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Particle production in expanding universes with path integrals
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A method is developed to calculate path integrations for a scalar particle moving in the spatially
flat Robertson-%'alker spacetime with scale factor a(t). For three cases, which are specified by
a(t)=t, a(t)=Mt, and a(t)=e"', exact path-integral calculations are presented and particle pair
productions are studied.

I. INTRODUCTION

One of the methods for studying the particle-
production rate in the early Universe is to calculate the
overlap amplitude between the initial and the final states
of a homogeneous, isotropic expanding universe. ' The
determination of the final particle states is not problemat-
ic, because at late times the curvature of the Universe
varies very slowly on the scales on which the measure-
ments are made. This stage of the Universe, called the
adiabatic region, has properties very similar to those of
Minkowski space. On the other hand, because of the
cosmological singularity one cannot define the initial par-
ticle state. To overcome this difficulty one may assume
that Einstein equations are not valid before an early time
tn and invent an adiabatic regime for the initial period.
The time to is chosen according to a new physical princi-
ple.

Another way of handling the cosmological pair-
production problem is the Feynman path-integral method.
This method was first used by Chitre and Hartle for cal-
culating particle production in the early Universe; but, it
had previously been apphed to various other gravitational
fields. In this approach the probability of detecting a
particle and its antiparticle at very late times at the
space-time points x, and xb is expressed in terms of the
amplitude K(xb,x, ) for the particle to propagate from xb
to x, . To calculate K(xb,x, ) one sums over all the paths
from xb to x, which are restricted to lie to the future of
the initial singularity. This restriction enables one to
avoid the difficulties associated with the initial singulari-
ty.

Chitre and Hartle studied pair production in the spa-
tially fiat Robertson-Walker space-time described by the
metric

by the path-integral expression.
In this paper we shall first formulate J (xb,x, ) as the

path integral for the motion of a scalar particle moving in
the space-time of Eq. (1) with general scale factor a(t).
We shall then carry out exactly the integrations over all
paths for three special cases: a (t)=t is studied to demon-
strate the agreement between our procedure and the calcu-
lations presented in Ref. 3, a(t)=~t and a(t)=e
which correspond to the radiation-dominated and the 111-

flationary universes, are considered for their obvious
cosmological importance. In developing the path in-
tegrals for these cases, we factorize the motion in the
space and time coordinates; then, we observe that the am-
plitude for each motion can be expressed in terms of a
flat-space quantum-mechanical Green's function.

II. PATH INTEGRATION FOR PARTICLE MOTION
IN THE ROBERTSON-O'ALKER GEOMETRY

The propagator for a scalar particle of mass p, to go
from xb to x, in the geometry given by the metric of Eq.
(1) is

E(xb,x, )= dWe '" F(W,xb,x, ) .
0

Here F(W,xb,x, ) is the amplitude for the particle to
move from xb to x, in a total parameter time W and, it is
expressed as the path integral

F(W, xb,x, )= f &(t,x)exp —f dw[ t +a (t)x2]—

ds = dt +a (t)[(dxi) +(d—xt) +(dxi) ]

with a(t)=t They ma.de this choice of the scale factor,
because in this example they could carry out the calcula-
tions exactly. They did not calculate X(xb,x, ) by sum-
mation over the paths, but they solved the covariant
Schrodinger equation with boundary conditions implied

with the overdot standing for derivative with respect to
the parameter time m Since 8' is not an observable we
integrate it out in Eq. (2); and, the weight factor e '" is
introduced for having the usual flat-space-time limit for
the propagator K(xb,x, ). Equation (3) is understood as
the limit of graded formulation:
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a(t, )
F(W,xb,x, }= lim (4nie} '"+"

n-0 a(ts)
ao

n n+1
x f g Idt;d'x, [g(x, )]' I ff exp

j=1 j=1

(tj t—l i ) 2 (x) —xj i)J 1 + 2(t )
J J

E

with (n+1)a=W. In this formula the pc''nts a and b
correspond to (n + l)th and 0th points in the division of
the parameter time, respectively; g{xj) is the determinant
of the metric at point xj:

g(x&)=a (tj) .

