Fig. l. Another sixth-order term generates four-
fermion —two-scalar coupling (Fig. 5). A four-fermion
term can be envisaged to follow from this interaction only
if the matter fermion is a bound state of a QGF and a
Goldstone boson (Fig. 6). This idea would imply, for ex-
ample, that the muon in the GMY model is a bound state
of an electron and a scalar neutrino. This possibility must
be considered to be unlikely. It is more probable that the
matter generations in the GMY model are true multipreon
composites or bound states of two preons with one or two
hypergluons. In these cases it is far less clear that in-
teractions such as Fig. 5 should be related to interactions
like Fig. 2. These issues can only be clarified by a more
detailed study of the hypercolor force. However, it seems
reasonable to assume that higher-order Goldstone terms
do not contribute strongly to lower-order Goldstone-
field —matter terms.

The cause of the trouble with the Ricci tensor is that it
is related to the fourth derivative of the Kahler potential,
while the matter fields are bilinear. Coupling tensors can
thus be classified according to what order derivative of K
they are related to: (i) g ~~second derivative of K
(unique); (ii) R

&
~~fourth derivative of K; (iii) R ~ &, z

and R ~ & ~~fifth derivative of K, and so on. As the or-
der of the derivatives increases so does the order of the
process to which they refer in the Goldstone sector. It
seems physically reasonable that at some point for a given
power of matter fields the higher-derivative coupling ten-
sors yield negligible contributions. Here we have argued
that the knowledge of the Kahler potential to fourth order
should suffice to calculate all the possible order-four
terms in the rnatter-coupled system.

This restriction has the remarkable consequence that
linear and cubic matter couplings should be negligible.

FI(s. 2. Contact interaction of two Q(sF's with two matter
fermions (heavy lines).
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FICJ. 3. Sixth-order contact interaction of QGF's with
strength f6.

FIG. 5. Sixth-order contact interaction between four QGF's
and two GB's or QGB's.

The only way to obtain a rank-three tensor from the
metric is to take the covariant derivative; however, this
vanishes. Similarly, linear couplings vanish. Also, all
non-Hermitian terms are zero.

Thus to third order in the matter fields the most general
form for the new Kahler potential is

K3($~(t»Wl~wl~ 2W~W2)=K(f~f)+Clg(yP($&(b)W 1W1

+C2g~P(4»$)w 2W2

+g.I)(4,4)(C3W 2W1

+C3 tU 1W2 ) .p

where

—mn—
as' ~ah, c2 g gms, agan, c (3.29)

portant consequences for the four-fermion terms. An ob-
vious observation is that there are no cross terms. If the
effective interactions are to be identified with the weak in-
teractions then this means that certain family lepton-
number-changing processes are absent (e.g., g ~w 1w2
contains b,L&,AL &0 processes). As well as the form
also the strength of Goldstone-field —matter interactions
is not arbitrary.

To discover how strong they are we need to calculate
the curvature tensor for the expanded Kahler manifold
defined by coordinates Z -(A,B~~,BI2):

An important observation now eliminates the remaining
arbitrariness in Eq. (3.26). When the metric tensor is ex-
panded as a power series in the fields, the zeroth-order
coefficient yields a purely bilinear vector superfield in the
ws: gas =

BE
BW ~B~

BE
BB~B~

BE
BW ~BB,

BE
BB~BB

BE
Ba ~BB,

BE
BB~BB

T=g ~(0,0)(c1W1w1+c2w2W2+c3 2 1+ 3w1w2),
(3.27)

where g p(0,0) is a numerical quantity. T must therefore
be identified with the kinetic energy terms for the matter
fields. Since kinetic energy terms must be diagonal in the
fields and appropriately normalized, certain relations hold
for c&, c2, c3, and c3. The diagonal requirement implies
that c3 ——c3 ——0, while the normalization condition means
that ci ——c2 ——1. Another way to view it is that the true
physical fields are appropriately rescaled linear combina-
tions of the fields used in Eq. (3.27).

The revised Kahler potential is, therefore, Here,

BE
BB~Bc

G p
r= S prBi

g.y, y&k

BE
BB~BB,

BE
BB~BB,

g P, rW g.y, r&7
0 (3.30)

K3(g,f,w l, wl, W2)tW2) K(f~(b)+g~iI(4~4 )W 1W1

&(P,P)w, w2 . (3.28)

The relations among the "arbitrary" parameters have im-

G~II= g~p+g—~P g(& 1K+&Z&$) .

