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The anisotropies in the microwave background radiation in the cosmic-string theory of galaxy for-

mation are calculated using a general-relativistic analysis. On small scales (8=0.S') we predict

((T~ —T2 )') '~'/T=4X 10,on large scales (8=6') ((T~ —T, )') '~ /T=10 '. The dominant effect

is the Sachs-Wolfe effect from string loops. The above amplitudes are significantly smaller than the

best current observational upper bounds.

I. INTRODUCTION

Cosmic strings' have recently generated considerable in-

terest as a mechanism for forming structures in the
Universe such as galaxies and clusters of galaxies. In
particular, it has recently been shown that the correlation
function of string loops agrees both in magnitude and in

shape with the measured correlation function of Abell
clusters. Cosmic-string loops are seed masses around
which galaxies and clusters of galaxies can accrete. The
one free parameter in the cosmic-string theory of galaxy
formation, the mass p, per unit proper length of string,
was recently determined by requiring that the seed mass
have the correct magnitude to account for the observed
overdensity in Abell clusters. This value, p6-10, also
gives the correct amplification factor of the galaxy-galaxy
correlation function over the cluster-cluster correlation
function. The calculations were performed for cold dark
matter and 0=1.

Inhomogeneities in the matter distribution which be-

come galaxies also cause fluctuations in the microwave
background. However, apart from a dipole anisotropy
which is usually attributed to Earth s peculiar velocity, no
temperature anisotropies have been detected so far.
Present observations give (,5T }' &3X10 on small
angular scales and (5T )' &7X10 on large scales. '
Indeed, the smoothness of the microwave is strong obser-
vational evidence for using Robertson-Walker (RW)
models. The observational bounds on 5T have proved to
be a tough constraint on models which try to explain the
existence of galaxies by the growth of linear energy-
density perturbations. For example, models with baryonic
dark matter and Q = 1 are ruled out.

In this paper we present a general-relativistic analysis
of the temperature fluctuations. We show that the
predicted anisotropies are below present observational

bounds. %e conclude that, on small angular scales
e=o.5',

'2

'"=8X10 '
T

and on large angular scales 8=6'
'2

1/2 3g 10—6

T
(1.2)

Thus, in the cosmic-string theory of galaxy formation,
formation of galaxies and clusters of galaxies is compati-
ble with the absence of observed fluctuations in the mi-
crowave background radiation (MBR). The basic reason
is simple. Matter can accrete around string loops starting
at the time t,q

of equal matter and radiation. Loops pro-
vide seed masses for galaxies and clusters of galaxies.
This is in contrast with models with linear adiabatic per-
turbations and hot dark matter, in which perturbations on
these scales get wiped out by dissipation. It can easily be
checked that the mean separation of loops which gives
rise to galaxies (clusters of galaxies) exceeds the radius at

t~ of the shell which eventually collapses to the radius of
a galaxy (clusters of galaxies) by a factor of about 6.
Hence the density contrast within the above radius
exceeds the mean density contrast by a factor of 200. The
former is relevant for formation of structures, the latter
for rms temperature anisotropies. Thus the low value of
the rms energy density fluctuations 5p/p-10 is con-
sistent with the high density contrast 5p/p-10 re-
quired in regions which collapse to form galaxies and
clusters of galaxies. This is explained in more detail in
Appendix C. In models with linear adiabatic perturba-
tions (random phases) and cold dark matter it is necessary
to have 5p/p-10 at t~ in order to be able to explain
the formation of structures.
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II. FORMATION AND EVOLUTION
OF COSMIC STRINGS

n(R, t)=
z z, t,q(R (t .

R2t2
(2.4)

We begin with a brief review of the formation and evo-
lution of cosmic strings. Cosmic strings are on@-

dimensional topological defects which arise in a large
class of grand unified theories. The requirements for
strings to be formed is that a Higgs field 4 acquires a
nonvanishing vacuum expectation value during a phase
transition in the early Universe and that the manifold Mo
of degenerate vacua is nonsimply connected. This makes
it possible that as one traverses a loop in space x(cr),
4(x(tr)) will traverse a noncontractible loop in Mo. If
one then imagines contracting the loop x(rr) to a point,
4(x(tr)) must leave Mo, i.e., be in a nonvacuum state.
This means there is a localized region of enhanced energy
density, which is a string. Strings are either infinite or
closed loops. Numerical simulations of the formation of
strings ' have shown that about 80% of the string densi-
ty is in the form of infinite open lengths and the rest is in
the form of closed loops.

As noted by Kibble, " if the phase transition occurs suf-
ficiently rapidly, 4 will take on random vacuum values on
scales larger than some coherence length L. L is of the
order of the horizon size.

As the Universe expands, the network of "infinite"
strings is stretched and straightened out (by "infinite" we
mean infinite lengths and loops with a radius bigger than
the horizon). Strings frequently intersect. There is a
probability p that strings which cross will exchange
partners and reconnect the other way. For p —1 the num-
ber of infinite strings per comoving volume will decrease
as the strings chop themselves up into loops. Loops are
formed with a radius of order the horizon size. This pic-
ture has recently been established in numerical simula-
tions. ' ' These simulations show that the coherence
length L (t) increases linearly in time

(2.1)

wjth 1(, 1, and that the energy density in string decreases
as radiation. There are a few infinite strings per horizon
volume.

Loops of string smaller than the horizon retain constant
physical size. They osciBate and lose energy by gravita-
tional radiation until they disappear. ' At any given time
there are loops with radii 8 between 0 and t. Loops with
an initial radius smaller than yGpt, where y-5 (Refs. 10
and 12) have decayed by gravitational radiation. Loops
remaining with radius R (ypGt had an initial radius of
the order of ypGt. The distribution of loops is character-
ized by the number density n (R, t). n (R, t)dR is the num-
ber of loops per unit proper volume at time t with radius
between E. and 8+dR. For t) t,q,

According to numerical simulations v=10 . The mass
of a loop with radius 8 is

with P=9.
The centers of loops are not randomly distributed. For

loops around which clusters of galaxies accrete, the corre-
lations become the cluster-cluster correlation function.

