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Quark mass and spin effects in meson wave functions
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We apply the background-field method to calculate the operator expansion of the two-point corre-
lation function related to the moments of the meson distribution amplitude. It is shown that the
nonperturbative effects depend in detail on the meson helicity and quark mass.

I. INTRODUCTION

Over the last decade, perturbative QCD theory has
made considerable progress. It has been applied not only
to many inclusive processes, but also to a series of ex-
clusive processes. ' The distribution amplitudes PH(x;, Q )

in exclusive processes satisfy the renormalization-group
equation and QCD evolution equations at short distances.
Their solutions depend on the initial condition
PH(x;, Qo ). Although the evolution with increasing reso-
lution scale Q is described by perturbative theory, the in-
itial conditions are determined mainly by nonperturbative
interactions at long distances, which cannot be solved at
present.

Important progress has been made using the QCD
sum-rule method. The main idea of this method is to
evaluate both perturbative and nonperturbative effects in
the operator-product expansion (OPE) by means of intro-
ducing the nonvanishing expectation values of the field
quantities, which are due to nonperturbative effects of the
physical vacuum in QCD. Because it includes nonpertur-
bative effects, the QCD sum-rule method is a useful tool
at intermediate Q .

We have applied the background-field method for cal-
culating the OPE of the two-point correlation function re-
lated to the moments of the meson distribution ampli-
tude. With the aid of a dispersion relation and its Borel
transformation, we obtained the moments of the pion's
distribution amplitude. The results show that the influ-
ence of the nonperturbative effects on the pion's distribu-
tion amplitude is strong at intermediate Q region. The
behavior of the distribution amplitude is quite different
from its asymptotic form. The difference increases the
branching ratios of 7 ~m. +n. and X ~~+a by 2 or-
ders of magnitude from their asymptotic values. The ex-
perimental data certainly supports this analysis.

In this paper we generalize our analysis to other
mesons, e.g., the p meson and the g, meson. We will ex-
amine the influence due to the different interactions
which depend upon the spin of the meson with the non-
perturbative condensates as well as the effect of heavy-
quark mass.

II. QUARK AND GLUON PROPAGATOR

It should be emphasized that the QCD vacuum corre-
sponds to a real physical state. The existence of nonvan-
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D„' (A)G" b(A)=g+y"T'4,
G" b(A)=t3"A b t3"At'b+gfbo A" A"',
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only the terms which have at most one background field
coupled with the quantum fields are left in the effective
Lagrangian, such as gag„'y" T, ri. The terms which have
more than one background field such as g%'P&' y4, are
canceled. In Eq. (3), T'(a = 1, . . . , 8) are Gell-Mann ma-
trices.

Using the effective Lagrangian, one can derive the
quark and gluon propagators in the background fields:

S(x,O
~

A) =SF(x)=i [iy"D„(A)—m]

S~„'"(x,O
~

A) =S~„' (x) =i[g~„D ', (A)D ' (A)
(4)

+2gf'"'G„(A)]
Obviously the propagators depend on the classical back-
ground field A„'. In order to express A„'(x) in a series
of gauge-invariant operators at some point x", we choose

ishing expectation values in the vacuum is a special
characteristic of QCD theory with nonperturbative ef-
fects. These condensates can be considered as classical
average effects. Classical background fields can be used
to account for all the nonvanishing expectation values.
Therefore, one can make the following substitutions in the
QCD Lagrangian and all the Green's functions,

A„'(x)~A„'+4&„'(x),

+(x) 4 (x)+g(x),
to obtain the effective Lagrangian W,tt. In Eq. (1),
A„'(x) and 4(x) are gluon and quark background fields,
respectively, and N„'(x), ri(x) are their quantum fluctua-
tions.

We choose the "background gauge" for the quantum
gluon field

Dq (A)Mb =0,
ab( A ) gabt) gyabcA

Because the background fields satisfy the equations of
motion,
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the Schwinger gauge or "fixed-point gauge":

xqA", (x)=0 .