The inverse metric may be verified to be

(3.31)

FIG. 4. Sixth-order contact interaction with one loop, thus
seemingly yielding a fourth-order interaction.

FIG. 6. Fourth-order contact interaction generated from a
sixth-order interaction, where two of the fermions are now com-
posites of a QGF and a scalar boson.
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-ab -yI)l a~ 5
y

-yjtl a~5
y

—g yI" gB ]
-~y P 5

g~8+g r&Br~I 4~&B &B

0

—g rI ~B 2
-ay P

0 (3.32)

where

g a=g p+R a 5(B,By+B2B(),
(3.33)

(3.34)

The factors of 4 in the last two terms on the right-hand
»de «Eq. (3.34) are related to the symmetries of the cur-
vature tensor (R j3 5

——R I) &
—R & p R5 I))

——and define
the relative strength of the purely Goldstone and mixed
Goldstone-field —matter interactions. We shall see in sub-
sequent sections of this paper that in the GMY model this
form of QGF-matter interactions contains flavor-
changing processes as well as conventional processes.
This will preclude an identification of the residual force
with the weak force.

Even though Eq. (3.34) will turn out to admit exotic
processes there is still a high degree of similarity between
the four-QGF terms and QGF-matter terms. In particu-
lar if a novinolike mechanism exists for the first genera-
tion then it also exists for second- and third-generation in-
teractions with the first. Of course the importance of this
result is diminished if the residual interactions are not to
be identified with the weak force. It would recover its in-
terest in attempts to modify the GMY model to suppress
flavor-changing processes.

It is now pertinent to comment on mass generation
within this scheme. As discussed by GMY, a generational
mass hierarchy may be produced because the masslessness
of the QGF family is guaranteed by two separate mecha-
nisms, while the other families are only protected by
chiral symmetry. To achieve this result the theory must
be extended to include supersymmetry breaking and addi-
tional chiral-symmetry breaking. Such extensions are per-
mitted with the framework discussed in this section The
breaking of H in the exact supersymmetry limit may be
phenomenologically described by an F term involving the
matter superfields. Supersymmetry breaking may be im-
plemented in a number of ways, including explicit scalar
and gaugino masses, explicit gauging of a flavor subgroup
without the inclusion of gauginos, and breaking via super-
gravity from a hidden sector. A detailed examination of
these possibilities is beyond the scope of this paper.

Another effect the mass generation mechanism might
have would be to reintroduce the cross terms parametrized
by c3 and c3 in Eq. (3.26). This would occur if the mass
eigenstates did not coincide with the interaction eigen-

It can be readily shown that the four-fermion terms aris-
ing from Eq. (3.28) by use of Eqs. (3.29)—(3.33) are

I 4 fermion i R [(q Pq5)(qayy)

+4(p%')(p X')
)4 gang $ g Cljkl~ i W jWkW!

(i) P-8
i,j,k, l =1,2

(2) —P—3 a
+Rap g g CIJklW l W jWkW!

ij,k, I =1,2
(3.35)

Cross terms cannot be eliminated in this sector. Quar-
tic coupling through R

& ~ yields the novino mechanism
structure; however, other terms such as g ~g &

do not in

general display the novino mechanism. The techniques
discussed in this section will now be used to analyze the
GMY model explicitly.

IV. AN EFFECTIVE LAGRANGIAN
FOR THE GMY MODEL

The first stage of the calculation involves finding a
nonlinear realization ' ' on the Goldstone fields for in-
finitesimal transformations in the coset space

G U(6)L XU(6)a XUa(1)
H SU(4)L X SU(2)L X SU(4)a X SU(2)a

(4.1)

This is done by demanding that the Killing vectors satisfy
Eq. (3.10) or equivalently that the Jacobi identity

[[XA Xa ] 4c] [[&a 0c]»a]—+ [Na 0'c]»~ ]

(4.2)

is satisfied, where Xz,X~ are any broken generators and
Pc is a Goldstone field.

