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Hyperon decays and CP nonconservation

1 AUGUST 1986

John F. Donoghue
Department of Physics and Astronomy, Uniuersity ofMassachusetts, Amherst, Massachusetts Ol003

Xiao-Gang He and Sandip Pakvasa
Department of Physics and Astronomy, Untuersity of Hawaii at Manoa, Honolulu, Hawaii 96822

(Received 7 March 1986)

%e study all modes of hyperon nonleptonic decay and consider the CI'-odd observables which re-

sult. Explicit calculations are provided in the Kobayashi-Maskawa, %'einberg-Higgs, and left-
right-symmetric models of CI' nonconservation.

I. INTRODUCTION

Hyperon decays provide tests of CP violation which ap-
pear promising as signals of the possible b,s= 1 CP non-
conservation which is present in many models. Recently
two of us discussed these tests and calculated:- decay pa-
rameters as an example. ' The purpose of this paper is to
present the formalism and theoretical predictions for all
of the possible hyperon decay modes, using a variety of
the major theories of CP violation.

The goal of work such as this is to uncover systems
where new CP-violating effects can be measured. New
tests are needed if we are to differentiate the various
models of CP violation. Hyperon decays are valuable in
this respect because they provide a measure of b,s= 1 CP
nonconservation. In kaons, As=2 effects (e.g., the box
diagram) appear to be dominant. However, many models
also have 28=1 CP-odd effects and it would be impor-
tant to observe these. Hyperons are readily produced, and
their decays can be studied in high-precision experiments
so that they are likely to be useful.

Some theories, such as the superweak model ' and the
models' where very heavy neutral Higgs bosons produce
the CP violation„have no d6'=I CP-odd effects and
hence will not produce the signals discussed in this paper.
In the Kobayashi-Maskawa (KM) model, the penguin di-
agram will produce M= 1 effects. This generates a non-
vanishing value of the kaon de:ay parameter e'. Al-
though it has not yet been observed, the present genera-
tion of experiments is expected to uncover e' if the model
is correct. In hyperon decays the penguin diagram will
generate CP-odd effe:ts at the order 20@' (the factor of 20
occurs because e' contains an extra suppression factor of
this magnitude due to the M = —', character of the observ-

able). In the Weinberg-Higgs model, s it is the ES=2 ef-
fects which are small, while charged-Higgs-boson ex-
change produces a large CP-odd M'=1 signal. This
model has the largest signals in the processes which we
study in this paper, with phases of order 10 3. The left-
right-symmetric model ' also has AS = 1 CP nonconser-
vation. The version which we analyze —that with the
"isoconjugate structure" —will have signals at about the
same level as the KM model.

The outline of the paper is as follows. Section II con-

tains the isospin decomposition of all the hyperon decays
and gives the formulas for the CP-odd observables. In
Secs. III, IV, and V, we provide calculations of the weak
phases in the KM, Weinberg-Higgs, and left-right-
symmetric models, respectively. Finally the conclusion,
Sec. VI, tabulates the observables and discusses the re-
sults.

II. ANALYSIS OF OBSERVABLES

In this section, we discuss some general CP properties
in hyperon decays. Hyperon decays proceed into both S-
wave (parity-violating) and P-wave (parity-conserving) fi-
nal states with amplitudes S and P, respectively. We
write the amplitude as

Amp(B'~B~n') =S(B,')+P(B,')o"q . (2.1)

The experimental observables" are the total rate I, and
the decay parameters a, P, and y which govern the
decay-angular distribution and the polarization of the fi-
nal baryon. Among a, p, and y, only two are independent
as they are related by

a2+ p2+ y2

a=2ReS'P/( S
I

+
~

P
I ),

P=2 ImS'P/(
/

S
/

+
/

P
f

) .

