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The generic, vacuum, dynamical gravitational field in the vicinity of a freely falling observer is ex-

panded in powers of distance away from the observer s spatial origin (i.e., in distance away from his

timelike-geodesic world line). The expansion is determined fully, aside from coordinate freedom, by
two families of time-dependent multipole moments —"electric-type moments" and "magnetic-type
moments" —which characterize the gravitational influence of the external universe. These "external

multipole moments" are defined covariantly in terms of the Riemann curvature tensor and its spa-
tial derivatives, evaluated on the observer s world line. The properties of these moments are dis-

cussed, and an analysis is given of the structure of the gravitational field's multipole expansion for
the specia1 case of de Donder coordinates. In de Donder coordinates the expansion involves only in-

tegral powers of distance from the origin; no logarithmic terms occur in this multiparameter expan-

sion.

I. INTRODUCTION AND SUMMARY

In theoretical physics, multipole-moment formalisms
are very useful tools for dealing with fields. In a linear
field theory, we can decompose the field into its multipole
components and study each of them separately; and after
the behavior of each multipole component is well under-
stood, we can superimpose the components to get the full
field and can use the components as aids to understand it.
By contrast, in general relativity, the nonlinearity of the
theory prevents us from getting a general solution of the
vacuum field equations by a simple superposition of vari-
ous multipole components. This limits somewhat the use
of multipole moments in general relativity; but despite
this, relativistic multipole formalisms are still very useful.

One reason is that exact solutions of the Einstein field
equations are usually hard to interpret; and their interpre-
tation is aided by the construction of a corresponding
Newtonian solution with the same multipole moments as
the exact solution. Furthermore, although the exact solu-
tion is not a simple linear superposition of multipole com-
ponents, the coupling among the multipole components at
each nonlinear order is definite once the coordinates have
been fixed.

Another source of the usefulness of general-relativistic
multipoles is the fact that, in the real universe, strongly
gravitating bodies are almost always separated from each
other by such great distances that their gravitational in-
teractions are weak. Ttus permits those interactions to be
characterized by multipolar couplings, with only the
lowest few multipoles and only quadratic couplings play-
ing significant roles.

A third source of multipolar usefulness is the fact that
almost all sources of gravitational radiation in the real
universe are thought to have sufficiently slow internal ve-
locities that the lowest few multipoles dominate the radia-
tion, and the nonlinear couphng between them is of only
modest consequence.

There are two types of multipole moments: internal
moments and external moments. The internal multipole
moments are produced by gravitational sources internal to
some region; the external multipole moments by sources
external to the region. In the Newtonian theory of gravi-
ty, the solutions of the Laplace equation V /=0 can be
expressed as

Ylmyrl+1+ gE Ylmrl

With one choice of normalization, the internal multipole
moments are the expansion coefficients Ii in front of
Y Ir'+', and the external multipole moments are the
Et in front of Y' r'

The gravitational interaction of a bounded system and a
complicated external universe can be described in terms of
couplings between the internal and external multipole mo-
ments. For example, the precession of the Earth's spin
axis ("prix;ession of the equinoxes") can be described as
due to a coupling between the internal quadrupole mo-
ment of the Earth and the external quadrupole moment
produced by the Sun, the Moon, and the planets -the
external moment being, essentially, the "tidal gravitational
field" of these "external'* sources (Exercise 16.4 of Ref. 1).

In general relativity, because gravity is produced not
only by mass, but also by mass motion ("mass current, "
"momentum density" ), there are two families of multipole
moments for both internal and external situations: "mass
moments" and "current moments. " In the internal case,
in addition to the mass moments II, which are due large-
ly to the nonuniform distribution of mass, there are also
current moments SI due to rotation, pulsation, and other
mass motions. In the external case, in addition to the
"electric-type moments" EI, sometimes also called
"mass moments, "which are essentially the tidal field and
its gradients, there are also the "magnetic-type moments"
BI, also called "current moments, " which are produced
by motions of external masses and which in turn create
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velocity-dependent tidal forces on test bodhes.

The linearized, stationary solution of the vacuum Ein-
stein field equations can be expressed in terms of these

multipole moments. For the sake of illustration we will
suppress all normahzation constants here. In an appropri-
ate de Donder gauge, the metric has the form '

g0;= —g, , (S'I~I' '
)—g &'(&Im~i'

t=l ~ 1=2

(l.la)

(l.lb)

g
00

1 y (I elm)+ y rl(E elm)
1=2

(1.2a)

(1.2b)0j g (g y, Nl) g l(g y, Ill)

/=1 ~ I =2

(1.2c)

Here and throughout this paper geometric units, in which
G =c =1, are used; F™is the spherical harmonic of or-
der lm, and Y/' is the vectorial s herical harmonic.
Aside from normalization, Y' =LF, where in three-
dimensional notation L=—(1/I')r X V (see Sec. III and Ref.
2).

When one studies the gravitational couplings inherent
in the Einstein field equations one finds that, as in
Newtonian gravity, the laws of motion and precession for
an internal body are determined by couplings between the
body's internal moments Wz, , Az, and the external mo-

ments produced by the rest of the universe, 8'„,, lP „,.
Much research has been done on internal-moment ex-

pansions. This research has included (i) the formulation
of several different definitions of internal moments;I s s

(ii) proofs that these various definitions are equivalent;5's 9

(iii) studies of the relationship of these moments to the
properties of spacetime; ' "and (iv) studies of the roles
of these moments in gravitational radiation problems '
and in the laws of motion and precession for internal
bodies. '-'

There are two main approaches to the definition of
internal moments in fully nonlinear general relativity. In
the first approach ("physical-spacetime approach") one
defines the moments as expansion coefficients in physical
spacetime for the metric or some other gravitational quan-
tities. I s In the second approach ("conformal-space ap-
proach" ) one performs a conformal transformation on
asyInptotlcally flat spacet111M, thereby IIlov1llg "1nfinlty"
into a finite location A; and one then defines the moments
in terms of covariant derivatives of certain quantities in
the conformal space at A.

Thorne is representative of the physical-spacetime ap-
proach. In Thorne's formahsm, a special class of coordi-

(l.lc)

and the metric density, defined as g""=V'—gg"", where

g is the determinant of g„„,is

nates, called "asymptotically Cartesian and mass cen-
tered" (ACMC), is introduced; and the multipole mo-
ments, defined as certain expansion coefficients of the
metric, are the same in all such ACMC coordinate sys-
tems. The strength of this approach lies in its usefulness
in practical, astrophysically motivated calculations. ' '

The conformal-space approach is represented by
Geroch and Hansen. Their covariant definition of the
multipole moments is very elegant and beautiful, because
the multipole moments now become completely geometri-
cal objects living at a specific location A in the conformal
space. However, because the relationship between confor-
mal space and physical spacetime is somewhat complex,
this definition of the moments has not found extensive use
in practical calculations.

