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Unified multiplicity scaling in electron-positron and muon-proton collisions
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A quantum-statistical approach involving the coherency phenomena is applied to electron-
positron annihilations (in the c.m. -system energy range 4 & W & 34 GeV) and muon-proton collisions
(4 & W & 20 GeV). It is found that in both cases a new (energy-independent) multiplicity scaling dis-
tribution (with the same value of the only one parameter in its functional form) is sufficiently accu-
rate for the data on charged multiplicities and on the corresponding statistical moments. At higher
energies, the multiplicity distributions as well as the values of several statistical moments are
predicted.

I. INTRODUCTION

The experimental data on the multiplicity distributions
of charged secondaries in lepton-lepton, lepton-hadron,
and hadron-hadron collisions, taken with the data on sta-
tistical moments, reveal important information about the
scaling properties of the corresponding cross sections.

For instance, the work of Koba, Nielsen, and Olesen'
(KNO) leads to the conclusion that the second dispersion
D2 is proportional to the average multiplicity (n ). The
plot of D2 versus (n ) for the e+e data is seen in
Fig. 1(a) and for the p+p data in Fig. 1(b). Both figures
[in Fig. 1(a) see mainly the TASSO points] suggest with
sufficient accuracy that the KNO scaling' is not satisfied
at the presently available energies. On the other hand, the
KNO scaling is not obeyed by the CERN collider data '
even if until the highest CERN ISR energies the KNO
scaling was satisfied. The multiplicity distributions aris-
ing in electron-positron annihilations have been compared
with those arising in proton-proton and antiproton-proton
collisions from different points of view just recently. "
In this paper several aspects on the e+e and pp together
with pp multiplicity distributions are completed by con-
siderations involving an interlink, the lepton-hadron case,
especially the muon-proton collisions. The pieces of
knowledge which follow in that way allow us to pick out
the similarities as well as the discrepancies between
lepton- and hadron-induced elementary reactions.

In Sec. II a quantum-statistical approach is briefly out-
lined which incorporates, aside from the stochastic phe-
nomena, the influence of the coherent processes. It also

takes into account the increasing number of second-
aries produced in jets. As a result, a relatively simple
scaling function is derived which involves only one free
parameter in its functional form. This scaling function is
very well fitted for the description of the e+e as well as
p+p data on multiplicities and corresponding statistical
moments, as is seen in Sec. III. The conclusions about the
applicability of the procedure developed in this paper can
be found in the last section.

II. QUANTUM-STATISTICAL APPROACH

A. Stochastic and coherent fields

In this paper a quantum-statistical approach is applied
which involves M phase-space cells with superposition of
stochastic and coherent fields. Moreover, there is also a
reservoir where pure coherent fields are generated and
where after the production of particles several holes might
appear. Let the coherent part of the superposition pro-
duce (nc )tc charged secondaries while the pure coherent
field (reservoir) produces

( nc) —&nc)tc = &nc)(1 —tc )—:ct

of them (tc is a convenient parameter). It holds
(n ) = (nT ) + (nc ) where (nT ) ((nc ) ) represents the
average number of stochastically (coherently) produced
charged secondaries. In this case the full probability to
observe n charged particles (as derived by Perina and
Horak' ) has the form

exp
M(nc ) +a(nT )

(nT)+M . (n —j)!I (m+j ) (nT)

tc'M'(nc )
(n, )((n, )+M)
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P =Q(z ), (3)

In Eq. (2), L, (x) are the Laguerre polynomials (in the
normalization of Ref. 15). In the KNO limit, n~ cc,
( n ) ~ ao (plus additional assumptions), and Eq. (2)
gives'

In the present case the effective signal-to-noise ratio is
expressed in the form

R'=(&n, & a)—/&n, &

=(nc)1~'/(nr) .

where

and

P—:((n ) —a)P(n) (4)

The ratio on the right-hand side (RHS) of Eq. (8) is influ-
enced by the quantities characterizing the cells with the
aforementioned superposition of fields. We consider the
quantities

P(z) =M(1+R )(g/R) 'e '~ +" 'Il &(2MR() (5)

with

g = [z (1+R ') ]'i':—g(z);