The correlation function C(/, R, t) of loops of radius R
at physical separations I at time t has recently been mea-
sured in numerical simulations. For scales / less than the
mean separation of loops the result is

C(I,R, t)=e R (/(dR, (2.6)

with e-0.2. d& is the mean separation of loops of radius
R or greater, and can be determined from (2.2)—(2.4). In
particular, for ypGt (R ( t,q we have

I /3 ' 2/3

g 1/2 1/2

2v teq

These correlations are determined by the detailed manner
in which initial (parent) loops split up into final (child)
loops.

On larger scales loops have the same correlations as the
network of strings they were chopped off from. Hence
C (I,R, t) ean be determined by taking the Fourier
transform of the power spectrum from infinite strings.
As yet the numerical simulations do not have the range to
measure correlations for I &dn, but a model proposed in
Ref. 8 was to assume the infinite strings are a randomly
distributed network of random walks. For these,

From this,

d'k;s i/ d'k' 5p(k)5p(k')

)(2ir) (2m ) p,
i

3p
mp, r./

(2.8)

A simple way to understand this is as follows. If one sits
on a string and goes out a distance l, the average length of
string between l and I +dl will be given by

4m/ dl +dA, —:— 4n/ dl[1+((/)],
p p

(5p(k)5p(k')) =12p, (2m') 5 (k+k')L 'pk, (2.7)

where p, is the total density of infinite strings, and L is
the step length (2.1).

n(R, t)=

5n int,q

1 8 ( ppGt,
eq

2

yPGt~ ~R ~t,q

(2.2)

(2.3)

where dA, is the excess over average due to the string one
is sitting on. Since the string is Brownian, A, ~l /I. ,
dk, a(: I dl/L, and we find g'~ I

The correlation (2.8) translated into the correlation
function for loops on large scales:

C(/, R, t) edR/I, /gdR, (2.9)

(loops which entered the horizon before t,q), and with e-0.2 also.



If cosmic strings exist they will cause stress-energy per-
turbations. The evolution of galaxies and clusters from
strings has been calculated * ' and gives encouraging
agreement with observations. The next step is to calculate
the microwave anisotropy due to strings. To do this we
will need the two-point mass correlation function. En this
section we discuss the relevant properties of the string
perturbations.

Assume that the background spacetime is RW with
spatially flat sections:

to (for flat spatial sections)

QV p = 80IB
(3.6}f du5px= f da, p'.

The boundary terms are linear functions of h&„,and van-
ish if h&„vanishes on 39'. Therefore if the perturbations
5p and h&„arelocalized in space, the boundary terms are
zero if we take 9 large enough.

First suppose we have a R%' universe in which a single
closed loop of string forms at time t, with radius lo. At a
later time t the geometry will be unperturbed outside the
causal light cone of the initial loop, 5p(l, t)=h„„(l,t)—:0

ds =dt a(t)5—Jdx'dx' . (3.1) I&L (t)=2t 2t' 't,—' '+I, . (3.7)

Strings introduce fluctuations in the stress energy
Tp~ = Tp~ +5'~ alid tile metric gpy =gp~ +h p~, so tllat
(h„„,5T~„) satisfy the Unearized Einstein equations.
%'hat can we way about the perturbed energy density
5p= 5T ?—

Strings form in a phase transition when some internal
symmetry is broken. Let

p=p"(t)+ ( T"), (3.2)

where p" is the energy density of a classical fiuid and Tco
is the contribution to the energy from the Higgs field. Be-
fore the phase transition at the temperature T„
Too ——4(t) is homogeneous and isotropic and

p(t)=p"(t)+Wt) . (3 3)

=~Pstring +~PHR (3.5)

The evolution of the strings has been studied in some de-
tail' ' *' but we do not have a detailed model of the com-
plicated dynamics of the radiation perturbations. Howev-
er, by using general constraints on stress-energy perturba-
tions me mill be able to place strong restrictions on the
behavior of 5p.

It has been shown' that in R%' spacetimes arbitrary
stress-energy perturbations are not possible; rather, 5T"
must obey certain integral constraints. E.et S be a
volume contained in a spatial hypersurface in coordinate
system (3.1), with boundary 58'. When 5T„can be
neglected compared to 5TO, the integral constraints reduce

As the temperature drops below the phase transition tem-
perature T„the Higgs field 4 "rolls into" one of the vac-
uum states in all of space except along the strings. The
initial potential energy of the scalar field decays into radi-
ation 5pa(x„t). Some of the Higgs energy density goes
into strings, as discussed in the previous section. There-
fore, after the phase transition

p=p"(t)+5pR(x, t)+5p„„„s(x,t) .

Then density perturbation is the difference between p in
the physical spacetime and p in the fictitious spacetime
[Eqs. (3.4} and (3.3)], and has a string part and a "Higgs
radiation" part:

5p =5p„„s(x,t)+5pR(x, t) —%(t)

Therefore the density perturbation for a single loop plus
its radiation partner must satisfy the integral constraints
with a zero boundary term:

p) v=0,
big

f 5pil du =0,
big

where Vb;z is a volume larger than the horizon, and

5pi=5pi t, +5pHa. (3.9)

5p(l, t;R) = g 5p, (l —l„t;R), (3.10a)

where

5pi(l)—=0 for I &L (3.10b}

and 5p, satisfies (3.8). The loops oscillate periodically,
and on scales greater than its radius, a loop can be ap-
proximated as a spherical source with radius 8 and total
mass PRp:

6p) p (I,t;R) =6mPGp 28 —,t & t,q,P
(3.11)

and

8(x)—=0 for x&1 (3.12)

Some loops are present in the initial data but most
loops actually form by chopping off infinite strings,
which are executing random walks. These infinite strings
must obey the constraints (3.6), but it is certainly not clear
that the boundary terms vanish. However, if we assume
that the chopping process is a causal process, governed by
the microphysics of the string, then a loop which is
formed at t is not affected by pieces of the string which
are further than t t, from it.—That is, 5pi from a
chopped loop is approximately the same as 5pi for an ini-
tial data loop.