(2.2)

Similar observables for antihyperon decays are I, a, p,
and y:

a =2 ReS 'P/(
f
S

f
+

/

P
J

P=2I S "P/([S['+ /P/'),

a and P are usually parametrized as

(2.3)

P=(1—a )'~ sing . (2.4)

a and p are more closely related to experimental data and
are essentially uncorrelated. The present status' of the
measurements is summarized in Table I.

We define some observables which vanish in the limit
of CP conservation:

34 833 Qc1986 The American Physical Society



JOHN F. DONOGHUE, XIAO-GANG HE, AND SANDIP PAKVASA 34

A' nm-'

A'~pm
~p

Am
X ~nm
X+ pm'
X+~nm+

0.642+0.013
0.642+0.013

—0.413+0.022
—0.434+0.015
—0.0681+0.0077
—0.979+0.016

0.068+0.013

—6.5'+ 3.5'
—6.5 +3.5'
20.7 +11.7'

2.0 %5.7'

10.3'+4.6'
35.8'+ 33.7

167.3'+20. 1'

TABLE I. Experimental measurements of a and P. is another quantity (p/a)~ —(p/a) which is a direct

test of CP, independent of any knowledge of the phase
shifts. This occurs because there is a unique isospin of the
final state in = decay.

The quantities A and 8 are quoted with I a and I p as
variables rather than a and p. This allows simpler formu-
las for these asymmetries and may be easier to measure.
To first order in the weak-interaction phases

(2.6)

I a+I tT

I u —I a
I p+ I p
f'P I'P-

(2.5)
'(5;+p; )

ie

i(s; +p; )
(2.7)

Let us now study the quantities 4, A, 8, and C in a little
more detail. We parametrize the decay amplitudes as fol-
lows:

C Q

where (P/a)chic is equal to P/a in the limit of CP conser-
vation. 5 and C have been discussed before" for some
of the hyperon decay modes. Note that b, A, and 8 are
quantities which can be measured directly. The test im-
plied by the quantity C is less useful because it requires an
experimentally measured quantity p/a to be compared to
a value calculated as if CP violation were absent. The
latter requires high-precision knowledge of the strong-
interaction phase shifts, and therefore is unlikely to be
known to the desired accuracy. We include it as a test
primarily for reasons of completeness. In " decay, there

i(s~—ii~)
(2.8)

Since the weak phases are small compared to 1, we keep
only the lowest-order terms in (();. We have

%here S; and I'; are real, i' runs over all possible ampli-
tudes for different final isospin states and change in iso-
spin dd, 5; is the (strong-) final-state interaction phase,
and P; is the weak-interaction phase. In this notation, the
antihyperon decay amplitudes are

its~ —y~)S= —gS;e

$[SSJsin(5; —51 )sin(P; —PJ )+P Pj sin(5; —5J )sin(((); —
P& )]

l +j 4

g(S; +P; )+2+ [S;Sjcos(5;—5&)+P;Pjcos(5; —5~ )]
(2.9a)

CK8=
cpc

QS;Pj sin(5J~ —5; )sin(PJP —P; )

QS;PJsin(5J —5; )
i)J

$S;Pj.cos(51 5; )sin(PJ P; )— —

gS;P;cos(5, 5;)—
(2.9b)

(2.9c)

C= — (8 —A),
c~c

QS;PJ sin(5& —5'; )

P
a c~c QS;Plcos(51 —5; )

I' S

(2.9d)

(2.9e)

%'e are now ready to study specific hyperon decays. %'e will study A ~pm', A ~nm', X+~nm+, X+~pm',
~0m. , = ~A m. and:- ~A m using the parametrization of Overseth and Pakvasa. ' There S;J, I';J correspond

to S2~ 2I, I'q~ 2q, and 521 and 521 &
for S- and I'-wave amplitudes, respectively. In A decay we find for A ~pm
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S(A' ) =—(-')'"S '"'""+(-')'"S .' "'

P(Ao ) (
& )1/2P I 1+( 1

(
& )1/2P 11+'6
3

and for Ao~nmo

S(AO) (
1 )1/2S l(5(+()(I

(
2 )1/2S l(53+(()3)

