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In this first paper of a series of two, we present a comprehensive study of the hydrodynamic evo-

lution of matter produced in the central region of ultrarelativistic heavy-ion collisions and in high-

multiplicity fluctuations of pp collisions. %'e shall begin with a discussion of the limits of the appli-
cability of a perfect-fluid hydrodynamic description of high-energy collisions. A simple bag-model
equation of state is argued to have qualitative and semiquantitative features expected from lattice
gauge theory and present theoretical understanding. %'e also discuss the boundary conditions for
the perfect-fluid hydrodynamic equations, and what classes of simple events would correspond to
simple initial conditions. The decoupling of matter at low energy density and methods for comput-
ing transverse-momentum distributions of hadrons are analyzed. %e finally present the details of
the computer code which we use to numerically solve the hydrodynamic equations.

I. INTRODUCTION

Many theoretical studies have shown that energy densi-
ties are achieved in ultrarelativistic nuclear collisions and
in fluctuations in pp collisions which may allow for the
production of a quark-gluon plasma. ' If the time scale
which characterizes the expansion of such matter is lollg
enough, thermodynamic parameters may be used to mean-
ingfully characterize the system and the matter may ex-
pand reversibly with little entropy production according
to the equations of perfect-fluid hydrodynamics. In such
circumstances, the equations which describe this evolution
depend only on the condition of the matter at some fixed
time, and upon the equation of state which relates energy
density and pressure. The boundary conditions may be
chosen either as initial conditions, if there is a reliable
theoretical description of the initial conditions, or as the
final configuration at very late times when the matter
freezes out and subsequently evolves free streaming into
particle detectors. In the latter case, experimental data
provides much of the information needed to solve the hy-
drodynamic equations, since parameters in the hydro-
dynamic simulation must be adjusted to produce the ob-
served particle multiplicities.

The equation of state of hadronic matter may be com-
puted in principle in Monte Carlo numerical simula-
tions. At present, such computations provide little
more than qualitative and semiquantitative insight. It is
fairly well established that hadronic matter makes a rapid
transition between matter with the few degrees of freedom
associated with a hadronic gas to matter associated with
the large number of degrees of freedom of a quark-gluon
plasma. ' ' The exact nature of this transition is uncer-
tain, in particular whether it is a first-order phase transi-
tion, but ihe rapid change of physical quantities such as

the entropy density, by an order of magnitude in a narrow
temperature interval of order tens of MeV's, is almost un-
contested. ' ' The value of the temperature at which
this transition occurs is not well established, but theoreti-
cal speculation centers on 200 MeV, although the tem-
perature may be as high as 400 MeV or as low as 100
MeV and still be within the intrinsic uncertainties of
present numerical computations. An equation of state
with all of the properties needed to adequately describe a
rapid transition between an ideal pion gas, a description
valid at very low temperatures, and that of an ideal
quark-gluon plasma, valid for very high temperatures, is
provided by the MIT bag model. In such a model, the
transition between these ideal gases is discontinuous as a
function of temperature. The transition temperature may
be tuned by varying the bag constant, which for our pur-
poses will be considered to be an adjustable parameter.
For the types of computations which we wish to perform,
treating the transition as discontinuous or as smooth will
provide only small corrections, since we shall only be con-
cerned with gross semiquantitative and qualitative
features of the matter as it evolves after production. With
better knowledge of the equation of state, and estimates of
viscous coefficients, a precise quantitative comparison be-
tween theory and experiment should eventually be possi-
ble.

%hat we are doing more precisely is approximating the
transition between a quark-gluon plasma, which is an
ideal gas at high energy density, and a hadronic gas,
which is an ideal gas of pions at low density, as a discon-
tinuous sudden change between these two ideal gasses.
For example, the entropy scaled by T goes to a constant
at high density which is the number of degrees of freedom
of a quark-gluon plasma. At temperatures low compared
to the deconfinement temperature, but large enough so
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that the massless pion gas approximation is valid, S/T
goes to another constant. The ratio of these constants is
the ratio of degrees of freedom of a quark-gluon plasma
to those of a pion gas, which is large. In general we ex-
pect a gradual transition between these two limiting cases
with a possible discontinuity at the deconfinement tem-
perature. Monte Carlo studies indicate that the change in
degrees of freedom between the pion gas and the quark-
gluon plasma is rapid, and happens in a fairly narrow
temperature range. Our approximation makes the change
in 5/Ti discontinuous, with the entire change occurring
at the deconfinement temperature. This approximation is
shown in Fig. 1. %'ithout better Monte Carlo data than
exists at present, it is difficult to have a precise quantita-
tive assessment of the reliability of our approximation.