Therefore we require that the density perturbation for a
single loop plus Higgs radiation 5pi obey the integral con-
straints with a zero boundary term [Eq. (3.8}].

At time t, the contribution to the density perturbation
at I, 5p(l, t), provided by loops of radius between R and
R +dR, and located at sites I I, I is
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d'xi=1. (3 13) and

A convenient approximation is to use a Gaussian,
—l2/8 28 =e ' ~" /m ~, even though the Gaussian has an infin-

ite tail.
During the radiation-dominated era, there is very little

accretion of matter onto the loop seed masses. The con-
straints (3.8) give us an estimate of

~ 5PHa ~, if we approx-
imate 5pHR as evenly spread out over the causal volume

5PHR t &R) R P)aop 9 6 R
Gp —,R &t&t~ .

p L3 p 16 t '

(3.14)

Now we can write down the two-point mass correlation
function g for loops, which is needed to compute tempera-
ture fluctuations. g' depends on the distribution of sites

I 1, j in {3.10). Loops which break off different strings are
randomly distributed, but there are long-range correla-
tions between the centers of loops which break off the
same string. Let P(l)dl be the probability of finding a
loop within a distance 1, given that one loop is at 1 =0.
Then C(l), the correlation function for the centers of
loops, is defined by

f„du1 g&(1)=0 (3.17b)
big

for V»s a volume larger than the horizon volume.
These conditions on g~ have implications for microwave

fluctuations. On small scales photons will see a monopole
moment of g, due to the loop at the center, but on large
scales g looks like a quadrupole source (the function g
must have at least two zeros). We will see that on large
scales this implies a depression of the magnitude of the
temperature fiuctuations, and a change in their angular
dependence. '

So far we have discussed the density perturbation
5p~p~~~, +5PHR for t &t~. When the Universe becomes
matter dominated, matter will accrete onto loop seeds and
subsequently grow according to linear perturbation theory
except in the immediate vicinity of the smallest loops.
When p =0 and the flow is irrotational, one can always
choose coordinates which are synchronous and comov-
ing. ' We include only scalar modes since these dominate
at late times and choose coordinates which are synchro-
nous and comoving. The solutions for the perturbed den-
sity 5p and metric h;~ —=h;~/a in a flat, pressureless RW
universe can be conveniently written as '

P(1)dl= 4ml dl—fl+C(l)] .1

V

Substituting (3.10) for 5p, averaging the sites 1, over all
space and using (3.8) gives, for the contribution to g from
loops with radii betwo:n R and R +dR,

5p 1 n' 227 A(x), t)t q,
p 2 'gs

7l
h; = —2 A,J. .

'9E

(3.18)

t((( R)= (0( R) —((( R)}
5p 5p

p p

gi(l, t;R) =n (t,R) f d z (z) (z+I), 5P) 5P)

p p

gi2(l, t;R) =n (t,R) R f d~z d3u (u) {z)
5P& 5pi

p p

(3.15a)

(3.15b)

5P =5P st+5P HR. (3.19)

(Here x' is a comoving coordinate and a drt=dt. )

Equation (3.18) will be used to determine the Sachs-
Wolfe effect, one contribution to the microwave anisotro-
pies. The model for 5p for t & t,q is needed to determine
what 5p is like on last scattering —i.e., the initial condi-
tions for (3.18).

Finally, before turning to the computation of the mi-
crowave anisotropies, we must say something about the
infinite strings. When the infinite strings are formed in
the phase transition there will also be a perturbation
Higgs radiation component, just as for loops

XC(u+z —l)h . (3.15c)

(3.17a)

gi is the contribution from the random part of the loop
distribution, and g, i is from correlations between different
loops of the same size. t)), is a constant of order 1 and will

be set to 1 in the following (see Appendix A of Ref. 8). In
(3.12) we have let X(R)/V(t)~n (t,R)dR.

The mass correlation function at emission time tE is
obtained by integrating over all radii:

g{l,t )= f dRg(l, t,R) . (3.16)

The constraints (3.8) on 5P& give us useful information
about g. First consider g~, the correlation of one loop
with itself. The constraints imply'

f du gi(l) =0
big

Does 5p„obey the constraints (3.8) with a zero boundary
term? The answer is not straightforward, since certainly
an infinite string and its metric perturbation pierce the
boundary of any volume. However, consider a loop which
is formed over an interval ht at the phase transition with
a radius much greater than the horizon size: R ~~2t, .
(Numerical simulations' show that some of these large
loops do form. ) As already argued this loop satisfies the
constraints with a zero boundary term. Now, only parts
of the loop which are within a distance ht of any point x
can influence 5p and h„„atx. For example, parts of the
loop "on the other side" are causally disconnected from x.
Assuming that the same microphysics determines the
structure of 5p for infinite strings as for large loops, we
conclude that the constraints (3.8) hold (at least approxi-
mately) for 5p
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IV. MICRO%'AVE ANISOTROPIES

5TO 1 512r(xz tz) 5Tsw 5TD.p
4 p T T

(4 1)

where

Perturbations in the matter and metric will cause fluc-
tuations in the observed temperature. A photon is emitted
at E =(tz, lz) and received at 0=(to,0). We will assume
that the observed microwave background photons were
emitted from the last scattering surface when hydrogen
recombined. %e wi11 make the approximation that
recombination happened at a single temperature
Tx-4000 K, which is a red-shift 1+zz-1.5)& 103.