Following Chitre and Hartle we require the amplitude
F( W,xs,xn ) to satisfy the covariant Schrodinger equation
which is suggested by the conformal invariance:

r

r

da /dt d2a /dt 2

+
Q Q

L

Substituting g=e '" f(k,x) into Eq. (6} and using the
factorized form

f(k,x)= e'"'g(k, t),1

(2~)'/2

the equation satisfied by the time part of the state func-
tion becomes

i
. a@
BW 6

(6) 3(da /dt) k 2 (da /dt)
t + '+ 2+ 2a a a

In fact, the choice of the functional measure in Eq. (4) is
suggested by this requirement. As we shall see in study-
ing the specific examples that the symmetrization of that
measure arith respect to t, and tb gives just the necessary
contributions to the action functional which brings
F(W,xs,x, ) in agreement with the solutions of Eq. (6).
For the metric of Eq. (1) the Laplace-Beltrami operator

g
—I/2g (gpvgl/2g )

takes the form of

2 3{da/dt) 1~2= i+ a a2t

and the curvature scalar R is given by

The path integral of Eqs. (3) or (4) can be obtained
from a sort of "Hamiltonian path integral":

F(W, xb,x, )

= f &(t,x)&(k„k)

Xexp i f dia[k, t+k x+k, a(t)k ]—

which, in the graded formulation, is given by

(12)

(13)

F{W, xb,x, )= lim [a(t, )a(ts )] 'a '(t, )
g-+0

N ~ co
n n+1 dk .dik. n+i

X f ff (dt d x )g . ff e p
'

k, (t —t i)+k (x xj, )+e—k, k-.

One can easily verify that after the integrations over dk,td k& are carried out the above equation yields Eq. (4).
Integrations over ff". , d xj gives 5 functions; then after performing the integrations over g".

i d k~ we arrive atj=l
d kn+i iir. (x —x )

(2n )2
n+1 dk . n+1

X[a(t, )a(t )] 'a '(t, ) f g dt g g exp i k, .(t t, )+ek, 2 —k„—
which (by dropping the subscript n + 1 of k„+i) we express in compact notation as

3 ik-{x —xb )F(Wxbx, )= 3e ' F(W tb, t, ),
(2m')

where F( W, ts, tn }is the one-dimensional path integral in the time coordinate:

F(W, ts, tn}=(a,as) 'a, ' f &t&k,exp i f dw[k, t+k, k /a (t)]—
with k =—k . Inserting Eq. (14) into Eq. (2) we get

3 ik. (, x& —x ]
K(Xb,X, )=

2
e '

ICi,(tb, tn) .
(2m )

(14)

(15)
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Here Kb is the propagator for the wave number k:
—i ~IVK„(t,, t. )= dWe ')'-~F(W, tb, t. ) .

Now we are ready to develop these propagators for specific cases.
(i) a(t) =act, aii ——const, 0(t ( ao. In this example amplitude of Eq. (15) is

2 2
—3 —1 —1

k /a(i
F( W, tb, t, )=ac (t, tb) t, &t &k,exp i dia k, t+k, —

0 t2
L

To symmetrize the factor t, ', we write it as

(17)

(18)

t =(t t ) exp ——ln —=(t t } exp i dia——1 —1/2 1 ~ —1/2 ~

e ob ~ ab

After inserting this formula into Eq. (18) and shifting k, with —i /2t we obtain

(20)

that is

k'/ac'+ —,
'

2ik,
F(W, tb, t, )=ac (t, tb) J &t&k, exp i de k, t+k,

Note that if we had (t, tb) 'tb ' in place of (t, tb) 't, ' in Eq. (18) we would have to symmetrize tb ', then, we would
have the same expression as Eq. (20) with the sign of the imaginary term in the action reversed. The existence of the
imaginary term ik, /t of the action amounts an e order shift in i~:

t~ +tj +i /t~, —

(21)

which gives a vanishing contribution as e~O. At this point we would like to emphasize that to perform this symmetri-
zation in a rigorous way we could first make an analytical continuation by ia~ iud, t—~it in Eq. (18). This would save
us from having an imaginary term in the action.

Dropping the term k, /t in Eq. (20) we arrive at the expression

F(W, tb, t, ) =a& '(t. tb) '"f-Nt &-k,exp

r Tw, k'/ac'+ -„'

N gf+ g (22)

The path integral of this equation is the Green's function for a particle of mass m = -,', moving in the fiat "space-tiine"
( —ia, t) under the influence of potential:

&(t)=
—k /aG ——,

2 2

t&0.