To clarify the presentation, we will consider first just
the left-handed sector

G U(6)L XUa(l)
H i SU(4)L X SU(2)L

(4.3)

and generalize to the left-right-symmetric case at the end.
In order to implement Eq. (4.2) the algebra of the bro-

ken and unbroken generators for the model is needed.
The Lie algebra of U(6)L X Ua (1) is given by

[Ta, TD] =oD Ta oa TD, —

[Ta,Qa ]=o
(4 4)

where A, B,C,D =1, . . . , 6, La is a generator of U(6)L,

states defined by Eq. (3.28). The analysis in this paper
would then need to be modified to include mixing angles.

The specification of the new Kahler potential is comp-
leted by defining the quartic terms. These are far more
arbitrary than the quadratic terms because the curvature
tensor may now be used and because they can have arbi-
trary strengths. (Note that covariant derivatives of the
curvature should still not be used because then fifth- and
higher-order derivatives of K would multiply quartic
matter products. ) The two simplest possibilities are
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and Qz is the generator of Uz (1).
The generators of SU(4)l and SU(2)I are given by

Ug = Tp —
4 5pTq

and

(4.Sa)

[Up, Lr]= 5—pL; + ,'5p—Lr,

[ U', Lk ]=5kL —, 5' L—k,

[Up, singlet] = [ Uz. , singlet] =0 .

(4.11)

(4.5b)
It may now be verified that the following is a nonlinear

realization in the coset space:

X~ =T~, X—= Ty, X'=—Tk . (4.6)

respectively. The greek indices refer to SU(4) and run
from 1 to 4, while the latin indices refer to SU(2) and run
from 1 to 2. Denote the broken generators by

i—[X;,L~~] =LJ Lp,
i—[X',LJp] =5~5p,

i —[X„LJp]=iLJp,
(4.12)

The coset space algebra now follows from Eq. (4.4):

[XP,X'p] =5pU/ 5,'Up—+ , 5,'5p(X—' —,X)—,
[X;,XJp] = [X',Xjp] =0,
[X;,X]=X/, [X',X]= —X'

[X;,X']= —X~, [X',X']=X'

[X,X']=0,
[QR» l = [Qz»' ]= [Q~ »]= [Qz»'] =o .

(4.7)

[X;,Xjp]=5pUj 5|Up ——,
' 51—5pXi,

[X;,XL ]=3X;, [X~,XL ]= —3X'

[X, , V] =[X;,A ]= [XP,Qg ]=0,
[X~,V]= [X',A] =[X',Qg ]=0,
[VXs. ]=[A»L, ]=[A V]=[VQ~]

(4.8)

=[A Q~]=[XL. Qz]=0.

The existence of a right-handed sector is employed to
rewrite the algebra in terms of V, A, and XI which gen-
erate U(1)z, U(1)„,and U(1)I, respectively:

Xi ——Y] +X3—Y3

Y2 ——X2 —X3+ Y3
(4.13)

Omitting one singlet Goldstone field from each sector,
Eqs. (4.12) and (4.13) imply that the following is a left-
right-symmetric nonlinear realization:

i [X;,Ljp]—=LJ Lp,

i [X—;,L, ]= —, iL;—

i [X—',L, ]=0,
i [X—„Lb]=1,

where a, b= 1,2,3.
It is consistent with the Jacobi identities to take the

Goldstone fields as singlets under the anomalous U(1)~.
The contribution which the U(1)„anomaly makes to the
effective Lagrangian is beyond the scope of this paper. "

The right-handed sector obeys analogous relations to
Eqs. (4.12). However the technique employed has intro-
duced a linearly dependent set of broken singlet generators
X] Xp X3 Y&, Y2, Y3, where the latter three refer to the
right-handed sector. X& and Y2 may be eliminated by use
of

This is convenient because XL, V, and Qz (with R-
character zero) are free of strong anomalies, while A is
anomalous. A further convenient redefinition involves
taking linear combinations of XI, V, and Q~ so that a
more symmetric algebra is obtained:

i [X;,L ( ]—= —i [X;,L2] = —
4 iL;

—i [Xp,Rp) =i[Xp,R (]= i[X(,R2]—=0;
i [X',L—~~] =515p,

i [X',L ~
—]= —i [X',L2] =0,

(4.14a)

(4.14b)

[X,XJp] =5IU/ 5; Up ——,
'

5;5p(X—i +X2+X3),

[X;,X, ]= [Xp,X2]= [Xp,X3]

[X',X) ]= [X',XP ]= [X',X3]= —X'

where all other commutators vanish. Here,

(4.9)

i [X',R—$]= i [X',R, ]=—i [X',R—2] =0;
i [X2,Lq~—]=iL~~,

[X2,L, ]= —i [X2,L2] = 1,
[X2,R p] = i[X2,R ) ]= —t [X2,R2] =0 .