One contribution to 5T is from fluctuations in the pho-
tons 5pr on last scattering, and another is a Doppler shift
from the peculiar velocities of the source and ob-
server. '9 2 A third contribution is the Sachs-Wolfe ef-
fect: the photon frequency is perturbed as it propagates
on the perturbed null geodesic.

Let k =k~0(+5k be the four-momentum of the photon
and u =tt~o(+U/a be the four-momentum of a local ob-
server Vis .the (proper) peculiar velocity. Then the gauge
invariant expression for the temperature fluctuations
1S26,27

T
=a (tx)5k (E)—a (to)5k (0}

a (h&» &king)k(g~
—2&op &k(0~k ~p~ )dg

(4.3)

5Tsw

T [A(x)+21n VA (x)]E . (4.4)
IE

It can be checked from the following solutions that the

flrst term in (4.4) dominates: 5T/T =(1/21z )~ (x)
sider the expectation value of the temperature difference
between two points separated by an angle 8. Let &I be the
(proper) separation between the emission points at tx.
Then

&1=6tx(1+zx )'~2sin —. (4.5)

We will calculate the Sachs-Wolfe effect in detail, and es-
titnate the other terms. We will see that the Sachs-Wolfe
is the dominant effect, and that 5Tsw is below current ob-
servational bounds. The calculations here are all for an-

gular scales greater than the size of the largest loops last
scattering. On smaller scales the detailed internal dynam-
ics is important. Neglecting reionization our analysis is
accurate for 8 & 0.5', which subtends a loop of size tE.

For scalar perturbation in a pressureless universe the
solutions are found in (3.18}and the Sachs-Wolfe integral
can be evaluated exactly:

5 TD,p =u'(0) —U'(E), (4.2)
Solving Poisson's equation (3.18} for A (x) and taking the
expectation value, the temperature fluctuations are27

((T, —T, )')
T2

(4.6)

Now we can read off the different behavior of
( ( T ~

—T2 ) ) implied by the general-relativistic con-
straints. Suppose we are looking on large scales
51 &2L(tE) (8&3'), and consider the random contribu-
tion g&(1). [Note that from definitions (3.10b) and (3.15b),
it follows that g(I)=0 for 1&2L.] From (3.17) the only
nonzero term gives (IthT2) ~ f dl'I'3(„ independent on
8. On the other hand, on small scales It I & 2L(tz) (3.17)
does not hold. As long as g is peaked at the origin, the
leading term gives (hT ) cchl f dl'I' g, (see, e.g., Ref.
23).

Equations (3.15) and (3.16) give the correlation function
in two parts. We treat these each in turn.

A. Random Ioops

In this subsection we compute (hT ) from g&, which is
the contribution to the correlation function from random-
ly distributed loops. Recall that g& has contributions from
the loops and from the Higgs radiation. Since the Higgs
radiation is spread over a much larger volume than the
loop, on small scales, b,l &L(tz)=2tE(8&3 ) the loops
dominate.

4 f dl I g'&(I), AI &3tE81g4

v sin —(1+zE) (6mPGp)in
27~

(4.7)

in agreement with Ref. 8. With P=9,
1+zE ——1.5&10, GP=2~10

((T T )2)1/2
5~ $0—6 (4.8)

On large scales b, l & 3' the constraints (3.17) hold. The
only nonzero term in (4.6) is the variance from a single
point:

((T, —T, )')
T2 g f dll g, , AI&3'.81 tE4

(4.9)

Hence, on small scales the constraints do not apply.
Substituting (g. tsbi, snd using I dt(gtt(s+l)=ittsR, the
mass of the loop, we have, on small scales (8 & 3'),

((T, -T, )')
T2
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This integral cannot be evaluated exactly without
knowing how gl(/) behaves on all scales where it is
nonzero, for which we would need an understanding of
the dynamics of the Higgs radiation. However, an upper
bound may be obtained by using a maximal value for the
length of g, I -3tz ..

&(T, -T, )'&'"
(6lrpG/4 )

-4X10, b, l &3ti . (4.10)

x Q- 8(1—2L)+S(1), (4.11)I'

B. Correlated loops

There is a contribution $12 to the mass correlation func-
tion from the correlations between centers of different
loops (2.6), (2.9), and (3.15c).

The site correlation function C(I,R,t) breaks up into a
piece for 1(dR and one for I & dR. Now for /& da, all
of Spl will be included in an integration volume, so 5p,
will satisfy the constraints (3.8). On the other hand, for
small volumes the constraints do not hold, and so the esti-
mates of magnitudes are different. Therefore we must es-
timate the I &dR and 1(dR parts separately.

(i) C(/, R„t)=6(dRII)8(l —dR). [Note: Here 8(x) is
the Heaviside fllllctlon. ]

On larger scales, the density perturbation 5/31 which is
in the integrand must satisfy the constraints (3.8). Ex-
ploiting this, $12 breaks up into a long-range and a short-
range piece. For R «tE,

$12(l, tz, R) = n (tz,R)R6dR(tF)

where Q and S are nonlocal moments of 5p„given in &p-
pendix A. They are bounded as

I
S

I

—
I Q I

«pG/4R)' (4.12)

and S(l) vanishes outside the sound cone; S(/)=0 for
/&L, =L(t~)(tElt~) /

It should be stressed that the bounds (4.12) are conser-
vative, based on general properties. For example, Q is a
kind of quadrupole moment, and actually vanishes for a
spherically symmetric perturbation.