P(AO) (
1 )1/2P e 11+( l ~ (

2 )1/2P e
( 33+( 3)

(2.10)

(2.11)

Experimentally we know that dd = —,
'

amplitudes are much smaller than M= —,
'

amplitudes. If we work to first order
in the dd = —, amplitudes and the weak-interaction phases, we find

h(A ) = 3/ 2 sin(53 —5()sin(()(3 —(t) ) ),~ S S

SI)

S33 cos(511 53) sin(511 —53) sin((()) —((}3)
A (A )= —tan(511 —5()sin((t) ) —(()() 1 ~

2 S» cos i( —
1 sin 1 i —1 sin(p) —p) )

T

P33 cos(531—51) sin(531 —51) sin($3 —p) )

3/2 Pi 1 cos(511—51} sin(511 —51 ) sin(pf (I}s))

1 S33 sin(5» —53 ) cos( 5» —53 ) sin(((}1
—((}3)

8(A }=cot(511—51)sin($) —(I}() 1~
2 S1 1 sin 11

—
i cos» —

i sin(((}) —(|),)

cos(53, —5, ) sin($3 —(t, 1)

cos(511—51) sin($) —((}))

P33 sin(5» —5, )
+ v 2 Pi) sin(511 —51)

S33 sin(53 —5, ) P33 sin(5» —5»)
C(A )=tan(5» —51) 1/ 2 . ~ 2 [g(Ao ) g(Ao )] .

11 S1112 11
—

1 11 S111

(2.12a)

(2.12b)

(2.12c)

(2.12d)

To lowest order in the M = —,
'

amplitude, we have

b,(A )=——,'h(A ),
S( ) S l(52+()f2) 1 l(52+(()32)

~re +T ne

&~~21+412~ 1 ~ &~~2]+432~
P~ " j=Pl ~e + —,P3qe

(2.14)

h(A ) =A(A ),
8(A ) B(A ),
C(A )=C(A ) .

(2.13)

We see that fox A decay only one decay mode needs to be
studied. We choose to study A +pm T—he str.ong
phases are 51=6.0', 53———3.8', 511———1.1', and

531———0.7' (Ref. 15) with uncertainties of the order 1'.
The decay amplitudes for = ~A n. are

while for = ~Air

0} 1 (S &t(5&)+Pf&) S i(52+$32))

2

P( ()) 1 (P i(52)+P)2) P i(52)+/~32))

2

(2.15)

The discussion goes completely parallel to that for A de-

cay and we find

&(:":)=0, (2.16a)

p s 1 u. p p I 3z. s sP S
tan(521 52 } sin(4'12 412)+ sin((( 32 (t 12)+— »n((r 12 ((32)

2 P)p 2 Sly
(2.16b)

p s 1 32 . p p 1 32P S
8( " ) =cot(52, —52) sin(((})2—((})2)~ — sin($32 $(2)+ sin($]2

2 PI 2 S)p
(2.16c)

2 ps 1m. pp 13'P S
C(:- ) =[1+tan (52, —52)] sin((()(2 —$12)+— sin((()32 —$)2)+— »n((()(2 —$32)2 Sly

(2.16d)
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Again if fU= —, contributions are treated to lowest order,
we have

b, (:-())=0, A(:-())=A(:- ),
(2.17)

=—', [1+tan (521 —52)]a ~ u
lesbo

Se&

r

S S»n(012 —A2)

and the X+ no+ amplitudes are

S(X+ ) = ——,(Si le ——,S31e )e
iP&& I ~$3& i5&

l [S ~~13
2(

& )1/2S ~33]e 3

P(X~)= —'
, (—Pl

1
e "——,Pile ")e

+ [p e (3 2(
& )1/2p e 33] il

(2.20)

(~—
) p 31+~)3

(
2 )1/2P (S3)+( 3+ T

while for X+~pro,

(2.18)

p+p
12

The equality 6(:"0)=6(:- ) =0 is exact. This is because
there is only one final-state isospin. Phase shifts for =-n
scattering have not been measured experimentally yet.
Nath and Kumar' calculate 52 ———18.7' and 52, ——2.7'
whereas Martin' obtains 521

———1.2'. In our estimates
we use 521 ———2.7'.