We have set many goals in this study of the evolution
of matter produced in high-energy hadronic collisions.
We would first like to understand the qualitative and
semiquantitative features of the matter as it evolves after
production. For example, how much time does the sys-
tem spend as a quark-gluon plasma'? How much time as a
mixed phase'? How much time as hadronic matter before
the matter decouples'? How does this depend upon the ini-
tial conditions and the baryon number of the colliding nu-
clei'? Do shock waves form in the matter, and if they do,
how much entropy is produced? Is much collective trans-
verse flow generated by the expansion of the matter, and
how is this reflected in the transverse momentum of had-
rons'? These qualitative and quantitative features of the
matter once understood may generate enough insight into
the nature of these collision processes to suggest new sig-
nals and more refined computations of physical observ-
ables.

In the preliminary and modest study which we present
here, such qualitative and semiquantitative features of
fluctuation in pp collisions and head-on nucleus-nucleus
collisions are studied. We present full three-space-
dimensional simulations of such collisions allowing for a
realistic equation of state with a mixed phase and phase
transition. The principle difference between the results
here and those of previous workers, with the exception of
Pratt who considered in detail spherical expansion is that
we allow for a mixed phase. ' (In Pratt's analysis,
some attempt was made to treat the Lorentz-invariant

FIG. 1. The entropy per T vs T. The unbroken line
represents our approximation, the dashed curve is a guess for a
realistic relationship.

cylindrical expansion characteristic of the central region
of ultrarelativistic nuclear collisions. We differ from
Pratt in that we allow shock discontinuities to propagate
through and rarefy the mixed phase with arbitrary entro-

py change. We in fact find that the favored situation is
maximal entropy change across the shock discontinuity. )

If there is not a first-order phase transition, this mixed
phase is simply the region where the energy density varies
quickly but the pressure does not. We find that it is
essential to include such a mixed phase since the system
spends much of its time in this phase. The existence of
such a mixed phase, without extreme supercooling as-
sumes that the nucleation rate of the hadronic matter
from the quark-gluon plasma is fast compared to the ex-
pansion rate.

Our results are encouraging. With a modest amount of
computing time, such collisions may be studied for a
variety of assumed initial conditions and parameters
which characterize the equation of state. It is easy to im-
agine that more detailed computations which treat
nonzero impact-parameter collisions of nuclei with vari-
ous baryon numbers A may be carried out without too
much increased effort. Entropy generation by viscosity
may be included. The fragmentation region might be
studied. Various physical quantities such as flavor ratios,
photon and dilepton distributions, particle transverse-
momentum distributions, Hanbury Brown —Twiss correla-
tions, and collective variables such as flow and thrust
might be determined. Once this ambitious program has
been carried out, an event generator with a few adjustable
parameters may be used for fluctuations in pp collisions
and ultrarelativistic nuclear collisions with hopefully the
same reliability as Monte Carlo simulations of jet process-
es which are used in jet experiments at the pp collider.

The first step in this ambitious program is the hydro-
dynamic simulation which we present here. Our results
should be adequate to describe the production of pions
and nucleons in the central region for impact-parameter
zero collisions of equal-A nuclei at ultrarelativistic ener-
gies (boost invariant cylindrical geometry), and high-
multiplicity spherical or uniform rapidity fluctuations in

pp collisions. Details of our computations are sensitive to
unknown features of these collisions such as the depen-
dence of the central region multiplicity upon the baryon
number A, and the time at which the matter first begins
to flow as an almost perfect fiuid, r; Many quali. tative
and semiquantitative features such as the expansion time
and the average transverse momentum of hadrons are not
so sensitive to these uncertainties, and may provide signals
for the production of a quark-gluon plasma.

The outline of this series of two papers is the following.
In the first paper we shall discuss in detail the hydro-
dynamic description of hadronic collision processes as
well as its limitations. In the first section we shall review
the hydrodynamics of ultrarelativistic nuclear collisions
and fluctuations in pp collisions. We shall discuss the
limits to the validity of a perfect-fiuid hydrodynamic
description. In the second section we discuss in detail the
boundary conditions for the hydrodynamic collisions, and
also how experimental data may be usmi to infer some
features of these conditions. In the third section we dis-
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cuss the general features of simple events which may be

analyzed by the techniques which we present. The decou-

pling of hadronic matter is discussed in the fourth section,
and methods for extracting the transverse-momentum dis-
tributions of hadrons are reviewed. We finally discuss the
detailed features of our computer code which simulates
these collisions in the fifth section.

In the second paper we present the results of our com-
putations. We discuss the qualitative features of our re-

sults such as the time the matter spends in various phases,
and the dependence of transverse momentum upon the
equation of state. We further explore A dependences of
the transverse momentum for nuclear collisions, and the
dependence of transverse-momentum distributions upon
the mass of the emitted particle.