S(/) vanishes for I & L, and the monopole term in (4.6)
dominates. We find

& ( T, -T, )2&1/2

T

t'

2&1/2+/6p( G )
3/4

&eq

' 5/2 ' 1/2
8sin—
2

1/3

X(i+z, )'", a/&2t, -"
EE

On small scales, 6/ & 3', this is bounded above by

&(T1 —Tz)'&'"
=5X10 ', b,l &3tx,

T
(4.13)

and on large scales by

( & T T )2&1/2

T

1/2

& 3g 10 sln—8
2

dd & 3tE . (4.14)

Q is a long-range contribution, vanishing for /&2L;
hence the main contribution is from the last term in (4.6).
From Q we obtain

&(T T )2&1/2 (8v5/6~1/2p( 1 +z ) 1/2( G~ )3/4
T

&2y10, hl ~3tE
8 —6 (4.15)

and on large scales

&(T, -7;)'&'/2
T

' 1/2

( 16v5/6~1/2p sin ( 1 +z ) 1/4( G )3/4
2

L L

' 1/2

& 6X 10 sin—8
Pisagr 2

5/&3' . (4.16)

All of these are below current observational bounds.
(ii) C(I,R, t) =6(dtt ll )8(dtt 1)8(1 R) First—con—sid-.

er large scales, b, / & 3'. The first term in (4.6) dominates.
(&is follows from noting that the last term is zero and
that b, / & dtl. ) It is useful here to interchange the order of
the dl and dR integrations. Then one finds

lkl f dll n R Jd zd g (u) (z)
p p Iu+z —I I'

( '
2' dR3/5ln2R, (4.17)

p'

and the temperature fluctuations are dominated by the
largest loops:

=( ,', 6'v)'/ (6mPG/4)(—1+zE)'/ sin—

' 1/2

&3&10 ~ sin--s
2

/31& 3tE . (4.18)

This is also a bound on slnaB scales 51 Q fF. , since in
this case all functions in the integrand are positive, and
the range of integration is simply made smaller. The re-

sult (4.17) should be regarded as a conservative upper
bound —possible cancellations in the integrals of 5p from
the "Higgs radiation" have not been taken into account.
Gn the other hand, it is at least plausible that the largest
contribution to the Sachs-Wolfe effect comes from the
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clumping of the largest loops at tE
It is worth repeating that here we have calculated the

acceleration term in the Sachs-Wolfe effect (4.4) from
loops. It can be checked from the solution (3.18) that the
acceleration term in 5Tsw dominates the velocity term
&5Tsw, &/&5Tsw, , &

—1/(1+zan).
On angular scales considered here other effects are po-

tentially important: infinite strings, statistical fluctua-
tions in the number of loops, and the peculiar velocity of
the fluid on last scattering. These are considered next.

V. SACHS-%'OLFE EFFECT
FROM INFINITE STRINGS

The random walk network of infinite strings gives rise
to a nonvanishing contribution to the two-point mass
correlation function and hence by Eq. (4.6) to the MBR
anisotropies. In this section we calculate the MBR aniso-
tropies due to infinite strings.

As in the case of loops it is important to take into ac-
count the underdensities in radiation which compensate
the overdensity. As discussed in Ref. 8, the overdensity in
strings 5p„(x)in infinity strings can be written as

5p„(x)=g J ds;p5(x —d; —I;(s;)) . (5.1)

The sum runs over the set of infinite strings described by
the curves l, (s;). d; is the position of the string for s; =0
(see Fig. 1). The probability distribution of 1;(s;) is given

by the Wiener measure.
As explained in Sec. II there will be compensating un-

derdensities in radiation which beginning at the time of
the phase transition will spread with the speed of sound.
The total energy density perturbation 5p(x, t} will satisfy
the constraints (3.8), at least on large scales )L (see Sec.
III). Hence we write

g(l, t) = &5p(l, t)5p(0, t))po '(t)

6p f d zf(z)F(z+l)p() (t) .
8L (2n)

(5.3)

& 10 for 8 & 3' . (5.6)

f is constructed from F and nH is the number of infinite
strings per horizon volume. The important point is that
both f(z) and F(z) vanish outside the sound cone. There-
fore g(l, t)=0 for 1~2c,L(t). We obtain the important
result that infinite strings do not give rise to long-range
correlations, even though their length is infinite. There-
fore g also satisfies the constraints (3.17).

A simple model gives an estimate of the magnitude of g
(see Appendix B):

r

pG 9nH 4 I
g(l, tE)= , tx4, 1 &c,L(tE),

4rr2 8L (tE )
(5.4)

g(l, t~) =0, 1 & c,L (tE) .

Finally we use Eq. (4.6) to compute the temperature fluc-
tuations.

On large scales [b,l ~L (tz)] the second term in (4.6)
vanishes and using the constraints (3.17) we find (with
L =2t and nH ——1)

&(T, —T, )'"& Glo —1 P lo —8 (5.5)
4m

The contribution from infinite strings is angle indepen-
dent on large scales and has a smaller amplitude than the
Sachs-Wolfe effect from loops.

On small scales [b,l &L(tE)] the second term in Eq.
(4.6) dominates. Hence

& (Ti —T2) ) Gp g(1+zE ) '~'sin—
T 4m

()p (x() QJ d, xp=F(x d; I;(x;)), — —(5.2) VI. DOPPLER CONTRIBUTIONS
TO THE MICRO%AVE BACKGROUND

where F(x) satisfies the constraints (3.8).
The computation of the mass correlation function of in-

finite strings is described in Appendix B. The result is

Peculiar velocities in the fluid which emits radiation on
last scattering cause fluctuations in the microwave back-
ground radiation:

T
T

=n 5v(tE),
Dop

(6.1)

FIG. 1. Pararnetrization of the random walk.

where v(tF) is the proper velocity on last scattering. The
dominant effect is due to intrinsic velocities in the Higgs
radiation perturbation; other effects are due to the pecu-
liar velocities of loops and infinite strings, which by
momentum conservation induce peculiar velocities in
Higgs radiation. Small loops start to accrete matter be-
fore decoupling and thus induce velocities gravitational-
ly. However for larger loops, which are relevant to the
angular scales considered here, this will be insignificant.