By contrast with these extensive studies of internal mo-
ments, studies of external moments have been limited to
two. The first was an appendix in Thorne and Hartle
(Ref. 3), which presented the general linearized stationary
solution of the vacuum field equations in multipole ex-
pansion form (in de Donder gauge), and proposed an
iterative algorithm for generating the nonlinear correc-
tions that would convert the linearized solution into a ful-
ly nonlinear one. The second was a paper by Suen which
studied various aspects of the Thorne-Hartle stationary,
external formalism and which thoroughly unified it with
Thorne's stationary internal formalism to produce a gen-
eral multipole analysis of the buffer zone surrounding a
stationary body in a stationary external spacetime. In
both of these studies (Thorne and Hartle and Suen) the
external-moment expansions were combined with
internal-moment expansions to produce laws of motion
and precession for the internal body; see also Zhang.

The purpose of this paper is to extend the stationary
external-moment analyses of Thorne and Hartle and of
Suen to fully dynamical situations. More specifically, we
shall give a rather thorough treatment of the external-
moment problem for fully dynamical, fully nonlinear,
vacuum systems; and unlike Thorne and Hartle and Suen,
we shall base our treatment on moments that are defined
in terms of fully covariant, locally measurable quantities.
This has the advantage that we do not have to know the
external source distributions.

In Sec. IIA we shall introduce into physical spacetime
a fiducial timelike-geodesic world line A, about which to
do our external multipole expansions; and we shall define
the moments locally and covariantly as the symmetric and
trace-free (STF) parts (equivalent to the irreducible com-
ponents of a tensor) of the covariant gradients of the
Riemann tensor and itself on A, . These moments will then
be functions of the proper time measured by a freely
falling observer who moves along A, . More specifically, in
a loca1 inertial frame of this observer these moments wi11

take the form (Sec. II 8)

(1.3a)

STF3
, (e, , iJA,i,,0,, ,, ) . (1.3b)

[Here ( . . ) " means to take the symmetric, trace-free
parts on free indices a,aI. ai, and e, ;I is the flatC I lJ
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space Levi-Civita tensor. ] At linear order, these moments

arc just thc tcMsorlal rcplcscntaf10n of EI Rnd 8I ap-

pearing in the metric (1.1) and metric density (1.2) up to
noMI1811zaflon coIlstailts. At higher 110111111carorders, tllls

is no longer the case. However, relations between these
"true" multipole moments and those generated by the
metric (density} expansion do exist and will be the subject
of our study in Sec. IV.

Since these moments are not coordinate invariant in
some class of simply specifiable coordinates, we cannot
read them off in a straightforward way from the metric
(density). The calculation of these moments in particular,
and the analysis of the whole external multipole expansion
formalism in general must be done in some tightly speci-
fied coordinate. The coordinate we shall use is at the
same time de Donder and also "locally inertial and Carte-
sian" (LIC}. The metric and metric density take forms
similar to (1.1) and (1.2} with additional time derivative
terms [Eq. (3.26)], and at higher nonlinear orders, addi-
tional rI [(n «1}-pole] terms.

It is a remarkable feature of our de Donder expansion
that, although the spacetime is allowed to be fully dynam-
ical and fully nonlinear, the expansion entails only in-
tegrals of power of r. By contrast with internal, dynami
cR1 expansion, 110 lnr tcfllls appear at ally nollllilcar 01'-

der; see Sec. 111.
In the remainder of this paper, we shall give a more

precise description of the basic ideas and some technical
details of the main results. In Sec. II, the concept of the
fiducial world line will be introduced, the covariant defi-
nition of external multipole moments will be given, and
special coordinate systems in which to do multipole ex-
pansions will be discussed. In Sec. III we shall study the
structure of our de Donder coordinate external multipole
expansion of the metric density. Finally, in Sec. IV the
relationship between our covariantly defined external mo-
ments S'z, , 3tq, and the "moments" ob~ned from the

expansion coefficients of the metric density, which we will

call 8'rz, , SF', , will be derived; and various properties of
the moments will be discussed.

II. CONCEPTUAL FOUNDATIONS

A. Fiducial world hne and external expansion

Consider some preferred observer who wants to study
spacetime in his vicinity by observing the motions of an
apparatus that he carries with himself. As he moves
throllgll spacctlIIlc, his Illotloll dcfilies 8 world llllc. This
world line will be the fiducial world line of our multipole
formalism. Although in some special cases, the preferred
observer might be defined by the symmetry of the space-
time, quite generally it will be chosen on the basis of the
physics of the problem being studied. Our goal is to
chaimcterize, in terms of quantities defined on this fidu-
cial world line, the gravitational field of the external
Mllverse.

In analyzing the observer's measurements me shall sim-
plify our analysis by temporarily ignoring the gravitation-
al influence of the apparatus. Its influence can be taken
into account, after the formalism for describing the exter-

W = (inhomogeneity scale of curvature),

W=(time scale for changes of curvature} .

(2.1b)

(2.1c)

These length scales are defined formally, in terms of the
multipole moments of Eqs. (1.3), by

1 1
9P Mill I/I y lpl t (2.1a')

' 1/(1-2)
W= Min

ly2

/9F;, )

' 1/(E —I)

(1+1)(l—2)!
f 3P„, /

W=Min
n&1

i
d "O';J./di"

i

/
d "95';i/dt"

i

(2.1c')

Here time I is measured in a local inertial frame on A, (see
Sec. DC). The external expansion will be 8 power series
in the dimensionless variables r/9P, r/W, and r/W,
wlicrc r Is thc spatial distance away froln k. This IIllll-
tiparameter expansion mH be vahd and mill y.ve good ac-
curacy for the first few terms out to a distance

nal universe is fully developed, by putting back in the
gravity of the apparatus and studying the coupling be-
tween the ap aratus and the external universe. The
Thorne-Hartle -Zhang derivation of laws of motion and
precession is an example of such a coupling study.

To further simplify the analysis, we shall assume in this
paper that the apparatus (and, with it removed, the fidu-
cial world line} is surrounded by a vacuum region of
spacetime. This is the situation one usually encounters in
practice. An example which does not have this property
is a fiducial world tube in an axion filled, Friedman
cosmological model (the axions will pass through the ap-
paratus, which we have thrown away, with near impunity,
so the apparatus cannot be regarded as in a local vacu-
um). "

We shall also simplify our analysis by assuming that
the fiducial world line is a timelike geodesic. This is a
case of common interest, e.g., in the Thorne-Hartle laws
of motion and precession; but often one wants to use an
accelerated world line. It would not be difficult to gen-
eralize our multipole formalism to the accelerated case.
The principal effects of such acceleration have been stud-
ied already at linear, quadrupole order for 8 dynamical
external universe by Ni and Zimmermann Is and at fully
nonlinear, all-multipole order for a stationary external
universe by Suen. However, for simplicity, this paper's
fully nonlinear, all-multipole, fully dynamical analysis
will assume zero acceleration.