II. THE HYDRODYNAMIC EQUATIONS
AND THEIR APPROXIMATE VALIDITY

In this section we shall discuss the perfect-fluid hydro-
dynamic equations. %e shall begin with a general discus-
sion which does not make reference to the specific initial
conditions peculiar to high-energy collision processes. We
begin with the equation for conservation of energy-
rnomentum:

an equation which is always true. There may also be
equations for conservation of various currents such as
baryon number:

B„J"=0.

This latter equation will be irrelevant for our later studies
which revolve around processes in the central region. In
this kinematic domain, the total baryon number (baryons
minus antibaryons) is small at very high energies. The
smallness is demonstrated by showing that the energy per
unit baryon number is large compared to the temperature,
so that thermal excitations dominate the contributions to
the stress-energy tensor. In the remainder of this paper
we shall study processes at zero baryon number density,
and may therefore ignore the added complications arising
from Eq. (2). Such currents must of course be taken into
account when the fragmentation region is studied.

If in addition to conservation of energy-momentum, we
require that the expansion of the matter takes place slowly
compared to natural collision times, that is slow enough
that the expansion be irreversible, then the entropy
current is also conserved

The conservation of energy-momentum plus an equation
of state which relates e to P

P =P(E)

are sufficient to determine P, e, and u from condition
specified at some arbitrary time. Conservation of entropy
follows from conservation of T"", together with standard
thermodynamic relation for the entropy. Note that

where o is the entropy measured in a comoving frame.
If we can argue that the systems we consider are

described by perfect-fluid hydrodynamics, then the com-
putation of properties of the matter produced in ultrarela-
tivistic nuclear collisions or in high-multiplicity hadron
collisions are determined only by conditions measured at
some fixed time and on the equation of state for matter.
In the next section we shall discuss the boundary condi-
tions. As discussed above, the general features of the
equation of state which relates E and P are also known.

We now turn to the question of the validity of the adia-
batic, or isentropic fluid flow assumption. The criteria
that the fluid flow be isentropic is simply that the col-
lision times be fast compared to the expansion time. If
the expansion is not adiabatic, a description of the fluid
fiow becomes considerably more difficult. New parame-
ters enter the hydrodynamic equations, the coefficients of
shear and bulk viscosity, and the form of the equations
are more involved. The viscous coefficients are difficult
to estimate in QCD, but we shall soon review what is
known of them. If these viscous corrections to the hydro-
dynamic equations are sufficiently large, then the approxi-
mation which reduces the kinetic equations to local equa-
tions with the standard form of the viscous corrections to
the perfect-fluid hydrodynamic equations may itself break
down, and the correct hydrodynamic equations may in-
volve many more parameters. The point is that for our
purposes, the viscous hydrodynamic equations are only re-
liable if the corrections arising from nonzero viscosity are
small.

Another reason besides mathematical simplicity for
wishing to apply hydrodynamics only for perfect fluids is
that for a perfect fluid, the entropy is conserved. Entropy
conservation relates particle multiplicities at early times to
that at later times. If the expansion is isentropic, a win-
dow penetrates through the haze of hadronic interactions
which allows us to reconstruct primeval particle distribu-
tions from those observed in the final state of the col-
lision.

The stress-energy tensor, allowing for the effects of
viscous flow is

In this circumstance, it may be shown that the stress-
energy tensor must have the form

T""=(e+P )u "u "+Pg"",

where e is the energy density and I' is the pressure mea-
sure in a frame comoving with the fluid. The fluid four-
velocity vector is u which satisfies the constraint

where To is the stress-energy tensor for a perfect fluid, as
given by Eq. (1), and b, T is the correction which allows
for entropy production, that is, for viscous flow. By al-
lowing the energy-momentum tensor to be piecewise con-
tinuous, these perfect-fiuid hydrodynamic equations do al-
low for some entropy production through the medium of
shock discontinuities. The most general form for AT may
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be extracted in an expansion in powers of gradients of the

energy density and fiuid velocity vector times a charac-
teristic scattering length. This characteristic scattering
length is the mean free path for dilute systems such as

gases. This procedure for evaluating 6T is discussed in
Refs. 29 and 30, and we shall not repeat the derivation
here. The result is

b, T""=g(g"" u" u—")V.u

+g[V"u "+7"u"——'(g""—u "u )V tt]

The derivative operator V' is a derivative orthogonal to the
direction of fluid flow

(10)

The coefficients of shear and bulk viscosity are ri and g.
For the zero baryon number density fluids which we con-
sider, the heat conductivity is zero. This expression is
only valid to first order in an expansion where spatial gra-
dients are weak, and if they are not, Eq. (9) is simply in-
correct. For systems with sharp discontinuities, hT is
more complicated and for practical purposes may not be
computable, except in certain approximations where the
sharp variations in the energy density and fiuid velocity
are approximated as shock discontinuities, that is, the
fluid is treated as piecewise slowly varying. Put another
way, when viscous corrections to the hydrodynamic equa-
tions become of the same order as the contribution associ-
ated with a perfect fiuid, the framework of conventional
viscous fiuid hydrodynamics falls apart, and for practical
purposes, we may say that hydrodynamics is no longer
applicable for a description of the dynamics. This means
only that perfect-fiuid dynamics is inapplicable even when
supplemented with viscous corrections. The full stress-
energy tensor is of course conserved, but the form of this
equation expressed in terms of e, I', and u is extremely
complicated and in general nonlocal.