(4.14c)

Xi —=
3 XL. + V+ Q~

X2= —,XL + V —Qg, (4.10)

X3=—,XL —2V .1

Denote the nonsinglet left-sector Goldstone fields by
L; and the singlet fields by L], L2, and L3. The
transformation laws for these fields under the unbroken
generators are

Similar relations hold for X3. R$ is the right-sector non-
singlet Goldstone field, while R& and R2 are the singlet
fields. Analogous relations obtain for the right-sector
generators and nonlinear realizations for charge-conjugate
fields may be obtained by Hermitian conjugation.

The Killing vectors defined by Eqs. (4.14a)—(4.14c) are
now used in Eq. (3.12) to determine the Kahler potential
to fourth order. The full result is presented in the Ap-
pendix. Here we shall display only the order-four terms
involving the quark-lepton Goldstone fields:
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K4(L,L,R,R ) = —,', (u1 1 + u 12)L ttL JJ3Lt Lq~ =, vl L ttL JJ3L& Lt

+ 16 (U33 + i/34)R -,.R —.R+)——,v2 R -, R -.R+!+ 4 u13L ~L; R -,. R '- (4.15)

The four-fermion terms which follow from Eq. (4.15) may be obtained by use of Eqs. (3.5) and (3.8). Written in terms
of left-handed Dirac spinors they are

2
4 9 V11 +Q 12 i

'
p l ' '

p
eff, Goldstone 32 L'Y tt!L0PL Y WjL + 0 L Y OLP J3Lrttf;L

V 1 4V 1

2
33 + 34 i p

32 V2
Lr 'L JL r tJL

1 —— . —p 9 "13 i a a+ 2
A Lr At)LA Lr A .L—2 2 0 LY 4;LA;LYRA L

4V2 8 Vl U2

(4.16)

A & is the right-sector left-handed Dirac spinor. Using the Fierz identity,

5l6J" 25J5—!"—+ 2 (7 )i (7 )lk

the isoscalar and isovector terms in Eq. (4.16) may be isolated. The left-sector contribution then becomes

(4. 17)

ff G~old to 2 PLY APL'fjrtt74k+ 4 (Ul 8 Uli tl tt12)WL3 PL tttkrtte, o s oil e
8 p 8

(4.1 8)

Here p, q = 1, . . . , 4 refer to a sum over the SU(4) indices. The right-sector contribution has an analogous form, while
the left-right cross term is purely isoscalar.

The isoscalar piece of Eq. (4.18) displays a novinolike mechanism since it vanishes if
2 9 2

Ul 8 (~11 ++12) (4.19)

Exactly how small the coefficient is depends on the detailed dynamics of the GMY model. Note that this scheme differs
from the novino model in that there are two novinos per sector, and that isoscalar suppression depends on two different
parameters (the scale U» and the mixing parameter u, 2) rather than one.

The matter coupling terms may be obtained directly from Eqs. (3.8) and (3.34):

ff, Go ld to tt 2 tt Lr +PL '(4 Lrtt74L+2+ )!LAN it7JffL +2BLrttrJt. lL )
8V 1

+,(0~c r"7&flL .& fL r„rfk + it!fLt r"7&~2L + IL r„70$ )
4v, '

+ 4 (U 1 8 U1 1 8 it 12)tt!L Y 1PI. (4 krttlfL +2+ ftLrtt 1J(. fL +2ÃL ritl+3L )
8U 1

+ (Ul Ul1 12)(tt!L3 1+1L + tLl 6 +tttL Y +2L AL3 8 )
U 1

+matter self-interaction terms ~ (4.20)