In the spirit of using locally measurable quantities to
characterize the external universe, we introduce here three
length scales defined on A, to characterize it in order of
magnitude. They are

9P=(radius of curvature of spacetime on A, }, (2.18}



XIAO-HE ZHANG

r,„-Min(SF, W, W}. (Note that if a gravitational shock
wave were to pass through A, , W and S would be zero at
its point of passage and our formalism would be useless
for studying its effects. ) Of course when one restores a
measuring apparatus to the world line A, , its size must be
much less than rm, „ if our formalism is to be useful for
studying its couplings to the external universe.

Throughout the rest of this paper, our attention will

focus on external fields with measuring apparatus on A, ig-
nored; the fiducial world line A, will be a timelike geodesic
inside a vacuum world tube; and we shall have the
mathematical task of characterizing the external field in
this world tube, out to a distance -r,„, in terms of the
external multipole moments defined on k.

B. I.IC coordinates and de Donder coordinates

In a covariant theory like general relativity, choosing a
weH-behaved coordinate system is almost as important as
solving the field equations. For example, as is well
known, an ill-chosen coordinate system can become singu-
lar somewhere even though nothing particularly singular
happens to the spacetime there. In this subsection, we
will discuss two overlapping families of coordinate sys-
tems that are well behaved in the vicinity of the fiducial
world line A, and in which one might wish to perform
multipole expansions.

In parallel with the ACMC coordinate systems of inter-
nal problems, we introduce for external problems the class
of "locally inertial and Cartesian" (LIC) coordinate sys-
tems. A coordinate system (r, x', x, x ) is LIC if and
only if (i) its spatial origin x'=0 lies on I, at all times; and
(ii) the coordinate components of the metric are expand-
able about A, in powers of r=[(x') +(x ) +(x ) ]'~,
and the expansion takes the form

h""= g r "[(n-pole)+ . +(O-pole)],
Pl =2

(2.21)

where rl&„ is the flat metric (in Lorentz coordinates} and
"l-pole" means a time-dependent, r-independent spherical
harmonic of order I. Note that this definition guarantees
that on A, the coordinate basis vectors form an orthonor-
mal frame that is Fermi transported along A, .

It is not obvious from the outset that there exist any
coordinate systems that have all these properties. Howev-
er, we shall demonstrate below (Sec. III) that these proper-
ties are, in fact, satisfied by a subclass of de Donder coor-
dinate systems.

In LIC coordinates, many calculations become greatly
simplified. One example is the definition of the external
moments, which reduces the precise definition (2.10), as
we will give in Sec. II C, to (1.3) in LIC coordinates. But
by contrast with the internal problem, where the moments
read off the expansion coefficients are the same in all
ACMC coordinate systems even at nonlinear orders, the

g„„=r}„„+g r"[(n-pole)+ +(O-pole)], (2.2a)
tl =2

or if expressed in terms of metric density perturbation
h""—rI"" g

""

external moments read off the metric or metric density
are not the same in all LIC coordinate systems.

For example, consider a precisely static spacetime, so
A,b

—0, and examine it up to quartic order in r. More
specifically, let the metric density

gpss

——rl&"—h~z&z in de
Donder coordinates xgD have the form

h DD(x FoD ) =28',bx DDx nD
00 a b

+ r DD [(2-pole) + (0-pole)]

hnD(xnan) =0

h DJD(xgD ) =r DD[(2-pole)+(0-pole)]

+ r nD (O-pole),

(2.3a)

(2.31)

(2.3c)

go. (xnan}=0

gPj (xoD )=r Dn [(4-pole) + (2-pole) + (0-pole) ]

+r DD [(2-pole) + (0-pole) ] .

Let us make a coordinate transformation

&FW =&Do

i i 1 u 2 & a b i
xFN =xDD+ 6 @«xDDrDD —

3 @~bxDDxDDxDD .

(2.41)

(2.4c)

(2.5a}

(Incidentally, this transformation brings us into Fermi
normal coordinate. '

) The metric has the form

g 00 (x FN }= 1 + +ab x FNx FN
FN u b

6 ( @ah +cd } X FNX FNX FNX FN
$TF a b c

+ "FN [(2-Pole) + (0-pole) ]+r FN (0-po le)

(2.6a)

go «4}=0
g~ (xFFN)=rFN[(4-pole)+(2-pole)+(0-pole)]

+r FN [(2 pole)+(-0 pole)]-

corresponding to, at linear order,

h FN(xyN) = —', g.bx FNx FN+O(r'„N)

h F'N(x5N }=o

hpN(xFFN) =r FN[(2-pole)+(0-pole)]+O(rFN)

(2.61)

(2.6c)

(2.7a)

(2.7b)

(2.7c)

Note that the O(r2) quadrupolar part of h Dn is different
from that of hFN (factor 2 versus 3 }; this sliows that,

even at linear order, the q&idrupole moments read off of

where 8',b is independent of time and the (2-pole) and (0-
pole) terms are constructed from products of 8'~ with it-
self in such a manner as to guarantee satisfaction of the
vacuum Einstein equations and the de Donder gauge con-
dition. Then to quartic order

goo (x5D}=—1+&.bxoDxDD
DD a b

x DDx DDx DDx DD

+r DD [(2-pole) + (0-pole) ]+r DD (0-pole }

(2.4a)
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h"" differ in the two coordinate systems. Note further
that the 0 (r ) quadrupolar parts of geo and goo are the
same, but the 4-pole parts are different (factor 0 versus

factor ——', }. Thus, if one were to try to read multipole

moments off goo one would find different moments at the
quadraticaHy nonhnear order in the t~o coordinate sys-
tems. However, in a precisely fixed de Donder coordinate
system this confusion of "multipole moments" obtained
from metric (density) expansion will be taken away in sta-

tionary as well as in dynamic situations.
A coordinate system is de Donder if and only if its

111ctrlc dcllslty satlsf les thc gallgc condltloil

geP O (2.8}

In any de Donder coordinate system, the Einstein field
equations and the Landau-Lifshitz pseudotensor are much
simplified. This makes de Donder coordinates especially
useful in practical calculations. For example, de Donder
coordinates were used in the Thorne-Hartle-Zhang deriva-
tions of laws of motion and precession;1 in Suen's'
thorough treatment of stationary systems with both exter-
nal and internal moments; in studies of gravitational
waves from an isolated source by Blanchet and Damour'
and others; and the proof by Thorne and Gursel' that the
free precession of a slowly rotating, rigid, general relativ-
istic body is governed by the classical nonrelativistic Euler
equations.

The four de Donder coordinate conditions 8 ~,p
——0

reduce the number of independent components of 8
""to

six (there are ten initially). Any further coordinate
transformation

leaves the coordinate system de Donder if (2.8} is not
violated. At the linear order, this is achieved if p satis-
fies's

By an appropriate choice of P, the number of dynamical-
ly independent metric coefficients is further reduced to
two (e.g., the two polarizations of a gravitational wave);
correspondingly, as we shall see in Secs. DI and IV, the
full spacetime metric near A, is rigidly fixed in terms of
the time development of only two families of moments
g ~, and

AFAR,

. Our criterion for choosing P at linear or-

der will be that in the stationary limit (i.e., at zero order inre h,j should vanish. The pure time derivative terms
in the linelrized h,j and ho; of Eqs. (3.26) will then be
forced to be present by the de Donder gauge condition
(2.8). At higher, nonlinear orders we shall specialize our
de Donder gauge to keep K""in LIC form (2.2) with "mo-
ments" 8"~q, , 9F ~z, always corresponding to the coefficients

in fmnt of r~F' or r I', no matter what the nonhnear
order ls.