Then one can express 3&'(x) in terms of G~„'(x):

3„'(x)= f dt tx "G„„'(tx)

on!( n+2)

G,„'. . . .
,
(0)

=(D )', (D ),, ''(D )" bG„(0).
The expression (6) enables us to write down the propaga-
tors for the quark and gluon as a perturbative series in a
gauge-invariant form. If S(p) is the quark propagator in
momentum space, it can be written as the following series
expansion (m&0):

(6) S(p) =g S;(p), (8)

where where
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Similarly, the gluon propagator in momentum space S&
' (p) is

a
P~ 2

( p2)2 ( p2)3
(4G„gG +2iG„+—,g„„G pG )

( p2)3

(13)

a
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( 2)4
(14)

where

G„„'b= igf' 'G„„,(0),—

G„. '"= igf' 'G„,(0)—, .

IIr, r, (x)= &01 TVr, ""'(x)J'r, ' '(0»
l
0&

where

jr' "'(x)=%(x)I (ix D) "%(x),

(16)

(17)
ab ~ ~ ab pah & a pubB2ay = (Ga/l;P +Gap;P ) 4 Gap c P

and color indices as in Eq. (15) must be understood in Eq.
(14).

III. THE TWO-POINT CORRELATION FUNCTION

Now with the quark and gluon propagators in the back-
ground fields, we can calculate the two-point correlation
function

I =y&y5 for j~z'2"'(x) in the case of m. , 2), meson; and
I =y& for j~&'2"'(x) in the case of p meson.

For the background field of a quark, one can expand it
in a form

%(x)=%(0)+x D %(0)+ , x x~D~Dp(0)+. —. . (18)

The Feynman diagrams, which contribute to the two-
point correlation function are shown in Figs. 1(a)—1(k).



35 QUARK MASS AND SPIN EFFECTS IN MESON WAVE FUNCTIONS 1015

For the light-quark case, one can neglect the quark mass
in the propagator, and the contributions of Figs. 1(m) and
1(1) are approximately equal to zero. It is clear that the
results for the vector-meson distribution amplitude de-
pend on the helicity of the meson. For the longitudinal
component of the p meson, the moments are apparently
similar to those of the pion. However, the currents in Eq.
(16) are different, so are the sign of the coefficients of
Figs. 1(g), 1(h), and 1(e). Therefore the moment values are
different for the m. and pL meson due to the different spin.

Using the background-field method, the correlation
function has the general form

II„„"'(q,z q)=(z q) "q„q„I'z„o(q )

—(z q ) "g„„Iz,o(q )

—(z q) "q„z I'z, o(q ) (19)

a, b, c
a, b, c 2 N

'zn, c(q (20)

Keeping only the contributions of lowest order in a, and

where the functions I' 'z„c(q ) are sums of nonvanish-
ing expectation values:
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FICi. 1. Feynman diagrams for the two-point correlation function, keeping only the contributions of lowest order in cz, and the
terms of the operators up to dimensions six including the linear term of the light-quark mass in the OPE of the two-point correlation
function. In all diagrams, "&("stands for background-field operators, and "0","1",. . . , represent "zero", "first", . . . , derivatives
of background-field operators, respectively. S is the mass term of the quark propagator in the background fields with m &0. The
perturbative term corresponds to the contribution from {a). The gluon condensate terms come from {b) and {c). {d) and {e) give the
quark condensate terms (0

i
m%+

i
0). (fl —(k) contribute to the four-quark condensates. (1) and (m) represent the nonvanishing con-

tribution of the gluon condensate term in the heavy-quark case.
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the terms of the operators up to dimension six (including
the linear term in the quark mass in the OPE of the two-
point correlation function), we obtain the detailed results
listed in Ref. 6. Here we only give some terms from
which we can see spin effects:

2n, p(q q.
—3 (z )2"q
4' (2n + 1)(2n +3)

2

X (qpq~ —g~~q —ng q )ln2 2
—q

p
(23)

2n, Og
~~pv (q) I Fig. 1(g)+Fig. ((h)

32H(0
I
~a, (p(I(

I
0)'

9q

II(M ('q}
I Fig. 1(e)

(21)