The matter self-interaction terms are more arbitrary due to the fact that the curvature tensor may be used. However,
only two types of four-ferm ion terms are generated: isoscalar and isovector terms. While couplings through the curva-

ture tensor yield similar structures to Eq. (4.20), couplings such as g fig 1) w 1 w !w! w 1 yield purely isoscalar terms. As
explained previously, flavor-changing vertices are in general possible. Hence the four-fermion matter self-couplings may
be parametrized as

ff, ttn 2
(c 1+ IL r"~&iL &fL r„7&fL +. ca&(LY"&&zL '& 3Lrtt7&(L +c3& iL r"&&iL '& 3L rtt&&3L

V 1

+ 4+ 1L3 ~+2L BL3 ++GAL +c5BL Y 7 Jf 1L + 3L Y 7+fL + 5 ~ 1L r"7&2L ~ fLr„7Jf li

+ 6+ 1Lr"~&'1L Jf jtLrt47 Jf lL + 6 + 1L r"7&'lL 'Jf jL ) tt7 Jf fL +c7BL Y r+2L 'BLrtt Jf fL

+ 7 BLr" &'2L + fL Y 7+lL )
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+ 2(s1&'1LY" ~'1L ~fL3p +fL+ 2+2LY +2L +)LYp ~3L+ 3+1LY ~1L ~IL3p +)L
V)

+ 4+ ILY ~2L PLY„Ut.fL+ 4'2LY +1L +)LY +fL+ 5 + 1L Y +2L + fLY„&)L

+s6~1LY ~lL ~fLY ~)L+ 6+1LY ~1L +)LY +fL+ 7~2LY ~2L ~)LY +fL

+ s 7 X(L Y"1XzL X fL Y„1X)L ) (4.21)

Equations (4.20) and (4.21) contain the complete effective
Lagrangian. Phenomenological issues arising from this
analysis will be considered in the next section.

V. PHENOMENOLOGY OF THE GMY MODEL

The effective four-fermion terms that arise in the stan-
dard model before W —y and Cabibbo mixing are

terms for the matter fields, the strength as well as the
form of QGF-matter interactions was precisely deter-
mined.

If the above conclusion is incorrect then it is probably
due to the failure of point (ii). Let I

T' &(P,P) I be the set
of linearly independent rank-two Hermitian covariant ten-
sors formed from the metric, curvature, and covariant
derivatives. Then, the bilinear terms are, in general,

GFL',tt(GF)= JP J„,&2
(5.1) Kz ——g [C;"'T~&(P,P)w 1w1+C 'T~&(P, P)w zwz

where the weak current J" is given by
3

J"= g WFL rprA'L . (5.2)

+C 'T'~(p, p)w zw1

+C '*T'
t3(p, p)w ~1wz ] . (5.5)

i labels generations and p = 1,2,3,4. P= 1 yields the lep-

tonic weak doublet (,') while p=2, 3,4 and gives three
Q

colors of quark doublets (d'), c =R,B,G. GF is the Fermi
constant.

Consider first the effective Lagrangian describing
QGF-matter interactions in Eq. (4.20). For simplicity as-
sume the validity of the novino mechanism [Eq. (4.19)] so
that all the isoscalar terms are zero. Then if we make the
identification

The kinetic energy terms are

T = g T' ~(0, 0)( C "
wow 1 +C 'w ~zw z

+C 'w zw1+C '*w ~&wz ) . (5.6)

Diagonality and correct normalization require

V2
U)

8GF

the effective Lagrangian has the form

Luff —Left(GF)

(5.3) g T' p(0, 0)C '= g T' p(0, 0)C," '=g~p(0, 0),

g T' p(0, 0)C '=0 .

(5.7)

2GF+ (&FLYp7XF1L X fLYp7-yf
2

+4 L Y 7~2L + 3L Yp7 4f. ) (5.4)

By expanding T'&(P, P) in a Taylor series we find that the
quartic terms are

Kz ' ——g T'
g g(0, 0)

Thus Eq. (4.20) does not reproduce standard phenomenol-
ogy because of a strong contribution from terms with the
SU(4) indices p and q contracted between f's and X's. GF
is therefore not identifiable with the Fermi constant GF.

In view of the importance of this conclusion it is
worthwhile emphasizing upon which properties and as-
sumptions it depends: (i) the fundamental assumption
that the higher-generation quarks and leptons form a
contravariant-vector superfield; (ii) the heuristic argument
which indicated that bilinear coupling should only be im-
plemented through the metric tensor; (iii) the observation
that since the bilinear terms contained the kinetic energy

~(C»p —Hyy +C( )qadi
—Pyy

+C 'p w zp~w1+C '*p w1$ wz) .