C. Dcf1mtions of the multlpole moments

In the external problem we lose the abihty of reading
the moments directly off the metric (density) as one has
been able to do in the internal else. However, the expan-

sion around A, in vacuum permits us to define these mo-
ments covariantly without performing any conformal
transformation. More specifically, we shall define the
multipole moments of the external spacetime as STF parts
of gradients of the Riemann tensor and itself, evaluated
on the physical spacetime's fiducial world line A, :

+~Fp, vp;p p u u (2.10a)

III. STRUCTURE OF THE EXTERNAL EXPANSION
IN A RIGIDLY FIXED DE DONDER

COORDINATE SYSTEM

A. Notations and mathematical formulas

In this subsection, vm mill explain the notations to be
used in our de Dander-coordinate-system multipole ex-
pansion; and we will give some mathematical formulas
which will be used in developing the expansion formalism.

The notation we shall use is that of Thorne. Sym-
metric traceless tensors with I spatial indices ("STF-1ten-
sors") will be denoted by capital script letters, as Wz, ,
which is shorthand for (W. .., . . .,, ) . A product of I

3 P~ Pl P1 STF

2(l + 1)(l —2)!

Xe„p,rsvp„sp, p, . . . p, u "u"
~ 1 . (2.10b)

Here P"„=g"„+u 1'u „is the projection tensor which pro-
jects into the local 3-space orthogonal to the 4-velocity u;
and u is the 4-velocity (i.e., tangent unit vector} of the
fiducial world line A, , or equivalently of the preferred ob-
server who moves along that world line.

As defined by Eqs. (2.10} the external multipole mo-
ments 8f'~,~, . . . ~, , 3f« . . . ~, are symmetric, trace-free 4-

e&a2 al
tensors defined on A, and totally orthogonal to A, . If one
changes from A, to some other fiducial world line, these
moments will change. When one performs a 3+ 1 split of
spacetime from the viewpoint of the preferred observer,
N'~, ~, . . . , and 3P, , , ~, become fully spatial, three-

dimensional, STF tensor fields O',
,

. . . ,, = I'q, ,
3F,

,
. . .,,=SF z, , defined at the origin of the local 3-space

of the preferred observer, and evolving with time as mea-
sured by that observer; and the definitions (2.10) reduce to
those of Eqs. (1.3).

In external expansions, the expansion coefficients are
expressed in terms of these multipole moments. Although
these moments are defined in a coordinate-independent
way, the details of the expansion still depend on the coor-
dinate system used.

The remainder of this paper (Secs. III and IV) will deal
with the expansion of the metric density, metric, and
Riemann tensor in rigidly fixed de Donder coordinates—
which, of course are also LIC. But in proving some of the
properties of these expansions, we shall switch from
Cartesian coordinates to the corresponding spherical polar
coordinate system from time to time.
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spatial coordinates X. xa - . . X. w111 be denot& XAI

The raising and lowering of these indices are effected by
the Kronecker delta 5'j. Thus W&X„ is the same as

x 'x '- -. x '. The STF harmonics and the0 )Op CEI
I

spherical harmonics I"I (scalar), 1 ' (vector) and

Tj ' (tensor) will be used extensively in this paper. The
scalar spherical harmonics F' are well known. The vec-

tor and tensor spherical harmonics are obtained by
I

Clebsch-Gordan coupling Y' to the basis vectors

js =e, , g+-'—= +(e„+i')/~2, (3.1)

El, A „,and 81
For the convenience of discussion below, we shall ah-

a I t I
breviate F F- ' an.d T"
the eigenvalue of the orbital angular momentum operator
I '= —(rx&)'

L 2HI Im li(1.+1)HI Im .

1 is the order of the irreducible representation of the rota-
I'Ition group generated by 0 '; and n is the azimuthal

quantum number. In our analysis, we shall often en-
counter the Poisson equation

and the basis tensors q2f HI'Imrl'+n (3.5)

t —= —, (e„Se„cY—Ser )+—(C,SC~+esSC„),z g P' —
2

z P' (3 2a) which can be inverted as

t-'=+ —, (e,Se, +e,Se, ) ——(erSC, +C,SC~), (3.2b)

I'2( —e„Se„—eySC, +2e N e ),
5=e Se, +erSer+C, SC, .

(3.2c)

(3.2d)

y pimp»m (3 3)

wllcrc 8'» 18 I'clatcd to I thl'ough

For a beautiful review of relations between these Clebsch-
Gordan-coupled harmonics and STF harmonics and for
reviews of some of their properties, see Thorne. As dis-
cussed by Thorne, any STF-1 tensor P», can be expanded

as

Hl Im„l +n ~2
(n +2)(n +21'+3)

(3.6)

One can easily convince oneself that (3.6) is a solution
wrtt tug the Laplacian

(1«2)B„(r28„)—L2 jr2.
An important lemma, which we shall use extensively, is

this: Any scalar, vector, or second rank sy-mmetric tensor,
constructed from products of quantities with the form
(Hi™r'+j,;, . . . ; nowhere k &0 and the c~m~~ denot

n & 0 spatial derivatives) must have the form H iMri +»
with ij. &0. Proof: H'' r'+ is a sum of terms like

I

Xs 3'c z Xz r " with the constraints
P

(3.4) p +q =1, s +q =1'—2(k' —k), k' & k . (3.7)

Therefore we have the correspondence between 8'„, and When we take one spatial derivative of such a term we get

8;(Xs 8'c q Xq r )= +5;bXs s . . . b 3'c q X„r +qXII 3'' cq,Xq, r +2kr" x;Xtj 3'c ~ Xq
J

lm 2k)
8' O'A'

P
(3.&)

where —reads "a sum of terms of the form, " and kl ——k b,k &0 with b,k =—0 or l. If we take more derivatives, the
range of hk increases but kl remains positive. When we couple two such terms together to get scalar, vector, or tensor
spherical harmonics, we obtain

Iimi 12m2 2k
l +2k2

Xs X, 9'c q 9'c, „,X~ X„, rB Pi q C A ql A

{9g Xg I y xjS J Xg r
y

&jan

Xg r y xjxj9 g Xg r p xjS jg Xg r |3jjg Xg I ) (3.9)

sj+s2+ql +q2 =s+q+(cvc11 number) . (3.10)

A simple counting of powers of r on both sides of Eq.
(3.9) gIvcs

In Eq. (3.9) the coupled terms have s (2, 1 —2 &q &1 be-
cause we only want to form from them tensors of rank
(2. Since the number of x s has to decrease by pairs,
the following relation holds:

si+s2+qi+q2+2k &+2kz ——s+q+n . (3.11)

Equations (3.10) and (3.11) can be combined to give

n =2kj+2kz+(even number)=2K', ij."=0,1,2, . . . .