In the case of X decay, the decay amplitudes are, for
X —+nm

&(s3+ P(3)
(

2 )1/2S i(53+()f3)

%'e notice that

SP) I ) gy~
Sii e "——,Si,e

and

'~11
P11e p P3'je

yS
always appear together, we redefine them as Sie ' and

lyP
P,e, respectively. The strong phases are 51 ——9.4',
53——10.1', 5» ———1.8', and 5» ———3.5' (Ref. 15) again
with uncertainties of the order of 1'. Calculating the de-

cay asymmetries we obtain for X

~nrem

'(())»
2(

2 )i/2S

p(X+ ) (p l( ll 1 p ~31) ll

2
[p '&)3

2(
2 )i/2p '&33] 's3)

(2.19)

b(X )=0,
A (x ) = —tan(53, —53)A,

8(X ) =cot(531 —53)A,

C(X ) = [1+tan (531 53)]A,

where

(2.21)

A =sin((t)» —P»)

S
21+ P SS»»n(l))13 —4)3)

21+
5

' 1/2 . p ~ P S
P33 sin(l))33 l)I ») 2 S33P33 sin((()33 $33)+ ~ P S + P S»»n(013 413) 13P»»n(413 413)

1/2 ' ' 1/2
2 P33 2 5'33P33

+ +—
(2.22)

For X+~pm and X+—+nm+, we notice that

S13e —2( —, ) S33e
'|I 13 & 1/2 '~33

P lie —2( —, ) P33e
~4/3 2 1/2 I (|33

appear together, and defining them as Sie and Pie, respectively, we have
)&~3 — sy ~3

3 13 2( s ) S33 P3 P13 2( ~s ) P33

and

S)3(()i3—2( 5 )'"(t33
3=

S3

In this notation, we find, for X+~pm. o:

P3
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S]$3sill(51 53 )sin(]t] 1
—$ 3 ) +P]P3 sill(5] ] —53] )sin((t ] —'(t 3 )

S S ~ P P

-3 -3 -3S ] +S 3 +P ] +P 3 +2S,S3cos(5, —53)+2P]P3 cos(5» —5» )
(2.23a)

A(Xp ) = — — (Xp ) sin(5]l —5])sin(p 1
—p 1)+ sin(531 —5])sin(]t] 3

—p 1 ) + sin(5]l —53)sin(p 1
—p 3)

I3 + ~ P S ~ P S 3 P S

CPC Pi Si

S3P3 ~ P S+ sin(5» —53)sin(])] 3
—P 3 )

SiPi
P3

sin(5» —5])+ sin(53] —5])
Pi

S3 S3P3+ sin(5] 1
—53)+ sin(53, —53)

Si SiPi
(2.23b)

r

8(Xp ) = (Xp ) cos(5]l —5])sin(p 1
—p 1)+ cos(53]—5] )sin(p 3

—p 1) + cos(51]—53)sin(p 1
—p 3)

Q + ~ P S ~ P S 3 ~ P S

C1 C Pi Si

S3P3
~ P S+ cos(53] 53)sl n(f 3 f 3)

SiPi
P3

cos(5] ]
—5] ) + cos(53] —5] )

Pi

S3 S3P3+ COS(5]] 53)+ cos(53'1 53)
Si SiPi

(2.23c)

C(X]] )= — (Xp+)[8(Xp ) —A(Xp )j,
CPC

(2.23d)

where from the data we find (P/a)chic(Xp+ )=0.033.
For X+~n~+, we have

S]S3sin(5, —53)sin(y ]
—y 3)+P]P3sin(5„—53])sin(]T), ] —lp 3)