Ip(x) represents the modified Bessel function. '5

In Eq. (3)

z =(n —a)/((n ) —a),
a being defined by Eq. (1). The genuine KNO case is ob-
tained if a=O; then Eq. (2) reduces to the Perina-McGill
distribution' which was considered in several other pa-
pers 1 1 1 8

(n), R, a,
as primary ones and the others (namely, (nr ), (nc), a )

can be expressed by means of them:

(nr) =((n ) —a)/(1+R ),
( nc ) =( (n )R +a)/(1+R ),
lr =R ((n ) —a)/((n )R +a) .

B. Statistical moments

The statistical moments Cq and Dq of the scaling dis-
tribution P(z ), itj given by (5) and z by (7), are expressed
as

sr' NARK I t-) JADE

&& LENA ~ TASSO

g PLUTO + HRS

Cq
——(n') /(n )'

q q
. a~ ~((n) —a)~V. /(n)~

j=0 J

(with Co ——C& ——1) and

1/q

10 11 12 13
& 1l&

(b)

where

Vj = [I (M +j)/I (M)]

xF( —j,M, MR )/[M(1+—R )] (12)

2-

-2
I

7
(n)

FIG. 1. (a) The dependence of the second dispersion
D2 ——((n —(n )) )' on the average charged multiplicity (n )
in e +e annihilations. The data are taken from the following
sources: Mark I (Ref. 2), LENA (Ref. 3), PLUTO (Ref. 4),
JADE (Ref. 5), TASSO (Ref. 6), and HRS (Ref. 7). The points
with filled-in symbols are used in Fig. 3(a) ~ (b) The dependence
of the second dispersion D2 on the average charged multiplicity
(n ), in p+p collisions. The data are taken from Ref. 8. The
solid line corresponds to the KNO scaling while the data suggest
an intercept (n ) = (n )o with —3 & ( n )o & —1.25, as it is indi-
cated by the dashed and dot-dashed lines.

(13)

and

ADq ——[Dq/((n ) — )]ah((n ) —a) . (14)

(with Vo= V, =1); F is the confluent hypergeometric
function. ' In the pure KNO case (a=o) we obtain
Cq

——Vq. The procedure adopted in this paper takes the
quantities VJ. as energy independent. Then a KNO-type
result, D~ =const X ( n ) follows from (11) in the energy or
multiplicity regions where the dependence a =a( ( n ) ) can
be approximated by the proportionality a =const X ( n );
the validity of such a result cannot be excluded also at
still higher energies.

The uncertainties of those moments are obtained in the
form

~C = —[q(n )(C —C, )/((n ) —a)]h(a/(n ) )
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Asymptotics

For our next purposes two asymptotic cases of the den-
sity distribution g(z ) are important.

(i) If the effective signal-to-noise parameter is very
small, R ~0, R given by (8), then the scaling function
g(z ) leads to the gamma distribution

P, ,= [M (Mz) '/(M —1)!]e™
~2 —K

P(n) =
n (n!)

(n&
(n &+IC

—K'/[&n)+K&I ]

(n &+IV

We note that Eq. (20) does not follow simply as a special
case of Eq. (2).

In the next section we show that the relations (18) and
(19) are suited well for e+e and p+p collisions.

with z =z, z being given by (7). In this case the statisti-
cal moments C~ and D& are given by (10) and (11) where

III ~ APPLICATION TO THE e+e
AND 8+p MULTIPLICITY DATA

A. Parameters a and K

V =I (M +j)/[Mjl (M)] =( Vq. ) (16)

It is well known that just the Bose-Einstein distribution
(with M cells) represents the full distribution correspond-
ing to the asymptotics (15).