If we look back at the constraints (3.7), it becomes clear
that from these coupled terms we can only obtain
H~'~~r~ +2+ with the condition
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=~, +~,+q, +q, +2k;+Zk', —L,
'

= I I +I2+2k)+2k2 —L' & 0 .

This conclusion can also be proved more elegantly using
Clebsch-Gordan coupling techniques, but we shall not do
so here.

Finally, for later use we shall cite a few formulas from
Mathena

—k&//(2/+1)f((kr) Y, 1'=1—1,
(f((kr) Y; ™);= 0, 1'=/,

—kv'(/+1) j(21+1)f&(kr)Y', 1'=1+1,

(3.12a}

(3.12b)

(3.12c)

(f((kr)T,J' ) /=

—k&(/ —1)/(2/ —1 )fI )(kr)F(~ ', /'=1 —2,
—kv'(/ —1)/2(21 +1)f((kr)Y;, 1'=1—1,
—% [V'(/+ 1)(21+3)/6(21 + 1)(21—1)fI &(kr) Y;

+v'/(2/ —1)/6(2/+1)(21+3)f(+, (kr)Y +" ], 1'=1,
kV'(/+—2)/2(21+1)fi(kr) Y, 1'=/+1,
kV(/+—2)/(21+3)f(+, (kr) Y +", 1'=1+2 .

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

Here f~(kr) is any spherical Bessel function.

8. Algorithm for constructing the (non1inear) metric density
in a rigidly fixed de Donder coordinate system

Thorne and Hartle3 have proposed, in their Appendix,
an iterative algorithm for generating the multipolar ex-
pansion of the fully nonlinear, dynamical metric density
in the vacuum region surrounding 11,; but they did not
analyze the mathematical details or consequences of the
algorithm. In this section we shall review briefiy the pro-
posed algorithm.

In terms of the metric density ()&" or h&"—r/P+ gP&
the vacuum Einstein field equations in de Donder gauge
read

C3h""= W&" (3.14a)

(3.14b)

W'""= —16m( g)tl'"+h"—" P / hl' P"&; (3 15)
r"" is the Landau-Lifshitz pseudotensor [Eq. (20.2()) of
Ref. 1]

16~( g)rl'"=h""—&h h" qh +——,
' gl'"gq, h ~/~ s

(g"'g ph",P—.~+g""g ph"~P, ~)+g~g'~~"",g,,
+ —, (2g" g g""g )(2g~g—, gg~)h+ qh— (3.16)

The box CI which acts on each component of h"" in

(3.14a) is the flat-space d'Alembertian, Cl =g„„(BI
Bx")(8/Bx"); and the compatibility of (3.14a) and (3.14b),
i.e., the existence of a solution, is guaranteed by the identi-

ty 8'&"„—=O.
.To solve Eqs. (3.14}one can proceed in either or both of

two directions: First, one can expand h"" in nonlinear or-
deis p

(3.17)

Here 6 is the gravitational constant which is actually
eqn&3 to uruty cn our units, but is kept to serve the pur-
pose of ")xukkeeping. " The source terms 8'" are also
expanded in this way:

~ =QG W" (3.18)

where IIr"" is constructable via Eqs. (3.15), (3.16), from
prcducts of }' ~ with p~+pq+ =p and thus with
each p'&p —1. One can then solve the field equations
and gauge conditions (3.14) iteratively,

(3.19a)

(3.19b)

fi«t for p = 1 (where ~g"=0), then for p =2,3, . . . . Un-
fortunately, Eqs. (3.19) are hard to solve in most cases.

One can also procecxi in a second direction. First one
makes a multiparameter expansion of the metric density
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li""= g (y"")p.„t, (3.20a)

li"" and the source terms 8'"" in terms of the small di-
mensionless variables r/9P, rl&, r/W; and then one
decomposes each term into spherical harmonic corn-
ponents of order I:

C. The linear part of the algorithm

The linear order (p =1) of the above algorithm is sim-
plified by the fact that 8'")"=0. The field equations and
gauge conditions thus read

p, n, u, l

(y "}pnmt

2p n

order l

(3.20b)

Zy~ =O

y)"„=0.PV

(3.23)

(3.24)

(3.21)

One can verify from the definition of 9P that the p which
appears here is the same as the p of the nonlinearity ex-
pansion (3.17). The field equations and gauge conditions
(3.14) then take the form

~2 Pv gyp fkV ~2 Pv
Ypnul "~pnul+~tXpn(, u —2)l ~

p,O Pl
Ypn(u —1)l,O+ 3 pnul, i

(3.22a)

(3.22b)

These equations, like (3.19), can then be solved iteratively.
From Eqs. (3.5} and (3.6) one can find a particular in-
tegral of (3.22a); this is far easier than solving (3.19). One
must then add to this particular integral a homogeneous
solution of (3.22a), chosen so as to enforce the gauge con-
dition (3.22b). In Secs. III D and III E, we will elucidate
some of the mathematical details and consequences of this
algorithm.

These can be solved directly without a multiparameter ex-
pansion. The desired solution, which must go as r" with
n & 2 at the origin because of our LIC coordinates, can be
constructed as superpositions of "normal modes":

y&"- y J' C, , J,,(~r)e' 'H dc@ for I )2, (3.25)
l'lm

where j&, are spherical Bessel functions and co-1/W. The
superposition coefficients Ct, t are fixed by the demands

I
that (i) at stationary order [i.e., at leading order (car ) in a
power-series expansion ofjt,] y", '=g""—(}""must take on
the linearized, stationary, Thorne-Hartle form (1.2), and
(ii) the gauge condition (3.21) must be satisfied. A
straightforward but rather tedious calculation, including a
power-series expansion of jt„ then gives (restoring all nor-

malization constants)

4(21 + 1)!!
1 (1 —1)

—p; 2(21 + 1)!!
3(l —1)

00 f 2k
(2k) g0y X

() 2 k!(21+1+2k)!!
OC p2k

e; x (")u'„X„
2 k!(21+1+2k)l!

(3.26a)

4(21 + 1)(21+1)!! 2k

+ (1+1)1(1 —1) 2"k!(21+3+2k)!!
("+"a'"x x- l (2k ~ 1)W0!' X r 2

A) A) IAI , A (3.26b)

+ 4(21+1)(21+1)!!+ r"
x e ""+"a' x X — e ""+"u" x X r'

3(1 +2)(1 1 )
~ 2kl 1(21+3+2k)11

" J'Pe &") )P "( )-21+ 1 -P()" &'&P"iP
4(21 +3)(21 + 1)(21+ 1)!!

(1+2)( 1 + 1)l (1 —1)

00 2k

() 2 k!(21+5+2k)!!

X ' "+ '8'r X x x — x .(~"+~)8'r X
21 +3 ' '-' ' '(Pl+1)-(21+3)

(2k+2)g)' x r4 1 (2k+2)gr x r26(21+1)(21+3) /JA) i A)2 21 +3 A)A( lj

(2k+2)g!' X r4
I 2 &I 2r

(3.26c)

FIere (2k)8'rz, means (d2"/dt2")8'r„, (t), and x(;ej)~ means
to take the symmetric part on indices i,j.