S S ~ P P
b(Xi+) =4

4S, +S 3 +4P 1 +P 3 4S, ]S3cos(5, 53) 4P]P3cos(5] 1 53])
(2.24a)

r

h(X+) =-+ P
a CPC

(X+ ) sin(5] 1
—5] )sin(P 1

—P ] ) —— sin(53] —5])sin(P 3
—P ] ) —— sin(5] 1

—53)sin(p 1
—p 3)2 pi 2 Si

1 S3P3 —P —S+— sin(53, —53)sin(p 3
—])] 3)4 SiPi

& P3
(511 51) — s n(531 51) — s n(511 53)

2 Si

& S3P2
sin(53] 53)

4 SiPi
(2.24b)

8(X+)=
cpc

(X+) cos(5» —5])sin(p] —p])—— cos(53] 5])sin(]I}3—p]) —— cos(5]l —53)sin(]I}] llfl3)
+ ~ P S ~ P S ~ P S

2 P 2 Si

-s+ cos(53] 53)sin(](}3 P ] )
4 SiPi

~ S3
cos(5] 1

—5])—— cos(53, —5])—— cos(51]—53 )
2 Pi 2 Si

i S3P2
cos(53]—53)4 S,P,

(2.24c)

C(X+)= — (X+)[8(X+)—A(X+)] .
CPC

(2.24d)
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By assuming that the values given in Ref. 18 are for the
real parts of the amplitudes, we find (P/a)chic(X+) =3.5.
In the above expressions, we use exact formulas because
all contributions are of the same order of magnitude.

The remaining task is to calculate weak-interaction
phases P s which in turn depend on the model for CP
violation. We proceed to estimate them in the following
sections for different models.

III. KOSAYASHI-MASKANA MODEL

P(AO ) (
2 )1j2P e'~l +( ~ )I/2P e'~3

= 12.4(1 —2.24i ImC& ) —0.06 . (3.4b)

S( —
) S e I 2+ S e 32

The numbers are quoted in the same order as the formulas
above them. Note that only isospin- —, amplitudes have

any weak phases. This is also true in the %einberg-Higgs
model.

En " decay, our results have been given previously:

In the standard model with three generations, the in-
teraction of the quarks with the charged gauge bosons
may contain a phase which can generate CP violation. In
the kaon sector the box diagram provides the dominant
CP-odd effect, i.e., the mixing of Ki and Kz. In hy-
peron decay the box diagram does not contribute as it is
his=2, and the CP nonconservation is contained in the
b,s= 1 penguin interactions. The operator which is im-
plied by this is

GF
A

cp v=i sin8icos8, 1mCsdt Z„(1+&5)
2 2

= —46.2(1 —0.29i ImC5)+1. 1,

P(:- ) =Piie "+—,
' Prie

=10.2(1+0 92i Im. Cg) —0. 1 .

Finally in the X system, we find

35"'
= —20.9(1—0.3i lmC& }—1.5

(3.5a)

(3.5b)

Xsqt "y"(1—y5)q, (3.1) —10.3(1—0.3i ImCi ), (3.6a)

where t" are the Gell-Man SU(3) matrices acting on the
colors of quarks. The strength of the interaction, ImC&,
has been calculated by Gilman and Wise' to be

P

Im C5 ———0.1 sin82sin8&sin5 .

Present bounds on the KM angles force this to satisfy

ImC5 &2g10

(3.2)

(3.3)

= —0.3(1+20.0i ImC5) —1.9

+28.8(1—0.15i ImCi) . (3.6b)

S(A }= ( ) nS„e'~ +( ) S

=32.8(1 0 42i ImC&—) —.0.3, (3.4a)

but the requirement that the model generate enough CP
violation in K K mixing imphes that ImC5 needs to be
close to its upper bound. For our estimates we will use
Eq. (3.3) as an equality in quoting numbers.