Since the exact solution of this path integral is known, we can directly write the final form of Eq. (22):

F(W t t }=a '(t t '~' It (t~tb) it~tb
bl~ exP {t +tb

4r S'

where I;b~, is the modified Bessel function. Inserting this result into Eq. (17) we get

(25)

or after d W integrations, for t, & tb we have

Kb{tb t )= i 8'b/ g(P )Jt)b/ ~(ibtb )
2a, '(t. tb )

(26)

This result is in agreement with the one obtained in Ref. 3. For massless particles the full propagator K(xb,x, ) of Eq.
(16}can be calculated exactly. To do this we substitute the p, ~O limit of Eq. (25) into Eq. (16) and integrate over d k:

—i 1 1
Ke(xb, x, )=

(2~) t~tb {lnt~ —lntb } +(x~ —xb)

For }Lb&0, using the asymptotic limits of the Bessel functions for t~ oo (Ref. 7)



H'a'io, (I» t)=
" ]/2

. k 1
exp i—i +-

g0

Jh» ~a, ()h»») =
1/2

2 . k-
t.os pf ——

~ +—
2 Q0 2

(27b)

we obtain the late time limit of Ih.'I„

1 —lp(i' —fb ) $~/g —hark/0(} —lp( f + fb )
Kg(f& f J 3 3/2 L +

2pao (t, ts)
(28)

which is also the limit for large mass.
(ii) a (t) =aov t, ao ——const, 0( t & oo. This is the metric of the radiation-dominated universe. Introducing this metric

into Eq. (15), we obtain

F(W ts, t, )=ao (t, ts) '~I», '~I f &»&k,exp i dho k, t+k, I
0

(29)

This amplitude is very similar to the path integral for the nonrelativistic one-dimensional Kepler motion. Equivalently,
if we symmetrize the t, '/ factor in the same fashion as we did in the previous case, we can reduce the problem in hand
to the three-dimensional Kepler problem for s waves. Since the path integral for the H atom is solvable, applying the
same techniques we can evaluate Eq. (29) as well. We first make a point transformation:

— 2 =1t=u q kg= kg, —oc &u ( oo
2Q

and obtain

W k'/a '
F( W ts, t, )=ao (u, ub) 'u, '(2u, )

' f &u &k„exp i f duh k„u+ I k„'—
4u u

In order to get rid of the (1/u ) factor of the kinetic term, we transform to a new parameter time g given by

dw=2u'dh, w =I d»2u'.

(30)

(31)

Introducing this new parameter time together with the identity

1= 2Q 2 8 — d 2u2 = O'E~2u 2cxp —EE 2u2 (33)

Eq. (31) becomes

co 00 dE . kF( W, tb, t, )= dX e exp —2» X (ug us )0 2'fT g 2
0

Q kg exp l ~g +du ——(2I/E ) u
2

(34)

The path, integral in the above expression is the Green's function for the nonrelativistic harmonic-oscillator motion with
unit mass and with imaginary frequency i (2v E ) taking place in the time interval (0, —X). W«an write down the re-
su]t of this path integration from the known formulas and get

I

dE . kF( W, t&, t, )= dX — e' exp 2i X —(u, ub)f g 0 2'fT g 2
0

il/E
X

Ir Sinh(2I/E X)

1/2

exp i — [(u, +ub )cosh(2I/E X)—2u, us]
vE

sinh(2 E X)
(35)

To evaluate the propagator ~&(t&,t ) foI the wave number k we insert this expression into Eq. (17) and integrate over
dW'and dE.