It is evident that Eqs. (3.23) and (3.24) are the homo-
geneous part of Eqs. (3.14). To ensure that the moments
g)'"„,, 3F r~, read off of the final, fully nonlinear metric den-

sity h"" [Eq. (3.17)] are the same as those in y~)" with
which we start the iteration, all homogeneous parts of li"

satisfying (3.23}, (3.24) must be collected in y", '. This,
then, determines y~& uniquely, and becomes the starting
point for the iterative solution of Eqs. (3.22) for y~z",

PV
~ ~ ~ ~

D. Multipole expansion streets, re of g""at order p =2
In this subsection we shall study the structure of y~2",

i.e., of the metric density at the lowest nonlinear order
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p =2. This study will lay a foundation for the next sub-
section where we shall study all higher orders, p & 3. The
equations we must solve are (3.22a) and (3.22b} with p & 2.
First we shall explore the structure of the source term
Wg" and from it shall infer the structure of a particular
integral of (3.22a). Then we shall show how to construct
the homogeneous solution of (3.22a) which, when added
to the particular integral, produces a solution of the gauge
condition (3.22b) without including terms of the form of
r i" (Eq (3.26)].

In terms of the notation introduced in Sec. IIIA, at
linear order, y~)" has the structure

y) -&a ~c~x~ & (3.27)

Here P z, is either N'z, or 3t z, . Now 8'~z" has the form

pv 1 ) 1 1~2 -Xny, pr S,X ray, pu ~S (3.28)

It is clear that y'll 0 has the same structure (H' ' r + }
as y'p. We also know (Sec. IIIA) that taking spatial
derivatives will not change the structure of y'p. There-
fore, in accord with the lemma in Sec. III A

Wg"-H" r'+'" k=0 1 2 (3.29)

Using Eq. (3.6) we see that a particular integral of Eq.
(3.22a} has the structure

p, v 0I'Imp I'+ 2k +2P2— (3.30)

aside from the possible exceptions caused by the

B(p N(g 1)I 'terIIi. Biit if we start fro111 1 awol we see tliat
(},y „"(„2)l has the same structure as W~"„I, i.e., no
Hl rl +1k+) terms in-it. Therefore all parts of p~z" have
the structure H' ' r' +

The general solution of Eq. (3.22a} is a sum of this par-
I

pl (I)y r +"=g J p j (ror)e'~rdroylm
I,m, g l, m

p~~ = ~ )p(~) (I)y! 'Im I
I'lm

I', I, m, u

ticular integral p~1" and a homogeneous solution f~q" of
Eq. (3.22a):

yp'r /lv +fpv (3.31)

and we must choose f~z" so as to guarantee that the gauge
condition (3.22b) is satisfied, and that y~z" has no terms of
the form of y~)". As is clear from Eqs. (3.19), (3.31},any
such f~i" must satisfy two relations:

gPV PVJ2,v= —PZ, v ~

Clf~i" ——0 .

(3.32)

(3.33}

(3.34a)

The first of these is the desired gauge condition y~z",=0;
the second is required by the field equation
&y~q"= &(pP+f~1") = W~z" where C3p~z" —W~z". That Eqs.
(3.32), (3.33) are compatible follows from
O(p~z" „)=W~z" „——0—where W~q' v=0 is the second-
order part of the well-known conservation law
W""„=0. That there actually does exist a simultaneous
solution to Eqs. (3.32), (3.33) we shall show below by ex-
plicit construction. That f~i" can be chosen so as to keep
out of y~2" terms of the form of y~)" follows from the fact
that such terms satisfy the homogeneous forms of (3.32),
(3.33) [cf. (3.23), (3.24}] and thus can be added to or sub-
tracted from f~q" at will.

We shall go into some detail to further illustrate the
idea of adding gauge terms f~i" to satisfy (3.22). For sim-
plicity, we will use the nonlinearity expansion formalism,
which easily can be converted to the multiparameter ex-
pansion formalism by expanding the spherical Bessel
function ji,((or ).

We assume from the outset that p~z" has been chosen so
as to not include terms of the form y")"; this is easily done
by simply removing such terms if they are present. Be-
cause p~z" „satisfies Up~i" „——0, we can write it as

g J pl —i, lm jl )(~r)e'"d~y " + g f 'pl, l „JI(~r)e'"'d~y™
l, m l, m

I, m
(3.34b)

0 0 )
plm, plmu pl I pl I are expansion coefficients and the superscript ( u) denotes u time derivatives. It is

straightforward to verify that the d'Alembertian-free functions

fz = g J FI+)Im~JI+)(~, r)e
l, m

(3.35a)

(3.35b)

tfE = g J E~+ I I Jl+)(for )e dciPTII' ' + g J F~+1 I J'I+2(cor )e dcoT~I'
E, m l, m

+t)ij g f FI,Ima JI(mr)e (3.35c)

satisfy (3.32) as desired, with pg" „in the form (3.34), if
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1 2l+1
/+1, /m~ I + l

' 1/2
0

~/Ptl QP

(3.36a)

t 1/2

2+ 2I+ j.
//mes

1~
~ l —1,/m~ s

(3.36b)

1/2
1 2(2l + 1)

~/ + 1, /Nf CO I+2 ~l/ma) s (3.36c)

' 1/2
1 2I+3

/+2, /mao I +2
1 l
~/+1, bna)+

CO

' 1/2 1/2
(21 +3)(2l + 1) op 1 (I + 1)(21+3)

(I +2)(1+1) co I(I+2)

(3.36d)

Moreover, by expanding the spherical Bessel functions in (3.34) and (3.35) and by combining with (3.36), we can rewrite
this d'Alembertian-free solution to (3.32) as

1/2

fo; ~ 2l + 1

3+1
r

2(21+1)
l, ,k +

k Op(2k)( )
yi+i, lm I+1+2k

7

k 1p12ki(t)T2, l+1,lm„I+I+2k
//

(3.37a)

(3.37b)

' 1/2
(21 + 1 )(2I +3)
(I +1)(l +2)

' 1/2

Op12k+1)(t)
/m

(I + l)(2l +3)
I (I +2)

' 1/2

Ip{2k+2)(
) T2 I +2 lm I+2+2k g ~ 2 +

l —1 /m t ij lj
/, m, k

k 1p(2kI (t)yImrl+2k
l —1, /m

(3.37c)

where al" are the expansion coefficients of the spherical
Bessel function:

Ji(X)= g al X
k

.Notice that all I' & I components in f2" have been deh-
berately chosen to be zero except in f$ where we have an
extra trace term (I'=I). This guarantees, as desired, that
y~2 will not bring our coordinate system outside the I IC
class; that fp2' will not interfere with the moments 8'rz, ,

SF', read off II, Ii
' from the r'(I-pole) terms, and (as

we shall see) that fp2" is unique once p p2" has been chosen.
It should be emphasized that fp2 has the same structure
as yPI" and pP2" (-Hl ™r'+ "). Therefore F2', as a whole,
also has this structure.