(ii) With respect to the increasing number of charged
secondaries produced (coherently) in jets, let us assume
that with the increasing energy of the collision, the rela-
tive number of stochastically produced secondaries de-
creases so that the effective signal-to-noise parameter
R ~ oo. Moreover, let us assume that when approaching
this asymptotics, the number M of sources effectively
seems to be very small, M~O, but the product

In this paper the parameter K, Eq. (17), is considered as
a c.m. -system energy-independent constant. It will be
seen later that this parameter gets the same value for the
e+e as well as p+p data. On the other hand, the pa-
rameter a, Eq. (1), is allowed to be c.m. -system energy
dependent. In this case the variables ItI and z, Eqs. (4)
and (7), change with the c.m. -systetn energy but the func-
tional form of the scaling distribution (18) is c.m. -system
energy independent. This point of view represents a reali-

MR E,
where K is a constant. (The asymptotics M~O with an
increasing c.m. -system energy is suggested by the existing
data from the CERN collider' as well as from the
TASSO group as far as the Bose-Einstein distribution
with the c.m. -system energy-dependent number of cells is
applied. ) In this case the function g(z ) leads to a one-
parametric scaling distribution

10 11
I

12 13

lim [tt(z )], =ICz ' e '+''II(2Ez' )
M O

+ MR K

R ~oo2

—:[g(z))R' (18)

[I (j+1)/I (j —a+1)] 1

J (j —a + I ) r(a)

—=(V, )~g (19)

Using Mandel's relation, the full distribution corre-
sponding to the asymptotic form (18) is found to be

with z =z, z given by (7). For large z, the asymptotic
tail of (18) is proportional to z ~ e '. The QCD calcu-
lations give for that tail similar expressions, e.g. ,
z e ' in Ref. 2] or ze ' in Ref.

With respect to the distribution (18) the quantity VJ,
Eq. (12), involved in the statistical moments C and D
has the form

I

{n)

FIG. 2. (a) The dependence of the parameter a characterizing
the number of charged secondaries produced by a reservoir, on
the average charged multiplicity (n ) for the e+e annihila-
tions. The notation of the data points is the same as in Fig. 1(a).
The location of all points is fixed by the condition o.+ha =2 (at
the PLUTO c.m. -system energy 22 GeV where (n ) =9.7). {b)
The p+p collisions. The data points refer to those of Fig. 1(b).
Otherwise the same as in (a).
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TABLE I. The data on e e annihilations. The average charged multiplicities (n ) and the second dispersions Dq are taken from
the sources quoted in the last column. The values of the parameter a are determined by the condition (D2),z,——(D&),„~„Eq.(21).
The values of D3 and D4 represent the predictions involving the one-parametric scaling distribution (18).

1

W (GeV)

4.0
9.3

14.0
22.0
29.0
34.5
50.0

100.0

2
(n)

4.37+0.04
7.28+0. 1 1

9.08+0.05
11.22+0.07
12.62+0.03
13.48+0.03
15.5+0.1

21.3+0.2

3

D2

1.87+0.49
2.64+0.09
3.24+0.08
3.81+0.25
3.92+0.03
4.46+0.05

5.2+0.1

6.6+0.3

—1.69+ 1.59
—1.28+0.31
—1.43+0.26
—1.14+0.81
—0.09+0.10
—0.98+0.16
—1.36+0.34
—0.10+0.99

5

D3

1.45+0.38
2.04+0.08
2.51+0.06
2.95+0.19
3.03+0.02
3.45+0.04
4.0+0.1

5.1+0.3

6
D4

2.52+0.66
3.55+0.14
4.36+0.11
5 ~ 13+0.34
5.28+0.04
6.00+0.07
7.0+0.2
8.9+0.4

7
Ref.

Predictions

zation of the genuine KNO idea. '

With respect to the even (odd) values of multiplicities in
the e+e (p, +p) collisions we allow the parameter a&2
(a & 1) and, moreover, it may be negative.

B. Statistical moments

The basic ingredient in our procedure consists in identi-
fication of the theoretical second dispersion
D2 ——((n —(n ) ) ) '~ with the experimental one:

(D2)theor (D2)ettper

With (D2)tz„, from (11) we get

a= (n ) —v'K/2Dz,

(21)

(22)

where, on the RHS, D2 as well as (n ) is taken from the
experimental data.