We shall first consider the contribution from intrinsic
velocities in the Higgs radiation perturbation from loops.
Since 5v(tF} for each loop vanishes outside a sphere
of radius c,L (tE )=2c,tE, the contribution to
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where c, is the speed of sound in the photon fluid and pcD
is the energy density in cold dark matter, the component
which does not couple to the photon fluid. When averag-
ing the contributions from a distribution of loops, the
volume factor for a single loop is of the order
4rr(2c, tE) /3. Therefore

3 y g y g 2 v
2 t 3

and integrating over aB radii R gives

((T, —T, )'")
(2&c )1/2vl/2 pG

3p a(tE)

Dp
' 4 a(t~)

(6.4)

using v =1, h =0.5, t.",2= —,', and 1+zan=2. 5X10 Oh .
The above gives an upper bound on the effect, since it as-
sumes that the entire Higgs radiation remains in radiative
forin after i . The ratio of z factors in Eq. (6.2) is absent
if we assume that 5pHa separates into matter and radia-
tion in exactly the same way as the background po.

Next, we estimate the MBR anisotropies due to the
peculiar velocities of loops. A fraction

a(tx)
f(r)= —p~G

rE a(t~) '

of the radiation about a loop of radius R is moving with
velocity28'

(6.5)

' 2/3

U(t) & — Uo,
8 (6.6)
t

where u0-0. 1 (Ref. 12) is the mean translational velocity
of loops at the time of their formation.

For the same reasons as above, the temperature fluctua-
tions induced by this effect will be constant on large scales

((Ti T—z) )' /T will be angle independent on large
scales. On small scales it varies as sin8.

As already pointed out, we do not have a detailed
understanding of the dynamics of 5pHa. However, we can
estimate the amplitude of the effect as follows.

From the continuity equation, the intrinsic velocities in
the photon fluid around a single loop are of the order

5pHR 5pHR a(i ),9p w a(t, )

p
'

p a(t~) ' l6 tE a(t~) '

VII. PERTURBATIONS OF THE LAST
SCATTERING SURFACE

Energy-density perturbations on the last scattering sur-
face lead to fluctuations in the emission temperature of
the microwave background radiation:

5T
(xE, tE)

last scattering 4
g rad

(7.1)

[see Eq. (4.1)).
The mean fluctuation in radiation energy between two

points z and —z on the last scattering surface is

and vary as sin8 on small scales. The amplitude can be
estimated by now familiar arguments. There is a volume
factor 4m Sc, rF /3; averaging over velocities gives a factor
—,
' and integrating over radii a factor —,

' vtE. Thus

((Ti T2) ) 67T 3p 1+zcq
v pGvp (3X 10

+zg
(6.7)

As expected, ibis contribution is suppressed by vp com-
pared to the contribution from intrinsic sound waves.

The contribution from the peculiar velocities of infinite
strings can be estimated in a similar way. A fraction

2 a(tx)f & —',pGc,
a t~

of the radiation fiuid is moving with velocity Uo.

Higgs radiation from any step length of string spreads
over a volume c,z(2tE) . There are nH infinite strings per
volume element (2tE) . Hence with nH —1

((T,-T,)')'"
T

-nH' '—'vpovo- 10-'.
2

The angular dependence is as for the other two velocity
effects.

In Ref. 8 we determined the MBR anisotropies due to
gravitational lensing by cosmic strings, an effect which
was first discussed by Kaiser and Stebbins. 29 The contri-
bution had a similar magnitude to Eq. (6.4).

We conclude that all Doppler contributions to the mi-
crowave background anisotropies are at least 1 order of
magnitude below current observational limits on scales
( &0.5') for which our analysis is reasonable.

(
f5)o~(z) —5',.d( —z) V 8~

2
——

6 f dkk I5k I f dcos8sin (kz —cos8)I' (2~)'

—f dkk I5kI z+ —,
' f dkk (7.2)

where
I 5k I

is defined by

5p d(k)5p~(k') =5'«+k')
I 5k I

'
p'

(7.3)

I

On large scales (k & ra ') the correlations
I 5k I

in radia-
tion are roughly equal to those in strings. One way to see
this is by the constraints (3.7). As shown in Ref. 17, the
total two-point momentum-space correlation function de-
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X5 (x—d; —/i(s;) —z), (7.5)

where z; are the coordinates in the plane normal to the
string at point s;. The amplitude A is determined by the
constraints (3.7):

A=p, (nL ) (7.6)

Then, following the methods of Appendix B we immedi-
ately obtain

(7.7)

On small scales (k & tE ') the correlation function ig
exponentially suppressed. This conclusion holds also for
string loops, as shown in Ref. 8. Thus, by Eq. (7.2)

(

2Sp„z(z)—Sp„z(—z(
),zz pG (+z~

2m j+&gPrad

cays as k in the hmit k~0. The correlation function
from infinite strings however is much larger:

2 2 —2
I 5k I inrinite strings —{6~pG ) k rz

Hence the compensating fluctuations in radiation energy
density must be of equal magnitude. We can see this ex-
plicitly by using a simple model for the Higgs radiation
energy density perturbation

5pHR= g I dstd zt Ae

current observational bounds. %e assume cold dark
matter, 0=1 and /i =0.5. These dominant terms come
from the Sachs-Wolfe terms (4.8), (4.10), and (4.18).