E. Multipole expansion structure of g"" in general

In this subsection, we shall examine the structure of
yp", i.e., of the metric density g", at all nonlinear orders
p & 3. As we saw in the previous subsection, y~2" has the
same structure (-Hll™r'+", k&0) as ypi'. Now we
shall show using induction that for arly p, yp" Iias tile
samestructureas yP1" (-H'' r'+ ", & &0)

pr p& 0/'/mp l'+ 2k
p+1

This in turn leads to

p~ ~/'/rn„l'+ 2k+ 2Pp+1—

We can determine fp+1 from pp+, in the same way as we
did for the p =2 case; and here as there it will lead to
fpp+I -H r + ". Therefore we conclude that yp"+1 has
the same structure

~1'bn l'+2k
I' p+1 (3.38)

as was to be proved.
In terms of the external moments, each term in y" canpbe written in the form

%e have already shown explicitly that this statement is
true at p =2. Suppose it is also true up to order p. Then
at nonlinearity order p + 1,

pV~p+1 Il alt, palisk& Itap, plias, ar gapgpcr~sk, r~rrr, r, ~

Since for p'&p, y"", has the same structure as ypi, g IIp
will also have this structure. The same argument leading
to the conclusion about the structure of Wp2" (previous
subsection) then reveals that

(ul ) ~ (u2) (~;) (u l ) (u2) (u.')
yp„„l — eg 8'5 . . '8'c 'A, '3F, . A, XD r",

1 Il I2 I.J
(3.39a)
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whcrc thc superscript (tg; ) nleans d /dt ', and where

Jp=i+j, n= gl, + lb —2p, u= g&, + g&b,
u b g

J Jl= gl, + +lb —Zk' with k'=0, 1,2, . . . , l'= pl, + +lb'+g
u b a b

(3.39b)

This general structure tells us two things. One is that
the iterative algorithm does not suffer any breakdown at
any step if we keep r small compared to 9F, W, W.
Therefore, a fully nonlinear vacuum solution can be gen-
erated from the corresponding linearized stationary solu-
tion once the gauge is fixed. The second is quite sugges-
tive. That there is no logarithmic term in the expansion
suggests thai in an appropriate gauge the external expan-
sion might be analytic. This also justifies the use of
linearized theory even in a dynamic situation.

IV. EXTERNAL MULTIPOLE MOMENTS

In the Introduction, we mentioned that the curvature-
defined external multipole moments 8'z, , 8Hz, , and the

moments 8'rq, , 3trz, one straightforwardly reads off the

expansion are different at nonlinear orders, but are expres-
sible in terms of each other. We shall return to this issue
here and infer from these relations some general proper-
ties of the external multipole moments; and we shall give

t

I

the fully explicit form of the relations between the mo-
ments at quadratic order.

A. General form of the relation between
the true multipole moments and those
of the iterative algorithm and some

properties of the moments

I.et us denote by 8'rq, and 3trz, the moments one reads

off the fully nonlinear metric density g
~ by the standard

procedure (Sec. I) of linearized theory, or equivalently the
moments that one puts into y",

" to start our iterative algo-
rithm (Sec. III C); and let us denote by 8'q, and &q, the

true multipole moments as defined covariantly by Eqs.
(1.3). Our iterative algorithm will produce a g» and
thence a g» which is a sum of terms of the form (3.39),
and the Riemann tensor computed from this gz„, when
covariantly differentiated and evaluated at x'=0, will
produce, via definition (1.3)

(4.1a}

(4.1b)

e)r N
——e( I l,

~

i = 1, . . . , k },I lj'
~ j= 1, . . . , 2n I ),

bx)v b((l; ~i =1,——. . . , k}, Ilj ~
j=1, . . . , 2n+1}),

are numerical coefficients whose values we have not com-
puted except at quadratic order (see Sec. IV C below}; the
sum is over all combinations of l;, lJ; and due to the fact
that we evaluated (1.3) at x'=0, the indices
8),Cl, . . . , DI,E&, , . . . , E&, must be such that there are

precisely l free indices a)ai . . ai —=A) and no contrac-
tions between indices before we take the STF part; i.e.
pl;+ gl =/ and B),C), Dl, E&, F&, is a permu-

I

tation of A&.

Because y~ and y~' are ordinary scalar and 3-vector
fields, and because the multipole expansion of y) [Eq.
(3.26)] is linear in 8'"„, while that of y,

' [Eq. (3.26)] is

linear in e&~x&3f'&~z, , 8'~z, must have electriclike parity

( —1)', while 3P rz, (like ej~) must have magneticlikc parity
( —1)'+'. [Our conventions for defining parity are the
same as in Thorne and Hartle; see the paragraph contain-
ing their Eq. (2.3).] Similarly, because Roe, o..., . . . ,, and

R,&, o. .. are ordinary tensor fields, the definitions

l

(1.3) of 8q, and 8k~, with the crucial e, , ;1 in (1.3b}
guarantee that 8'z, has electriclike parity ( —1)l and „
has magneticlike parity ( —1)'+'.

This set of parities implies that in each term of expres-
sion (4.1a) for 8'z, , there must be an even number of
Arc, 's; and in each term of expression (4.1b) for eN'„

I
there must be an odd number of 8tr, 's. This explains

why in e)r)v, j runs from 1 to Zn; while in bx)v, from 1 to
2n +1.

The relations (4.1) can also be inverted to find out 8'rz
I

and ~g) on'cc 8 g and 3tg al'c glvcll. This ls doilc step
by step starting from l =2. For example

@'4 d =@'~d ezo(@'.b &—.e)',
"

eo l(AF,b 3t,e )—

~ub ab ~ abe ~abc

It is straightforward to verify that this inversion is unique
at all orders; i.e., Eqs. (4.1} determine 8'„and A"„

I I
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uniquely in terms of 8'c, and Ac, . With the help of this,

we can infer an important property of the external mul-
tipole moments 8'z, and A „.

F1rst, 1t 1s not hard to generalize Suen s Thcorems 1, 2
to our case: The metric density generated from this algo-
rithm with our specified choice of f~" is unique up to a
time-independent rotation of the spatial coordinates. To
prove this theorem, let us consider two de Donder coordi-
nates related by

x'"=x"+P .

%e make the same nonlinearity expansion

N'"+k'" n"Vo—, =o (4.3)

This can be readily reduced to the flat spacetime Killing
equations

p()'"+go'" ——0 . (4.4)

The solutions of Eq. (4.4) are linear combinations of the
ten Killing vectors. Because the spatial origin of our
coordinate is tied to A, at all times, the boost and transla-
tion generators will not contribute to P. What is left are
just the three spatial rotations. Having understood the ef-
fects of gg, we set it to zero to facilitate the discussion of
the 6' order part of the gauge change. At 6' order, with

gg set to zero,

C"= X GV' (4 2)
p=0

as in Suen. By expanding Suen's equation relating the
metric density in two coordinates

g '""(x")= 'L "Q"—
pg ~(x')

I.
where L" =(Bx'")/(Bx ) and L =

~

det(L" ) ~, we ob-
tain to 6 order

For 5y~z" to change y~I, it must have the same form as
f~z" since f~I" is the homogeneous part of the solution.
The same arguments as above then lead to the conclusion
that pz also only represents a spatial rotation. This can be
repeated up to any p. The result is the theorem we set out
to prove.