(5.8)

The form of the T'
F,„~(0,0) will determine whether or not

isoscalar or isovector terms are produced. It is conceiv-
able that Eqs. (5.7) can be maintained while simultaneous-
ly reproducing L',tt from Eq. (5.8). However it is not
clear that this procedure is "natural" or simple.

A further complication if assumption (ii) is relaxed
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even further is the possibility of non-Hermitian tensor
couplings. These would yield additional flavor-changing
terms at the four-fermion level. Linear couplings would
then be allowed and these also have the potential of creat-
ing mixed Goldstone-field —matter kinetic terms. Further
constraints such as Eq. (5.7) would then need to be im-
posed, or alternatively linear combinations of the Gold-
stone and matter fields would have to be taken so as to
achieve diagonalization.

If it is conceded that the residual interactions of the
GMY model do not yield weak interactions then con-
sistency with experiment demands that vi be sufficiently

and

0 i r"re X'fi .}',~X'fi

pi 1 rXli X fL1 pTQ)

Using the condensed notation

fiick"Qadi

= tt &$2 we obtain

large. Since v& is related to the hypercolor scale AHc this
implies an upper bound on the sizes of quarks and lep-
tons.

It is now of interest to know explicitly what processes
are admitted in Eq. (5.4). To this end we compare the
terms

(grP) (X&rX&)=2[(ev, )(vg)+(e v)(cs)+(du)(vg)+(du)(cs)+H. c.]+(v,v, —ee +uu dd)(v—&v&
—Pp+cc —ss)

(5.9)

TABLE I. The charge-changing terms in (/AX) (XTf) The.
full contribution is the sum of the terms in the left-hand
column. The Fierz transform of these terms is displayed when
they correspond to pieces of (|t~P) (X~X). The "comment"
column either indicates a flavor-changing process which is in-
duced or asserts that a particular term enhances a standard pro-
cess in (Prg) (XrX).
Four-fermion term

2(e v„)(v„e)
2(ev„)(cd) + H.c.
2(dc)(cd)
2(v,p)(pv, )

2(v,p)(su) + H.c.
2(us)(su)

Fierz transform

—2(ee) ( v„v„)

—2(dd )(cc)
—2(v, v, )(pp)

—2(uu )(ss)

Comment

Enhances

Enhances
Enhances

E+~p+v,
Enhances

which of course has the form of the weak interactions.
The charge-changing terms of ((~X&).(X&rg) are
displayed in Table I and the neutral terms are displayed in
Table II.

The nonstandard piece has a number of different ef-
fects.

(i) The neutral-current processes v, v, ~v„v&,
e+e ~p+p, cc~uu, ss~dd are forbidden because a
cancellation occurs via a Fierz transform between the
standard and cross term.

(ii) There are flavor-changing charged currents which
induce processes like K+~p+v, . Note that L„+L, is
conserved.

(iii) There are flavor-changing neutral currents which
cause KL~v, v&, KL ~e p+, and other such L&+L,
conserving processes.

(iv) Certain standard processes are enhanced. One ef-
fect of this is a violation of quark-lepton universality.
For example, the standard neutral-current terms
—(ee)(v„v„)—(ee)(cc) alter to —3(ee)(v&v&) —(ee)(cc).
Another consequence is the breakdown of e-p universali-
ty, e.g., —(ee)(v, v, ) —(ee)(v„v&) is modified to
—(ee)(v, v, ) —3(ee)(v&v&).

The basic structure of the nonstandard term is that
flavor-changing neutral currents (FCNC's) either enhance

and

L,ff —2V 2G+(ep)(sd)

L', ff = 2W2GFsin8, (v~)(su),

(5.10)

(5.1 1)

respectively. From this it follows that
I 2r(rc, e ~+) GF

r(re+ ~+v„) GF

1

sin 0,

Using the experimentally determined limit'

(5.12)

I (Ki~e p+)
&2.3X 10

r(1~. + p+v )
(5.13)

we find that

GF & 3.3 )& 10 GF

v»7 TeV .