( Itts, )=— dX
2% ~ lp

u~ us 0 8' SInh2huX

I/2

exp 2i X exp—— . [(u, +uh, )cosh2hhhX —2u, ub] . (36)
. k2

2 2
2 81Bh2pg
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For the massless particles we take the p, ~O limit of the above equation:

fTO Qo . k
Kb(tb, t, ) = — exp —2i (u, —ub)

k Qgub Qo

K(xb x, )= I dX
2Qg Qb 0

(3g)

To obt»n formulas for the full propagator K(xb,x, } for the massive and massless particles, we introduce Fqs. (36}and
(37) into Eq. (16). After integrating over d k we arrive at

]/2

exp i (x, xb)—exp . [(u, +ub )cosh2pX 2—u, ub]
X sinh2yX SX

'
sinh2p, X

K (xb x~ ) = 2~2@'a p
3 1 1

u, ub ap'
~
x, —xb

~

4—(u, —ub )
(39)

Now to be able to study the late time limit of Kz(tb, t, ) we will decompose it into the parabolic cylinder functions
which are the wave functions for the repulsive oscillator. By employing the following bilinear generating function for-
mula of the functionsip

2 1/2 g+g~ t
—v—1

1 1 —tf dv . [D„(x)D „ i(iy)+D„( —x)D „ i( iy)]—=(l+t )
'~ exp —

2
(xi+y )+i

2n i ~ —~'~ sin nv— 4 1+~' 1+&~

for —1 &c &0,
~
argt

~
&m/2, with the identifications

t=e "x, x=2v' ipu„—y=2v ip ub-,
we can rewrite Eq. (36}as

k c+i~ dvK(t t)= e ' " dXexp —2i zX ~
-i~/2~ 2p(v+ 1/2)X

2&l 0 ap~ ~ —i ~ sin( harv)—

X [ D„((1 i )~2@u—, )D „ i ((1+i)v 2p ub )

+D„((—1+i}V2@u, }D „ i(( —1 i)~2—pub)] .

After integrating over dX we obtain

~
—eA, /4

Kb(tb, t, )= 2n —
z [D„(e ' 2~p, u, )D r i(e '

2V pub)
Qb 1+8

+D„(e" '42' iJ, u, )D, , (e "'42~@u -)]

where k and y are defined as

A, =2k Ip,ap, y = ——,
' (1—i A, ) .

By using the well-known asymptotic expansions of the parabolic cyhnder functions, we have the u =v t ~ ao limit of
Eq. (40):

I'

~
—mA, /4

Kb(tb, t~ ) —2m" exp i (y+ —1/2—) (1+e r+ ~)(2M@) u "u
u ub

a b

e'~(4 )"(u u )"e

)e p u ub eil';~(4 } & i( ) & i iP(u~+ub )—
—y

0

+ exp (y+1/2) (2M@) 'u, " 'ub"e " ' ' . (4l}
I -yl 1+y 4

(iii) a(t)=e ', H =const, —oo &t & 00. This metric describes the inflationary universe. The radius of the Universe
varies from zero to infinity as the pariuneter t takes values from —ao to + 00 ', H =a /a is the Hubble ptuluneter which is
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a constant through the inflationary era. Inserting this expansion factor a (t) =e ' into the amplitude of Eq. (15) we have

F(W, tb, t, )=e ' e ' f &tNk, exp i f dm(k, t+k, e— 'k ) (42
r

We observe that this expression is very similar to the path integral of the Morse potential. Thus one can follow the same
procedure employed previously in solving that problem. We first make a point transformation

1
t = ——1nu, kr ———&ukus 0 & u (43)

and arrive at
fV

E(W, tb, t, )=(u, ub)u, ( Hu,—) f &u &k„exp i f dm(k„u+H u k„u—k ) (44)

As we did in Sec. II(ii), to get rid of the Hlu factor of the kinetic term, we transform to a new parameter time g de-
fllled by

dw =dg/2H u

Introduction of this parameter time together with the constraint identity into Eq. (44)

1= + 2 2
~ 2H u = g e'

2 2exp —i d
2 2

0
(46)

Z(W, t, ,t.)= f dX f u~uy
exp i —X f Nu &k„exp i f dg k„+x du ku E/2H

2a'

The path integral of the above equation is the same as the path integral of Eq. (22); thus, we can copy the result of that
expression by replacing k /ao + —,

' with E/H, and m = —, with m =1, and obtain

r(W, t, ,t. )= f dX f »aub 1
exp . (u, +ub )

2l g
unsub k l (unsub )

exp —i g I
V i 4ziali2—

(48)

To get the propagator Kk(t bt. ), we repmt the comMponding steps of the previous CMM. That ls we inse~ Eq. (48) into
(17) and take the integrals over d W and dE:

r

l ~ dg . k 1 l l tugub
Kb(tb, t, )= — exp i zX+— . (u, '+ub') I„o g 2~2 2iX (49)

where the index v is given by

v= z(1 —4p /H )'i
(50)