—m, (0Iuu I0)
(z'q ) gp~q + u ~d

q

(22)

where the minus sign is for the pion and the other is for
the pL meson. In the case of light quarks, Fig. 1(e) is not
important. In order to see the influence due to the dif-
ferent spin states, we compare Eqs. (21) and (22) with the
perturbative contribution from Fig. 1(a):

It may be seen that Eqs. (21) and (22) have the same sign
as the perturbative contribution in the case of ~ meson,
but the opposite for pL meson. So the moment values of
the pion's wave function are much larger than the asymp-
totic moment values (for n&0), and the moments for the

pI meson wave function will be smaller than the pion
case. A detailed calculation shows that the corresponding
distribution amplitude of the pL meson will be quite nar-
rower than the pion s, but it is still wider than the asymp-
totic form. Therefore every meson distribution ampli-
tude will have a distinct form according to the different
interactions with the nonperturbative condensates.

Now we come to see the case of g, meson, in which the
charm-quark mass cannot be neglected in the propagator.
To simplify our calculations, we define the two-point
correlation function:

II "' (q, z q)=z"z"II„, "' (q,z q)=i J d xe'~ "(0
I

T('%'(x)z"y„y5(iz D) "%(x)4(0}zy„y5%(0)) I
0) . (24)

The calculation is a little bit lengthy, but the result is not too complicated. The perturbative contribution from Fig. 1(a)
1S

8n, 1
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r

4 2
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2
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where y is the Euler constant and S„(a —1), II(a —1) are functions of a —1=4m /q —1, which are defined by

8(x) 1 0( —x) 1+u' —xII(x)= — arctan — ln
vx vx 2v' —x 1++ —x
n=1 C

S„(x)=g ( —1)" (SO=0) .
2n —2& —1

The nonvanishing condensate contributions from Figs. 1(b) and 1(c) are
2
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1
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4

1)n 1)n —i
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(28)
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II " (q, z q)
~ „;,(, )

——
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&( + 2a + a [S„(a —1)+(—1)"(a —I)"11(a —1)]
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where S„'(a —1) is defined by S„'(x)=dS„(x)/dx (x =a —1). The contributions from Figs. 1(d)—1(k) are zero for the
heavy-quark system. Now, let us discuss Figs. 1(1) and 1(m). Their contributions are

gm &01~,GG I»11'"'(q' z q)
I Fi 1(1)+F( . 1( ) 12m q6

&& + [3(2n +3)(a —1)—(2n +5)]
a (a —1) 8(a —1)

[S„(a —1 ) + ( —1 )"(a —1 )"II(a —1 ) ]
8(a —1)

X [(2n —1)(2n —3) 2(4n——1)(a —1)—3(2n +3)(2n +1)(a —1) ] . (30)

In principle, one can calculate moments for the heavy-
quark system from the correlation function II " (q, z q).
We do not give them here. Qualitatively, one can see that
Eq. (28) becomes zero for n =0 and the signs of the con-
tributions of Fig. 1(1) + Fig. 1(m) and Fig. 1(a) are oppo-
site. Because the contribution from Fig. 1(1) + Fig. 1(m)
does not vanish only when m&0, the quark mass m cer-
tainly makes the distribution amplitude narrower than the
asymptotic form. Therefore, when the quark mass be-
comes very large, it will probably make the heavy-quark
system nonrelativistic through its interaction with back-
ground fields.

IV. CONCLUSIONS

We now come to the conclusion that (a) all light-meson
distribution amplitudes have the same perturbative contri-
bution (i.e., asymptotic form) without nonperturbative

condensates; (b) the influence due to nonperturbative con-
densates are very important, and are quite distinct for dif-
ferent mesons; (c) in the case of the heavy-quark system,
we have to consider the contributions from Figs. 1(1) and
1(m) (gluon condensation with the heavy quark), which
will overwhelm the other contributions and make the dis-
tribution amplitude ()((x;,Q ) go over to the nonrelativistic
case; and (d) even for the light-quark case, the effect of
the nonperturbative condensates depends specifically on
the helicity interaction and is most important for the pion
at an intermediate Q region.
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