(5.14a)

(5.14b)

AH& would be related to v& by a factor of order one. '

AHt- would then have a lower bound of about 30 TeV.
The process which generally leads to the most severe

bounds on AHc is K —K mixing. ' ' This AS= 2 pro-
cess would be induced by a four-fermion term such as
(sd) . Note that such a term in our formalism can only
arise from a non-Hermitian coupling such as R. &G &G~

which we have argued is surpressed or absent. This is an
illustration of the phenom enological insight that the
geometric approach provides.

Turning to the quartic matter terms displayed in Eq.
(4.21) we note again the presence of family lepton-
number-violating processes. There is an experimental
bound on one such process

standard charged-current processes or cancel standard
neutral-current processes or yield exotic effects. The
flavor-changing charged currents (FCCC's) either enhance
standard neutral-current effects or yield new generation-
changing processes.

A bound can be obtained for v
& by comparing the decay

Kl ~e p+ with K+~p+v&. The effective Lagrangians
describing these processes are
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TABLE II. The neutral terms in (PrX) (Erg) The layout is the same as Table I. The word "can-
cels" in the right-hand column means that this term cancels with a term in (grf). (X&X).

Four-fermion term

(v, v„)(v„v, )
—(v, v„)(pe) + H.c.
(v, v„)(cu) + H.c.
—(v, v„)(sd) + H.c.
(ep)(pe)
—(ep)(cu) + H.c.
(ep)(sd) + H.c.
(uc)(cu)
—(uc)(sd) + H.c.
(2s)(sd)

Fierz transform

—(v, v, )(v„v„)
(v, e)(pv„) + H.c.

—(ee)(pp)

—(uu)(cc)
(ud)(sc) + H.c.
—(dd)(ss)

Comment

Cancels
Enhances

0
ve vp

Cancels

KL ~e p+, K+ a+pe
Cancels

Enhances
Cancels

P P P ) 49~10—4

I (r+ ~all) (5.15)

m, ' ~s, +c, ~'
s +s +s

6'll V i

the v. lifetime is

r,=(3.3+0.4) &(10 ' sec,

which yields a total decay width of

(5.16)

(5.17)

I,=—=(1.9+0.2))&10 ' GeV
7

and so

(5.18)

~c5+s5~ &10 v~

If we take U& —10 TeV then

~c5+ss
~

&10.

(5.19)

(5.20)

VI. CONCLUSION

An effective-Lagrangian study of a supersymmetric
composite model which features one QGF generation and
two matter generations has shown that under physically
reasonable assumptions the residual four-fermion interac-
tions do not reproduce weak coupling. The effective in-
teractions display some of the characteristics of weak in-
teractions due to the possibility of a novinolike mecha-
nism, but they fail to suppress flavor-changing processes
such as K~~e p+.

Introducing fundamental weak interactions and using
experimental data show that the hypercolor scale AHc
must be greater than a few tens of TeV's.

The strength of this process is governed by the value of
(c&+s& )/v~ . Neglecting the muon mass gives the fol-
lowing expression for the decay width:

The effective Lagrangian constructed yields a definite
pattern for the residual interactions as displayed in Tables
I and II. Further tests of quark-lepton and e-p-~ univer-
sality as well as further searches for flavor-changing pro-
cesses are necessary to see if this pattern is realized in na-
ture.

The geometric approach employed provided an insight
into the structure of effective Lagrangians for all QGF-
matter models. The observation is that the candidate cou-
pling tensors may be classified according to the order of
the derivative of the Kahler potential that they depend on.
This is also connected with the order of processes in the
Goldstone sector. It was argued that this provides a
natural suppression of Goldstone-field —matter couplings
which require knowledge of the Kahler potential to higher
order than the matter coupling itself.

Finally, there are other major issues that have not been
considered in this study, namely, mass generation, left-
right-symmetry breaking, and supersymmetry breaking.
These sorts of problems must be addressed with more and
more seriousness so that the predictive power of super-
symmetric composite models rises, in the end hopefully
meeting the challenges originally set for subconstituent
models.
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APPENDIX

The Kahler potential to order four for the GMY model
is listed below in convenient groupings.