After performing dX integration we have (for u, & ub )
r r

K„(t,,t. )= (u. ub) ~ H„ (51)

For massless particles we put v= —,
'

in the above formula, and arrive at

g —i (k/H)s . k
Klr(tb, t~ ) =

(unsub

)e sill —ub (52)

or by using Eq. (16) we obtain a final expression for the full propagator:

K (xb,x, )=— u~ ub

[2H'(x, —xb)' —(u. +ub) ][2H (x.—x, )'—(u. —u, ) ]
(53)

Since we are always interested in finding the amplitude for observing the pairs at very late times, we need the large t
forms of the propagators. For that we use the following limiting values of the Bessel functions as u ~0 (Ref. 7):



PARTICLE PRODUCTION IN EXPANDING UNIVERSES WITH. . .

k e' (k/2H) " e' (k/2H)"
H sinn'v I (1—v)

' I (1+v)
(54a)

k (k/2H)"
H I (1+v}

Employing these formulas in Eq. (51) we have

Kb(tb, t, )= (u, ub) —u, "ub"—m e'3n 1 —v v i~
I (1+v)sinnv

For the massless particles this formula gives

(u, ub)"

Kb(tb, ta )~ uaub (56)

For p=H/2, v vanishes, and Eq. (55) becomes

Kk(tb~ a) I p=H/2 2H
(ua—ub) 3/2

III. PAIR-PRODUCTION AMPLITUDES

The amplitude A,J for a pair of particles created by the gravitational field and detected at time t in states f;(x) and

fj(x) is given by

A„=—A, f d'k, d'k f d&(x, )do"(x„)f (k„x,)B„'f,'(k, ,x, )B„"K(x,,x, ) . (58)

Here Ao is the amplitude for no particle production and doi' is the element of constant t hypersurface. Because of the
integrations over d3k, and d3kb the above amplitude does not distinguish the wave numbers of the particles. For the
metric of Eq. (1), A,J becomes

~$j ~0 a kb +a +b ~ «u ~ «b i as+a t j bs+b t + +b~+a (59}

In this amplitude we use for f(k,x) and K(xb,x, ) the type of expressions given by Eqs. (9) and (16). After integrating
over d xa b and d k, b we obtain an expression for the creation of a pair with wave numbers k and —k:

Aij ——f d k A,J(k),

AJ(k)= —Ao[tt(t, )a(tb)]'g (k, t, )8, g'( k, tb)B,,Ki,(t—b, t, ) . (61)

We want to evaluate A,&(k) at a late time for positive-energy particles with large values of physical momenta p=k/a (t).
Under these conditions, for some forms of a (t), and for massive particles, the solutions of Eq. (10) are reduced to the
WKB-type functions constructed by Parker

I t
g(k, t) =

3&2 & 2 exp i dt—'wb(t')
[a (t}l'"[2',(t)l'"

~k(t)=Ik'/fu(t)1'+i 'I'".
For large t and k, g (k, t) satisfies the positive-energy condition

Big = iud(t)g . — (64)

Validity of these "adiabatic" approximations provide an "almost meaningful" concept of particle. When Eq. (64) is in-
troduced into Eq. (61) we have

~J(k)= —~s[u(ta)u(tb)l'g; (ta)gj'(tb }[—~b(t. }~a(tb)—t[~k(ta)~~, +~k(tb)~i l+~~ ~~, lKi, (t., tb } . (65)
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This is the amplitude we are going to evaluate for the
specific cases for the massive particles.

(i) a (t) =apt. Since this is the example studied exten-
sively in Ref. 3, we will not go into any detail of the
derivations, but simply state the results for completeness.
The amphtude A;;(k) is

3"(k)=—Ape'"/ eIJ (66)

For massless particles one gets a vanishing result for the
amplitude. Note that the first term of the propagator of
Eq. (28) contributes an oscillating term to A,&(k) which
drops out at late times. The probability for creation of a
pair with wave number k is

Pi(k)=
i Ap i

e (67)

The probability of n (k) pair creation is

P„(k)= /Ap
/

e

From the conservation of probability condition

(68)

one also obtains value of
~
Ap

~

and gets
—2'(k)k/ao —Zmk /ao(1—e ).P„(k)=e (69)

The average number of pairs having the wave number k is

N(k)= g nP„(k)=
n=0

(70)

(ii) a (t) =apv t In this c.ase time part of the covariant
Schrodinger equation given by Eq. (10) is

~g + ~)g+
3 k2/api

+p g(k, t) =0 .