We considered the Sachs-Wolfe effect due to string
loops and infinite strings and estimated the effects due to
peculiar velocities of the last scattering surface and of en-
ergy density fluctuations on last scattering. On all angu-
lar scales considered here, the Sachs-Wolfe effect gives the
dominant contribution.

The precise numerical values of our predictions should
be considered as upper bounds rather than as exact values.
Our ignorance of the dynamics of Higgs radiation is the
main reason we were not able to calculate all the effects
exactly.
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On large scales

Prad

3 l +~eq
LM.G

4m &+~E

-3~10 '.

(7.8)
APPENDIX A: MASS CORRELATIONS OF

CASUAL PERTURBATIONS

I(l)= J d'zd u (u) (z)C(u+z —1),
P P

C(l) = 8(/ L) .— —
1

(Al)

(A2)

The effect is thus clearly subdominant.

VIII. CONCLUSIONS

[See Eqs. (3.15c) and (2.5).] Now since 5pi satisfies the in-
tegral constraints (3.8}, we can use a lemma' to rewrite
5pi in a convenient form. This will enable us to separate
the correlation function I(l) into a long-range and short-
range piece. Specifically, 5pi can be written as

We calculated the anisotropies in the cosmic-string
theory of galaxy formation using a general-relativistic
analysis for all angular scales for which the details of the
last scattering surface can be neglected (neglecting reioni-
zation this minimal angle is O. S'). Using the value
pG-10 obtained by independent astrophysical con-
siderations we predict small scale anisotropies (8=0.5')

(8.1)

5pi(/)=V f+ 5(/ L), —

where f(l}=0for /&L and

I dQ Fi~(Q)=0,
I =I.

(A4)

and large scale anisotropies (8=6')
for some function f(1).

Substitute (A2) and {A3) into (Al), and integrate by
parts. One finds

-4~10 ',
T {8.2)

in both cageg at leagt an order of magilltllde below the best

z

I (1)=kL' g 8(l 2L}+S(/}—
5 I3

(AS)
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Q= f dn„f dns
s=L u=L

r,' (n')r, (n, ) 1+o —,n'=(l+Ln, )]l+Ln, ]-', (A6)

s(l)=, f d'zv'f(z) f d((', n &f
. j~ —~+vl =L

+, fdQ„ f dnn Vf
js —I+A,„L.j =L,

{A7)

Note that S(l)=0 «r» L
If 5pi is spherical then (A4) implies that Q is zero.

However, we expect that 5pHR will not be spherical. To
bound the magnitude of Q, we compute Q for a very non-
spherical example. Let 5pi~~ be approximated by a
Gaussian equation (3.11) and 5pHR by a box with sides
D(t) and height h {t)~&D:

pi 5p R—2PtrGp 8(h —z}8(D—x)
P P toop 3h

x8(D —y)8(x)8(y)8(z) .

With this model one can calculate f(l)=V 5pi/p and
hence estimate

df Df
pGpR s—in 8sindfscos(t) .

I

[(A4) implies that the monopole and dipole terms in
Bf/Bl vanish. ] (A6) then implies

j Q j &(PG(MR)'.
The bound we use for S is more subtle: we find the

contribution to 5T/T from S is dominated by the smallest
loops. It is unrealistic to spread 5pHR from these as far as
L(tg). Instead we assume it spreads as far as the sound
cone D~Ls-L(t~)(tz/t~) ~ (the velocity of sound

dropping rapidly after t~). This gives the same magni-

I

tude for S but says S should vanish outside the sound
cone; S ( l ) =0, l & Lq.

APPENDIX 8: MASS CORRELATION FUNCTION
FROM INFINITE STRINGS

In this appendix we derive Eq. (5.3) for the mass corre-
lation function from infinite strings and estimate its mag-
nitude using a simple model for the Higgs radiation un-
derdensity.

The starting point is Eq. (5.2). Since I' satisfies the
constraints (3.8) and vanishes outside the sound cone we
can as in Appendix A use the theorem of Ref. 16 and
write F as

(Bl)

f(x) vanishes outside for forward sound cone of x =().
ln dropping the boundary term [see Eq. (A3)] we made
the»mp»fying assumption that the underdensity from
Mch point on the string expands in a radially symmetric
way. Asymmetries can be included following the methods
of Sec. IV.

We compute the energy density correlation function
f(x —y) using the methods of Ref. 8. In order to easily
take the expectation value with respect to the %iener mea-
sure we write f(x) in terms of its Fourier transform f(k).
Then

&5p(x, t)5p(y, t) & = g f d.,ds,p'V„'V,'
EsJ

f d31 di~, ,k + kx((((.—( (.—(k ds. —(k i;(s;)—(k.l (s ))-

d& d& +2V 2V & d&l eik(s —y) ~f{I )
~

2{ ik [1(s) l(—s )].)—'X
V x y 8' ~ (B2)

where N is the number of infinite strings in the cutoff
volume V. The subscript 8' indicates that the remaining
expectation value is with respect to %'iener measure.

If L is the correlation length of the Brownian walk,
then

By radial symmetry the angular part of the k integration
is trivial. %'e obtain

{5p(x, t)5p(y, t) }= V V»

-ik.[l(s)—E(s')] X —Lk2
j s —s'

j (B3} y. f dkk-'~ f(k) ~'sinkl, (B4)
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=(2ir) '—f d'zd'z'f(z)f(z'), (85)
2 (z z'+—/

f

in (84) and noting that V acting on ~z —z'+/
~

' yields
a 5 function we obtain Eq. (5.3).

In order to evaluate the magnitude of g(r, r) we shall as-
sume a simple model for F(x,t). We shall assume that
the radiation underdensity is uniform inside the sound
cone with radius c,L (t):

F(x)=5(x)—a8(c,L(t)—ix i
)

with

a(t)=— 3

4mc, 3L '(&)

(86}

Taking the inverse Laplacian with the boundary condition
that E vanish at infinity we obtain

1 3 1 1 I
1 —— +—,/ (csL,

4m'/
(

2 cgL 2 c,L
(88)

f(/) =—

f(/)=0, /&c, L .