(i) Kinetic energy terms:

K2 ——U& L ~Lp+v2 R pR~+U» (LIL, +L2L2)+U33 (R,R~+R2R2)+u~~(L3L~+L~L2)

+u34(R2R ~+R ~R2)+u3&(R &+R2)(L &+L2)+u3'(L ~+L2)(R &+R2) . (Al)

The singlet sector is not diagonalized; the physical singlet fields correspond to linear combinations of l-~, L, 2, R ~, and
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R2 which diagonalize the kinetic energy terms. All the fields used in this section are dimensionless. Since the Kahler
potential must be of dimension two to make the Lagrangian given by Eq. (3.5) of dimension four, v], v2, U]1, and U33

have the dimensions of mass and all other coefficients have dimension (mass) . If the scalar component of L; is A;
then the canonical scalar field is actually v13; .

(ii) Third-order terms involving nonsinglet fields:

K3 4 i(v]] +u]2)L ~Lp(L] +L2 L,—L2—) ——,iu]3L ~Lp(R] +R2 —R] —R2+L]+L2 L]—L2—)NS 3 ~ 2 CX 3 ~

+ 4i(U33 +u34)R-,. R' (R]+-R2 —R] —R2) .

(iii) Third-order terms for singlet fields:

K3 —x]]](L2L2 +L ]L] )+x]]](L2 L2+L ] L ] )+x]22(L,L2 +L2L ] )+x]22(L 1 L2 +L2 L ] )

+x]12(L2+L])L]L2+x]12L]L2(L,+L2)+x]23(L]L2+L2L])(R]+R2)
—x]23(R] +R2)(L]L2+L2L] )+x]34(L]+L2)R]R2+x]34R]R2(L] +L2)

+x]33(L]+L2)(R] +R2 )+x]33(R, +R2 )(L] +L2)

+x]]3(L2L2+L,L] )(R ] +R2 ) —x „3(R,+R2)(L2L2 +L ]L])+(L]~R],L2~R2, 1~3,2=:;)

The last term. indicates that the Kahler potential has left-right symmetry. For example,

x]22(L]L2 +L2L] )~X344(R]R2 +R2R] ) .

(A2)

(A3)

Note also that the permutation symmetries L1~L2 and R1~R2 have been imposed due to the form of the algebra given
by Eq. (4.19). In the equations that follow it will be understood that these symmetries imply additional equations. The
coefficients x also obey

0= (x]12+x]12) +2(x]]]+x],] ),
(X]12+X]12)+2(x]22+X]22)~

+ 123 ++ 113++312 +2+ 311

O= X 123 ++ 113 ++312+2X311

x 123 x 1 13 pure imaginary ~

(iv) Fourth-order terms involving nonsinglet fields only:

EC4 ———„(v]1 +u]2)L ~L JUL(LJ —,U] L ~L Ji3Ll Lp+—,', (U33 +—u34)R -,. R .R+-
——,U2 R , R —.R—. lQ p+ 4 u ]3L ~L; R Rt] . —.

(v) Fourth-order terms involving singlet and nonsinglet fields:

K4 = 41(2x„,+x]]2)L ~Lp(L]L]+L2L2)+ 2 lx3]3L ~Ll (R]R]+R2R2)

+ 4 l (2x]22+x]]2)L ~L; (L]L2+L2L ] ) + —,lx3]4L ~Lp (R ]R2+R2R ] )

(A4)

(A5)

+ 4 I (x]23+x]]3)L~Lp (L]+L2)(R, +R2 )+ —,1 (x]23+x]]3)L~Lp (R ] +R2)(L ] +L2)
—

4 I (x]]]+x]22)L ~L; (L ] +L2 )+ 4 l(x]]]+x]22)L ~L( (L ] +L2 )

2 lx]33L ~Lj (R] +R2 ) + —,
'

lx]33L (yLl (R 1 +R 2 ) —, lx ]12L ~Lp—L]L2

+ —,lx]]2L ~L; L]L2 —, ix, 34L ~Lp—R]R2+, ix, 34L ~Lp R—]R2—, 1 (x]23+x]]3)L ~—Lp(L] +L2)(R] +R2)

+ 4 l (x '123 +X ]]3)L ~LP (L ] +L2 )(R ] +R2 )+ (L ~R ) (A6)

(vi) The fourth-order contribution involving the singlet fields only will not be listed as it is lengthy and not particularly
informative. Suffice it to say that there are two types of terms (of the form p p and 1ilg ) and the Killing equation
(3.12) relates their coefficients among themselves.
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