Transforming to the variable u =~t and substituting

1g= —h
Q

Eq. (71) becomes
r

d 2 2 4k~—4pu h= Ii.
du ap

This is similar to the Schrodinger equation of a repulsive
harmonic oscillator; and it is solved in terms of the para-
bolic cylinder functions. Thus, the state function g can
be written as

Pi(k) =
i A;J(k)

/

=
J Ap

f

— e
2

(76)

We observe that this formula, which is in agreement with
the result of Birrell and Davies, ' is of a similar nature
with the probability of Eq. (67). Therefore all the results
obtained in the previous example for the massive pair pro-
duction are also valid for the radiation-dominated
universe, provided that

~
Ap

~

and k/ap are replaced by

~
Ap

~

(n /2) and A, /2, respectively.
For the massless particle the state function g(k, t) of

Eq. (62) is

gp(k„t) = l e

ap 2k

—(2ik/ao)u

(77)

Inserting this expression and the propagator Eb of Eq.
(37) in Eq. (61) we see that A,J.(k) is precisely equal to
zero. This is not surprising since according to the general
conclusion of Parker, ' "In an expanding universe in
which a particular type of particle is predominant, the ex-
pansion achieved after a long time will be such as to mini-
mize the avera e creation rate of that particle. "

(iii) a(t)=e . I.et us first consider the massive parti-
cles. In the late time limit, i.e., for p »ku =k e ' the
WKB solution of Eq. (62) becomes

' —tp/0

g(k, t)= u'"/ (78)
2p k

r

The exact solution of Eq. (10) for a (t)=e ', which can be
taken as

V

g(k, t) = H 1 I (1+v)u J„—u
k

p vip H

—i —1/4 —sA, /S~r
~

=QO P e

the asymptotic limit of Eq. (73) coincides with Eq. (74).
To develop the amplitude A;J(k) we substitute the ex-

pressions of Eqs. (41) and (74) into the late time limit of
Eq. (65) [i.e., we take ipt, (t)=p]; and, put t, =tb t. ——
When inserted in A,i(k) only the third term of Eq. (41)
gives contribution; the others, because of their rapidly os-
cillating character, vanish at late times. The final form of
the amplitude, apart from a constant phase, is

—3m A, /4

A;j(k)=Ap —(2ir) / (75)
I ( —, i A—/2),

Note that, in evaluating the above equation we have also
employed the large k (i.e., large A, ) limit. The probability
for one pair production with wave number k is

'2

('73) approaches to the form

with A, =2k /pao . On the other hand, for large values of
u, the WKB solution of Eq. (62) is given by

(74)
Qo 2P Q

We see that if the normalization constant is chosen to
satisfy

0
g(k, t)

p

V

g (&+3/2)

van 2H
(80)

as ku/H~O and agrees with Eq. (78) for p, &&H. Note
that, since for massive particles ipt, (t)=p, the condition of
Eq. (64) is also satisfied.

For p & H/2, when we insert Eqs. (80) and (55) into Eq.
(61) and evaluate it at t, = tb ——t, we obtam
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mH e' " (2p /Hk)"
2p sinirv [I {1+v)]2

(81)

Note that since P„(i2 »H) is independent of k, the ab-
solute probability for noncreation of pairs in any mode,
which is given by

ip/H
2p

A~i = Aom
H /i2

[I (ip/H)]

The probability expressions for one and n pair produc-
tions are

P, (p»H)=
f A;J f

= Ao
f

—,'e (83)

In p ~~H limit, in which the adiabatic approximations are
valid, this amplitude is

g fA f'= p f d'kl fA
k

=exp ln(1 ——,'e "/ ) f d'k (87)

is divergent. This divergence is due to the infinite-
volume limit. However this does not prevent one getting
meaningful information. As it was done in Ref. 2, it can
be handled by first cutting the integral in Eq. (87) at a
value A and then letting this cutoff change. Change in
the cutoff can be expressed in terms of the change in
four-volume as

—2'/0
P ( & H) e 2enP/H— (84)

a f d'k=rav, (88)

In writing the last formula we have inserted

f/Io
f

=1——,'e " which is obtained from the proba-

b111ty con5ervatlon.
At this point it is of interest to discuss the choice of the

initial state implicit in our method. For that, let us con-
sider the WKB solution of Eq. (62) at u ~ oo.