To calculate the effect of this interaction, we will utilize
the bag-model calculations of Donoghue, Golowich, Hol-
stein, and Ponce (DGHP). The effect of the penguin
operator on the S- and P-wave amplitude can be read off
of Tables III and V of DGHP. The only complication
arises in the separation of the X amplitudes according to
the isospin of the final state, as is required by our usage
above, Eqs. (2.18)—(2.20}. For example, PCAC (partial
conservation of axial-vector current) requires that the S-
wave lU= —, amplitude in X+~nm. + vanish. This can
only happen if the two amplitudes S» and S» cancel.
Our procedure is to extract the amplitude from the data,
assuming the data quoted in the Particle Data Group
tables represent real amplitudes. The weak CP-violating
phases are then added as calculated in the model. All am-
plitudes are quoted in units of 10, and the strong-
interaction phase shifts are not included.

The amplitudes which we find for A decay are

Even though these results are the best that can be done
with present calculational methods, there can be consider-
able uncertainty. The S-wave amplitudes, when calculat-
ed in the quark model, generated by the full weak Hamil-
tonian match the experimental data roughly in amplitude,
but have a somewhat different SU(3) structure. The
baryon pole model for the P wave has a well-known factor
of 2 defect in reproducing the magnitude, ' although the
signs are correctly given. Thus one should allow at le@st a
factor of 2 uncertainty in the calculated phases.

We will defer a complete discussion of the observables
until the conclusion. However, we note that phases are
typically of order

P —ImC5 —10

IV. %EINBERG-HIGGS MODEL

In the %'einberg-Higgs model, the CI' violation is gen-
erated by the exchange of charged-Higgs bosons. The
M=2 box diagram is small compared to the effect of
M=1 CI' violation. The model can be viable if disper-
sive effects in K Kmixing provid-e the major contribu-
tion in the kaon sector. That this may be the case has
been shown in Ref. 22. The most important operator in
the model involves the gluon field strength tensor F&„.
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Wcpv i—fdt "W"(1 y—s )sF„"„. (4.1)

The chiral-symmetry behavior of this operator, i.e., its
transformation as (3r, 3it) under chiral SU(3), played an
important role in the analysis in the kaon sector. It will
also be important below.

To normalize the strength of CP violation in this
model, we use Ref. 22 to estimate the dispersive contribu-
tion to the K I(C-transition and to relate it to e. We find

2~xl~xi2 =2~„v 2
I
e

I
~m

=2x10 '&n
~
~cPv Irt')

which yields

( ~&cp ~K )=58x10 "G&

(4.2)

(4.3)

W,ft=g Tr(A, 6M)

with

(4.4)

gAyA
M =exp —i (4.5)

and P" being the eight pseudoscalar fields. This Lagrang-
ian has the expansion

The parameter p of Ref. 22 has been set equal to unity. If
p & 1, the strength of CP-odd signals in hy-
peron decay would be enhanced by a factor 1/p.

The effect of the operator in Wci v has been calculated
in the bag model in Ref. 23 (DGHP). However, it has re-
cently been discovered that the PCAC analysis of hy-
peron decays is modified for operators with a (3,3)
transformation property. We include this modification in
our analysis. The most important effect is the addition of
a new diagram to the analysis of the S-wave amplitude.
The new diagram is that of a E~vacuum tadpole, as
shown in Fig. l. In the standard model, the (8L, lit) chiral
transformation property of the weak Hamiltonian forces
this diagram to vanish How. ever (31.,3q) operators, such
as the one that occurs in the Higgs-boson model, have a
nonvanishing E~vacuum matrix element. This can be
most easily seen using effective chiral Lagrangian, where
the (3L, , 3a ) character is implied in the Lagrangian

2g . 0~4a—i06—dna + '

2I'
(4.6)

S(Ao) = — (N
i Hw l A)
' 1/2

r 3+
2I'~ 2 Ms —M

x (0/Hi
i
E)X (4.7a)

S(XO ) = — {P
~
H~

~

X+ )

2F M, —M« ~I~M~~

(4.7b)

S(:-0)=— (A
i H~ i:- )