The value of the parameter K is fixed as follows: The
e+e collisions reveal the simplest structure (from 1-1,
l-h, and h-h collisions); i.e., in this case the minimal num-

ber of particles is taken from the reservoir. We allow
a+ha to be saturated, i.e.,

a+ha=2 (23)

and we look for such an energy where (23) is satisfied
while at all other energies a+Aa&2. Using the same
data as in Fig. 1(a) we observe that condition (23) is satis-

fied by the PLUTO data at the c m system energy
8 =22 CxeV. Then

%=21 . (24)

Fixing the parameter K at that value, we obtain the pa-
rameter a (22) at every energy under consideration (to-
gether with the uncertainty Aa taking into account the
experimental only statistical —uncertainties 5 ( n ) and
AD2). The result is seen in Fig. 2(a) and for some energies
in the fourth column of Table I.

With the same value of the parameter K, Eq. (24), the
corresponding picture for the tu+p data is seen in Fig. 2(b)
and in the fourth column of Table II. The more involved
structure of the ~+p collisions as compared with the
e+e annihilations is exhibited in that direction of our
considerations which we have just described. Namely,
this procedure cannot be performed in a reversed way: if
the value of the parameter K is fixed by the requirement
a+ha = 1 in the tu, +p collisions (then K = 12.4 at the en-

ergy 12 & W & 14 GeV; at other energies a+6,a & 1), and
if the same value (K = 12.4) is applied also in the case of
the e+e annihilations, then at some energies (in the
e+e case) the value a+A, a & 2 is obtained giving rise to
the complex values of the probabilities for lower values of
the multiplicities [compare Eqs. (7) and (18)). This fact
means that the number of secondaries produced in the
reservoir is now too small for the e+e case.

TABLE II. The data on the p+p collisions. The average charged multiplicities (n ) and the second dispersions Dz are taken from
Ref. 8. Otherwise the same as in Table I.

1

W (GeV)

4& 8'&6
6& 8'&8
8& W& 10

10& 8'& 12
12& 8'&14
14& %&16
16& 8'& l8
18& 8'&20

40

2
(n)

4.51+0.09
5.10+0.05
5.55+0.04
6.06+0.04
6.55 +0.06
6.95+0.08
7.18+0.05
7.38+0.10
9.24+0.34

3
Dp

1.90+0.18
2.20+0.1 1

2.36+0.10
2.28+0.16
2.41+0.18
2.65+0.24
2.84+0.13
3.04+0.30
3.71+0.45

—1.65+0.59
—2.03+0.36
—1.78+0.33
—1.33+0.52
—1.26+0.59
—1.64+0.78
—2.03+0.42
—2.48+0.98
—2.79+ 1.50

5

D)

1.47 +0.14
1.70+0.09
1.75+0.08
1.76+0.12
1.86+0.14
2.05 +0.19
2.20+0.10
2.35+0.23
2.86+0.37

6
D4

2.56+0.25
2.96+0.15
3.04+0.14
3.07+0.22
3.24+0.25
3.57+0.33
3.82+0.18
4.09+0.41
4.99+0.64
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The fifth and sixth columns of Tables I and II contain
our predictions obtained by means of the corresponding
values of o."s quoted there in the fourth columns and using
Eqs. (11) and (14). In the last lines of both tables (for the
c.m. -system energies W =&s )40 CxeV) the quoted
values of (n ) and D2 have been obtained by extrapola-
tions (with relations of Refs. 6 and 8).

Because of the independency of the parameter K on the
c.m. -system energy also the quantities V&, Eq. (19), do not
change with that energy. However, the experimentally ob-
served energy variation of the C~ moments, Eq. (10), is in
our approach achieved by the energy-dependent parameter
a (besides the energy-dependent average multiplicity ( n ) ).
We note that as far as the approximation a =const X (n )
is used in some energy ranges then Eq. (13) leads to the
constant C~ moments (b, Cq =0).