—2~@/H

4

From Eqs. (87) and (83) we see that I, which is finite, is
the probability of no pair creation in unit four-volume:

h (k t) e
—r(k/H)uI

V2k
(85)

I = ln f~o f

(1 i -2ey/H)
4

The correctly normalized exact solution of Eq. (10) which
takes this form in the "early time" limit (i.e., for ktt »H)
1S

h(k, t) = ,'(n/H)'—/ exp i (v+1—/2—) u'/'H„"'

If we take h (k, t) as the initial state, by the help of the re
lation between the Hankel and Bessel functions, we ex-

press it as the superposition of g (k, t) and g "(k,t) of Eq.
(79); thus we can identify the Bogoliubov coefficients. We
then observed that, for p »H this procedure leads to the
same results for the production amplitudes as the ones we
have already obtained.

Some remarks are in order for the choice we inade for
the out vacuum state. Let us note that, although Eq. (78)
has the form of the zeroth-order adiabatic solution, this
correspondence is misleading in higher orders for
d"a(t)/dt"=H"=const. We choose Eq. (78) as the out
vacuum because, it is the late time limit of the exact solu-
tion g(k, t) of Eq. (79) for large p and is also of e'&' type.
In fact, one can talk of two alternative choices of the vac-
uum states in de Sitter spacetimes. " One choice may be
based on the requirement that the vacuum state produces
the standard time exponential form in the flat spacetime
limit of 8~0. In this case no particle production occurs.
Alternatively one may define the particle modes by
demanding to have the time exponential form in

f
t

f
~oo limit. This choice leads to a nonzero and

mode-independent value for the pair-production ampli-
tude. Apparently the out state definition we made corre-
sponds to th1s cho1ce.

For p =0 the state function with wave number k is ob-
tained from Eq. (79) by putting v = —,':

ku
g(k, t)=u sin (90)

This form can also be deduced from the zero-mass propa-
gator for mode k given by Eq. (52). Introducing Eqs. (90)
and (52) into Eq. (61) we found that the massless particle-
production amplitude is equal to zero.

IV. CONCLUSIONS

In recent years considerable experience has been gained
in calculating exactly the path integrals for several
quantum-mechanical problems in flat spacetime. In this
work we have demonstrated that this experience can also
be utilized for solving the curved spacetime path integrals
for studying the particle production in gravitational fields.
Previously, the path integrals were essentially used for de-
fining the boundary conditions of the covariant
Schrodinger equations which are satisfied by the propaga-
tors. (Actually, parabolic differential equations which are
obtained by analytically continuing spacetime are solved. )

For the spatially flat Robertson-Walker universe with
scale factor a(t), we converted the path integration over
the time coordinate to the path integrations for the nonre-
lativistic motion of a particle under the influence of a po-
tential V=a (t) in flat spacetime. We studied three
specific examples of a ( t) which correspond to the
universes with initial singularities. There exist, of course,
some other cases that can also be worked out exactly. For
example, the path integrals for the metrics of Eq. (1) with
a(t)=cosht and a (t)=sint can be handled by expressing
their propagators in terms of the kernels for the potentials
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V=cosh t, and V sin t whose path integrals are ex-
actly solvable. '

The results of the examples we have studied can be
summarized as follows.

For all of the cases explicit calculations gave vanishing
values for the massless particle productions. This is the
natural consequence of the conformal invariance.

For a (t)=t and a (t) ~t, at high energies we obtained
similar pair-production probabilities for the massive parti-
cles which are in the form of e ". These are the same as
the results of Chitre and Hartle and Birrell and Davies. '

For the inflationary universe the probability of very

massive particle pair production in unit four-volume was
found to be proportional to e +"~ '. This agrees with
the conclusion of Mottola for the de Sitter space.
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