Since the multipole moments 8'rz, A ~& of the iterativeI' f

algorithm are determined uniquely from the true external
moments 8'„,, A„,, it must be true that for any set of
external multipole moments 8'„, and Az, , there corre-

sponds a spacetime, determined uniquely inside a world
tube of size r,„-Min(9P, W,M). In other words, giving
a set of multipole moments on a fiducial world line A, is
equivalent to specifying a spacetime inside the world tube
surrounding A, .

B. Explicit quadratic-order form
of the relation between the moments

Now that we have explored the general structure of the
external multipole moments 8'z, , 3P z, , built up from the

expansion coefficients 8'rz, 9Pr~ of the metric density, we

shall sketch a derivation of the explicit form of the ex-
pressions for 8'„,, 3F„, in terms of 8'"„,, 9t"„,accurate to
quadratic order.

The starting point is Eqs. (1.3). The eovariant deriva-
tives in the defmition (1.3) of 8'„, , lF q, can be expressed

explicitly in terms of partial derivatives of the Riemann
tensor R,pcs and connection coefficients I $„; accurate to
quadratic order they are

Rpioj ~ g =Ro&OJ g +terIIls of t11e foH11 (I R )

(4.7a)

~aij Rijho; AI ~aij Rij bo, AI

+ terms of the form e(I R )

5y i"=rF' r i —"=
ki

'"—+Pi'" Il"Vi'. ,— (4.5) (4.7b)

5r~z =yP" rl"=-Pz "+-4'" n"Vz- (4.6)

and to presume de 13onder gauge Pi must be
d'Alembertian-free at 6' order. For 5y~i' to change y~i',
it must have the same form as y", ", i.e., all l' & l terms of
5y'( and all l' & l terms of 5yi' must vanish. This together
with (4.5) and Clg~i ——0 implies that all l )2 terms in 5y~i"
vanish. Furthermore, the primed coordinate system must
also be I.IC, which means that all l'&2 terms in 5y~i'
must vanish. This reduces g,", like gg, to only spatial rota-
tions. To facilitate the discussion of the 61 order part of
gauge change we now set g =gi ——0; then

The I -correction terms are straightforward to evaluate to
the desired quadratic order, since they involve I $„and
R p&~ only at the linear order, Thus, we shall not discuss
them in detail. The first terms in Eqs. (4.7a) and (4.7b),
by contrast, involve R pcs at quadratic order (p =2) and
thus require some discussion. Fortunately, their evalua-
tion is simplified by the fact that, because the external
moments are evaluated at x'=0, pieces of R ~s with the
form ((n & l)-pole)ri will not contribute to the final
answer; we shall ignore such pieces in the derivations
below.

The metric accurate to order p =2 is

g""=v'—g g""=11"" (h"" , br'"") ——, hh""—+——,
' rl"'(h—2+2h ~h ), (4.8)

This can be inverted to give

g„„—rl„,+h„„,rl„p+h„h~„——,hh„„+, 11„„(h 2h h~p) . — (4.9)
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Here TI""consists of a hnear part y~i" given by Eqs. (3.26) plus quadratic corrections @~I" —p ~z"+f~q" [ Eq. (3.31) and asso-

ciated d1scusslon ]:
(4.10)

Furthermore, accurate to quadratic order in p,

halih ~=(h )I—2/I h

II""=r"i"+Ji~z'+f~z" .

To simplify the calculations, all rl((n (/)-pole) terms will be dropped. By virtue of the forms of y~l" and of the W~z"

constructed from it, p~q" can be chosen to consist solely of such terms and thus can be ignored. From this fact plus the
traceless nature of y'1' we conclude that

h = h—+5,if) .

These relations. reduce Eqs. (4.8), (4.9) to

y» ~» $P» i I 00 P»+ i 5ilf P + i I 00/ /j»+ i P»[(I 00)2 2/ Oa/ Oa] (4.11)

g„»=yj„»+h„»+ ,' h y—/„» ,
' 5'—fi—jy/„»+h„ha»+ ,

'
II I—I„» —,

'
yj„—g(h ) 2h—h ] .

The Riemann curvature tensor, as obtained from this expression for the metric, is

+QIQJ I/iiJ +3(p) ij 4 ( A ) lJ 4 H Hj +gigj 4
(5' f b );l +0(Gi)

s."Rjbo———H. b
—2I/iH. b+6H, g, —2e„;A'gl, +O(G'),

~iajb 5ibkj, a 5ijgb, a+5ajgb, i 5abgj, i+0(G ) i
2

where

(4.12)

(4.13a)

(4.13b)

(4.13c)

4 )'1(l 2iQI —~ = Xiii —
ZiOl — gi = —

IA(', (4.14)

We need fz =5abf2 in —order to compute N'„, . As may be seen from Eq. (3.37c), only 'pl i l (l) contributes to the

«ace of the gauge-coIYecting term f2. A simple dimensional analysis plus parity considerations tells that only p$ contri
b«es « '&I I,l~(~) &t i—s not too hard to find pg from W$. But further simplification is still possible. Since we only
wan«(/-pole) terms in f2, we may drop the time derivative and trace terms in W$; this results in

4g'g' H'Hl —. — (4.15)

By substituting Eqs. (3.26), (4.14) into Eq. (4.15), we can easily find a particular integral /I j for y'j. The gauge term
determined from it [with all r ((n g/)-pole) terms dropped] is

f2 =5iif3

(/'+1)(/ /'+1)—
2

(21 —1)/(/ —/' —1)(/' —1)
(4.16)

&ow we can substl««Eqs. (3.26), (4.7), (4.14), (4.16) into Eqs. (1.3). After an extremely tedious but straight forward cal
culation, we obtain

g gy y /(/ —1) 3

, /'(/' —1)(/ —/' —1) / —I'
I'(I —2) 2(/ —/' —1)

/(/ —1)(2/ —1)

/ (/ —1)(/'+ 1)(/ —/'+ 1)
9(/' —1)(/ —/' —1) , A, ) "+0(G'), (4.17a)

(/ /'+ 1)(/'+—1) //' / / —1 2/ —1

I —2 j.

/+ 1, (/' —1)(/ —/' —1)

+ +, + (3p~q 8'"„)s "/ I'+ /' —1 — (I +/ )(/ / +1)(/ / 1)— — —
/+ 1 (/ —/')(/+ 1) /'(/'+ 1)(/+ 1) l —I I

+0(G') . (4.17b)
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These, then, are the relations between the moments 5'r~,

3F rz, of the de Donder coordinate iterative algorithm (Sec.

III) and the true, curvature-defined moments 8'~, , 3P ~, .
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