' 1/2
M —MA

M, —M«

l 3

2E~ 2

x ', (0~H. ~rc)
M, +M«

&~scM~
(4.7c)

The relative sizes and signs of these terms may be checked
using the Feinberg-Kabir-steinberg theorem, which re-
quires that all the amplitudes vanish if the Hamiltonian is
d(1 —y5)s. The contribution of the tadpole term turns
out to be important because the phases generated by them
are larger than those of the baryon terms. However there
is substantial cancellation, between the E tadpole terms in
the S wave and the E~m pole terms in the I' wave, when
comparing Ps —Pe. In the P waves we use the standard
baryon-plus-kaon pole model. Again we recall that the
kaon poles are of order M~ /Mir (and hence negligible)
in the KM model, due to the (8L, lz) chiral property, but
are important for a (3,3) Lagrangian.

Our results in this model are given below. In A decay

S(A' )= —(-')'"S e'~'+(-')'"S e'"

(0~ Wcpv)E )=i2F {m
~
Wcpv ~E )

The S-wave amplitudes are modified by this term in the
following way:

=32.8(1—1.2i x10 ) —0.3,
P(A' )= —(-')'"P»e" +H)'"P»e'"

(4.8a)

= 12.4(1 —1 4i X 10 ) —. 0.06,

while in = decay

(4.8b)

S(:- ) =S&ze "+—,Si2e

FIG. 1. Tadpoie diagram for hyperon decay. = —4.62(1 —0.7i X 10 ) + 1.1, (4.9a)
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TABLE II. The CP-violating observables for the KM model.

A'~p~-
Am

X ~nm
X+ pm'
X+~nm+

—5.4y 10-'
0
0

—6.2X10-'
6.0X 10-'

—0.5 ~10-'
—0.7~ 10-4

1.6y 10-'
—3.2~ 10-'
—1.6X 10-'

3.0&& 10-'
8.4~ 10-'

—1.2g10-'
—4.2~ 10
—8.4@10-'

—3.6~ 10-'
2.6x 10-"

—1.4X 10-'
—1.3 ~ 10—'

5.7g 10-4

0.124
0.287
0.116
0.033
3.5

P(:- )=P„e' "r—,'P„e 1 i riP—We. have

= 10.2(1+0.4i X 10-')—0. 1 .

Finally, the X amplitudes are

S(X+)= S e "— S e "+ S e

(4.9b) (5.2)

for all decays. riP can be obtained from CP nonconserva-
tion in kaon mixing. In this model, the box diagrams'
yield

= —20.9(1—1.Oi )& 10 ) —1.5

—10.3(1—1.0i g 10 ), (4.10a)

GF s( f» M»Mc MLRe=
q

8 60CLR riP12v'2~' b.M
(5.3)

P(Xo )= P)pe " P33e —"+ P )e
3 5

where CI z -3 is the quantum-chromodynamic correction
factor and

= —0.3(1—25.0i)&10 ) —1.9

+28.8(1+0.li )&10 ) . (4.10b)

(,E ~sRdLsLdR ~E )

(K ~sry„dLsLy"dl ~E )
(5.4)

We note here that the phases are typically of order 10

V. LEFT-RIGHT-SYMMETRIC MODEL

MLR/MI. L is in the range 3—10. Note the large factor
60CLRMLR/MLL which enhances the left-right box dia-
gram, but decreases the size of the signals in the hyperon
sector. The value for e implies

In this section, we estimate weak phases P s in the
left-right-symmetric model. There are several versions of
left-right-symmetric models of CP nonconservation, but
the most appealing is that with the "isoconjugate struc-
ture" which generates sizable AS=1 CP-odd interaction
even though e'/e=0 in kaon decay (in the limit of no
WL, -WR mixing). The full b,S=1 Hamiltonian has the
orm

gP= X 2.2x 10-' . (5.5)

(5.6a)