Thus, using the expression for pc in the matter-dominated
era, me get

where /=x —y and /, is the total length of one string.
There are nil infinite strings which cross any horizon
volume (nH is of the order 1). Hence the prefactor
N/, /V, the total length in string per volume, is nHL
Using

—I dkk 'sink/~ f(k)
~o

APPENDIX C: FORMATION OF STRUCTURES

In this appendix we outline why the small rms value

~
5k

~

—10,which leads to the small values for the rms
microwave anisotropies computed in this paper, is con-
sistent with formation of galaxies and clusters of galaxies.

In models with linear adiabatic perturbations the rms
density fiuctuations at t,q must be of the order 10, in
order to be able to grow& to order unity at z -1. In models
in which structures form by accretion about seed masses
the situation is different. The requirement is that the den-
sity contrast in the region which collapses to a galaxy
(cluster of galaxies) is of the order 10 at t,q If.the ra-
dius r;(t~) of this region is smaller than the mean separa-
tion 1(t,q) of the structures, then the rms density contrast
can be substantially smaller.

With r, (r )=at„and d(r, )=b Mpc we obtain

r;(t, )' " =12.5—'I-'.
d(r,q)

'
b

(Cl)

For clusters of galaxies a =7X10 'h (from Ref. 4) and
b =55h

r;(t,q)
0.16;

The first term dominates for small /; for /-c, L both are
of the same order of magnitude. To a good approxima-
tion we can thus work with Eq. (5.4).

G 9li~

4n SL'(r)

T

X f(/) —a f d'zf(z)8(cgL —~z+/
~

)

for galaxies we find

r;(t«} =0.15 . (C3}

(89)
These values yields 5plp-10 within the regions which
eventually collapse.

'Permanent address: Department of Astronomy and Enrico
Fermi Institute, University of Chicago, Chicago, Illinois
60637.

Present address: Department of Theoretical Physics, Imperial
College, London 8&7, United Kingdom.

~Present address: DAMTP, Silver Street, University of Cam-
bridge, Cambridge CB3 9EW, United Kingdom.

'Ya. Zeldovich, Mon. Not. R. Astron. Soc. 192, 663 (1980); A.
Vilenkin„Phys. Rev. Lett. 46, 1169 (1981);46, 1496(E) (1981);
A. Vilenkin, Phys. Rev. D 24, 2082 (1981);for reviews, see T.
%'. B. Kibble, Phys. Rep. 67, 183 (1980); A. Vilenkin, ibid.
121, 263 (1985).

2N. Turok, Phys. Lett. 1238, 3&7 (1983); &. »le»»nd Q.
Shafi, Phys. Rev. Lett. 51, 1716 (1983);N. Turok, Nucl. Phys.
8242, 520 (1984).

3N. Turok, Phys. Rev. Lett. 55, 1801 (1985).
~N. Turok and R. Brandenberger, Phys. Rev. D 33, 2175 {1986).
For a recent review of observational limits, see, e.g., D. %ilkin-

son, in Proceedings of the Inner Space/Outer Space Confer-

ence, Fermilab, edited by E. Kolb et al, (University of Chi-

cago Press, Chicago, 1985).
6M. Wilson and J. Silk, Astrophys. J. 243, 14 (1983); M. %'ilson,

ibE'd. 273, 2 (1984).
~R. Sachs and A. %'olfe, Astrophys. J. 147, 73 (1967).
SR. Brandenberger and N. Turok, Phys. Rev. D 33, 2182 (1986),
9T. Vachaspati and A. Vilenkin, Phys. Rev. D 30, 2036 (1984). t

~OA. Albrecht and N. Turok, Phys. Rev. Lett. 54, 1868 (1985).
T. %'. B.Kibble, J. Phys. A 9, 1387 (1976).

I2A. Albrecht and N. Turok (in preparation).
~ A. Vilenkin, Phys. Rev. D 24, 2082 (1981); N. Turok, Nucl.

Phys. 8242, 520 {1984).
~4T. W. B.Kibble, Nucl. Phys. 8252, 277 (1985).
'5J. Traschen, Phys. Rev. D 31, 283 (1985).
'6L, Abbott and J. Traschen„Astrophys. J. (to be published).
~~J. Traschen, Phys. Rev. D 29, 1563 (1984).
SE. Lifshitz and I. Khalatnikov, Adv. Phys. 12, 185 (1963).

~9P. J. E. Peebles and J.T. Yu, Astrophys. J. 162, 815 (1970).
2OR. Sunyaev and Ya. B. Zeldovich, Astrophys. Space Sci. 7, 1



930 JENNIE TRASCHEN, NEIL TUROK, AND ROBERT BRANDENBERQER

(1976).
~~M. Davis and P. Boynton, Astrophys. J. 237, 365 (1980).
~~J. Silk and M. Vhlson, Astrophys. J. 243, 14 (1981).
~3P. J. E. Peebles, Astrophys. J. 243, L119 (1981).
~~A. Anile and S. Motta, Astrophys. J. 207, 685 (1976).
~~P. J. E. Peebles, Astrophys. J. 259, 442 (1982).

6L. Abbott, B. Schaefer, and M. %'ise, Brandeis report, 1985
(unpublished).

7J. Traschen and D. Eardley, ITP Report No. NSF-ITP-85-
122, 1985 (unpublished).

~~J. Silk and A. VHenkin, Phys. Rev. Lett. 53, 1700 (1984).
~~N. Kaiser and A. Stebbins, Nature (London) 3IO, 391 (1984).