I

A

V

1.00 =

0.10 :

(a)
V 4.0 GeV MARK t + 14 GeV O
~ 93 GeV LENA + 22 GeV
+ 29 GeV HRS ~ 34.5 GeV

C. Multiplicity plots

We use the values of the parameter o. as they are given
in Table I and the multiplicity data from references quot-
ed there in the last column (the multiplicities at other en-
ergies involved in Fig. 1(a) are left out with respect to a
better insight into the following figure). The plot of P,
Eq. (4), versus z, Eq. (7), for the e+e annihilations is
seen in Fig. 3(a). Similarly, the plot for the p+p collisions
(using the values of a from Table I and multiplicities
from Ref. 8) is seen in Fig. 3(b).

The following applies to both Figs. 3(a) and 3(b). (i)
The solid curves represent the asymptotic scaling function
[tt(z )], , Eq. (18), with the same value of the param-
eter K, K =21, Eq. (24). The dashed lines are obtained by
means of the (asymptotic) gamma distribution
[ tt (z )]g 2 o Eq. ( 1 &), corresponding to the case when

R ~0 and M =K/2=10. 52. Even if there is no big
difference between those two kinds of curves, the scaling
function [P(z )]z, gives rise to a better fit. (ii) In be-

tween those two kinds of asymptotic curves the other
curves lie which are obtained by means of the scaling
function (5) with the parameters (M, R) specified by con-
dition (21). (iii) The probability P ( n ) (on the perpendicu-
lar axis) is multiplied by two, as is usual due to the charge
conservation. (iv) The solid lines allow the prediction of
the values of the e+e and p+p charged multiplicities at
still higher energies as far as a convenient extrapolation
for the c.m. -system energy dependence of the average
charged multiplicity and of the parameter a [related to
the second dispersion, e.g., via Eqs. (21) or (22)] is applied
as the input information.

Retaining the value (24) of the parameter K one can
continue the considerations in that direction which was
followed in the preceding point (b) when passing from the
e+e to the p+p collisions: now one can try to extend
this procedure also to the pp+pp case. However, the data
of the last-mentioned collisions (involved in Refs. 9 and
10) exhibit a systematic deviation from the theoretical
dependence as obtained by means of Eqs. (18) and (24).
On the other hand, let us assume that the condition on the
saturation, Eq. (23), is not satisfied, namely, in such a
sense that the value of E is higher than that given in Eq.
(24). Now, if condition (21) or (22) still represents the

001 lk
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I

I

I

it1h)

~
&j

f)

1.0 2.0
Z = (n-Q(/)((n& —tX)

4&W& 6

~ 6&W& 8

8& W (10
~ 10( W (12

- &2=W- ~4 [b]
14 & W & 16

~ 16&W&18
~ 18&W&20

10

10

10

I

I

I

I

I I I

1.0

FIG. 3. The plot of the multiplicity P, Eq. (4), vs the scaling
variable z, Eq. (7), in the case of (a) the e+e annihilations
and (b) the p+p collisions. The values of a are taken from
Tables I and II, respectively. The solid lines correspond to the
scaling function (18) with K =21 and the dashed lines to the
gamma distribution (15) with M =K/2= 10.52.
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starting point, an accurate description of the e+e as
well as p+p multiplicity data is again obtained (with the
same value of the parameter K); however, the aforemen-
tioned systematic deviation in the pp+pp case still per-
sists (even if the trends of the data in all three kinds of
collisions are very similar). This fact is due probably to
the insufficiently decreasing role of stochastically pro-
duced secondaries and therefore the approach involving
Eq. (5) should be applied to the pp +pp case (some results
are published in Ref. 25).

IV. CONCLUSIONS

of the secondaries produced (coherently) in jets, a new
one-parametric multiplicity scaling distribution (18) is de-
rived. While it fits well the e+e and p+p data, a sys-
tematic deviation occurs when it is compared with the ex-
isting high-energy pp+pp data. The last fact may be re-
lated to the persisting considerable role of the stochasti-
cally (incoherently) produced secondaries. The one-
parametric scaling function mentioned above is applicable
first of all in the cases where the stochastically produced
secondaries influence much less the results than the
coherently produced ones.

The quantum-statistical approach which includes the
emitting cells with the superposition of stochastic and
coherent fields is completed by a reservoir containing pure
coherent fields. With respect to the increasing influence
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