In our later estimates we will use .4'Ll /MLR -—,', that is

qP=4. 4&& 10-'.
Because all 5 and I' weak phases are equal, the calcula-

tion for 6, A, 8, and C is much simplified. We have

Gp PH~ = sin8)cos8)(OLL +rie' OR„),V'2 (5.1)

where ri =Ma /M~„, OLL and O„„are identical

operators, except that OIL is a product of two left-handed
currents whereas Oqz has two right-handed currents. Be-
cause of this structure one can easily see that all b,S=1
parity-conserving processes have an identical phase factor
1+ihip, while all parity-nonconserving ones have phase

sin(P —P ),
, CPC

sin(P —P ),

sin(P —P ),
cpc

1+

(5.6b)

(5.6c)

(5.6d)

TABLE III. The CP-violating observables for the %'einberg-Higgs model.

A'~pm-
Am

X ~nm
X+ pm'
X+~n m+

—7.8 g 10-'
0
0
1.4~ 10—'

—1.3 ~ 10-'

—2.5 X10-'
—3.2X10-"
—1.1 & 10
—3.2m 10-'
—3.4X 10-'

1.6X10 '
3.8& 10
8.6&& 10-'
3.9g 10
2.6~ 10

—0.2y10 '
1.2~10 '
1.0~10 '
1.3~10 -'

1.2~10 '
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TABLE IV. The CP-violating observables for the left-right-symmetric model.

A' pm-

Am
X ~nm
r+ pm'
X+~nm+

—1.1X 10-'
2.5 g 10-'
1.0~10-'

—2.9x 10-'
3.1g10 4

7.0X 10-'
—3.1X10-"
—7.6x 10-"
—2.7g10-'
—2.5X10 s

—8.8~10 '
—0.9~10-'

—0.89@10 '
—8.9~10-'
—1.0g 10-'

VI. CONCLUSIONS Model X (approximately)

In the preceding sections we have defined all of the ob-
servables and provided calculations of the weak phases in
several models. Here we combine these to obtain predic-
tions for the various quantities.

First in Table II we consider the KM model. Here we

use the upper bound on Im C5 as an estimate of its value.
Tables III and IV provide the same estimate in the
Weinberg-Higgs-boson and left-right-symmetric models,
respectively. Not included in the table is the (P/a) charge
asymmetry in = decays. For this we find

6.2& 10, KM,
= '6.3&(10, Weinberg-Higgs,P 13 . -5

0, left-right .

As expected the Weinberg-Higgs-boson model provides
the largest signal in practically all cases. In Table II we
also show the expected values of (P/a)chic. These are un-

certain by about 10% due to the +1' uncertainty in the
phase shifts. Unless these can be reduced to 0.1', the pa-
rameter C seems difficult to use.

The rough size of the signal in the various asymmetries
can be readily understood by inspection of the original
definitions. Both the strong interaction phase shifts and
bI = —,

' effect are small and can suppress the signal even if
the weak CP-violating phase is large. We normalize all
of the models ultimately to the only known measure of
CP nonconservation, i.e., e. If we characterize each model

by the amount of AS=1 CP violation using a parameter
X, our earlier estimates would indicate the following pat-
tern.

Superweak
Heavy neutral Higgs
Kobayashi-Maskawa
Charged-Higgs-boson
Left-right-symmetric

boson

(Weinberg)

0
0
20m'

4YI.I /MgL )e

Using this, and counting the factors of sin5 or A3/A i in
the observables, one can understand the strengths of the
signals

(I —I )/(I + I ) =sin(53 —5i )(3&/3 i )X= 10 '(X/e),

(a+a)/(a a) =ta—n(5s —5p)X 10 (X/6),

(P+P)/(13 P)=X t/—na( 5s—5p)=10 (X/e),

P~/a~ —P /a =(Ai/Ai)X-10 (X/e) .

As pointed out previously, the ratio involving the P pa-
rameter is the one where any CP violation would be most
evident. We would hope that these tests could be carried
out and provide new evidence on the nature of CP non-
conservation.
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