The question which we shall attempt to address in the
remainder of this section is to what degree a perfect-fiuid
hydrodynamical description provides a valid approximate
description of the matter evolving after a hadronic col-
lision. To begin this discussion it is useful to introduce a
mean free path for quarks and gluons in hadronic matter.
This length scale characterizes the surface thickness of the
matter, and the length scale which must be compared to
the length scale of gradients in the matter distribution. If
the surface thickness is small compared to the spatial size
of the system, and if the mean free path is short compared
to the scale sizes over which the matter distribution varies
appreciably, then it is plausible that the perfect-fluid hy-
drodynamic description is correct. Of course, it is possi-
ble that the naive considerations of mean free paths,
which are rigorously valid for weakly interacting fluids,
may be misleading when applied to hadronic matter where
nonperturbative effects may be important. Later we shall
therefore more carefully formulate the issue of the appli-
cability of perfect-fluid hydrodynamics in terms of mag-
nitudes of viscous coefficients. These coefficients may in
principle be computed using the fluctuation-dissipation
theorem and are defined outside the domain of weak-
coupling expansions.

A, t~- I/crn, (12)

where n is the number density of hadrons. At ordinary
nuclear-matter energy densities, A, tp-5 fm. Assuming
the energy density scales with T as it would be either an
ideal gas of pions or a quark-gluon plasma, then n -e ~ .
The mean free path is therefore

A, -0.5 fm, e- I—2 GeV/fm

A. -0.01 fm, e-200 GeV/fm

(13)

For either of these two energy densities, the mean free
path is extremely small compared to a typical nuclear ra-
dius, and effects of transverse surface area are quite small
for nuclei of reasonable size. In the last case, even for
protons, the surface effects would be small. Also as we
shall soon see, in the expansion of matter produced in
high-energy hadronic collisions, the densities typically
scale as a power of time as measured in the local comov-
ing frame. The expansion rate, (I/n)dn/d7, where n is
some typical density such as energy density or entropy
density is therefore of the order of the inverse proper time
~ after the collision took place. For times which are
therefore larger than A, , viscous corrections are small. De-
pending upon the initial energy density, such times may
be quite short.

The additive quark-parton model can be improved for
thermal systems by requiring that particle interactions be
screened for momentum transfers less than the tempera-
ture. If we approximate the differential cross section as
der/dt -ooe 'r" where a.-400 MeV, the mean free path
is still O.S fm at e-1—2 GeV/fm but is lengthened to
about 0.05 fm at e-200 GeV/fm .

At very late times, the matter density eventually be-
comes so low that the mean free path becomes very large.
When the mean free path becomes so large that in the en-
tire future history of the system, a particle may be expect-
ed to interact on the average less than once, we shall as-
sume that this particle freezes out. At this time the local
densities of particles follow the trajectories of free parti-
cles and the hydrodynamic description ends. This
freezeout may not occur at a sharply defined time, and the
matter may therefore propagate with mean free paths
comparable to expansion times for some time. If this is

The sitnplest estimate of the mean free paths uses the
quark-parton additive cross-section model of hadronic in-
teractions. The basic assumption of this extremely naive
picture is that the quark-hadron cross section is —,

' that of
hadron-hadron:

1

CT&p —
3 Ogi, —13 mb .

This cross section will be treated as a constant and in-
dependent of the energy density of the matter through
which the quark propagates. This assumption is in con-
tradiction with the properties of quark interactions at very
high energy densities when perturbative QCD may be
used. We are assuming that the energy densities are suffl-
ciently low that the effects of the matter do not signifi-
cantly alter the basic two-body quark interactions. We
shall soon present perturbative QCD estimates.

The mean free path is
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the case, at this stage of the expansion, viscous effects
must play a major role. %e shall use in explicit simula-
tions, a freezeout temperature T-50—150 MeV. Such
low temperatures appear to be consistent with the slow
rate of expansion which we observe at late times in the ex-
plicit hydrodynamic simulations. The main Hmitation
seems to be that the system freezes out when the mean
free path becomes of the order of the transverse size of the
system which we consider. In a massless pion gas, the
mean free path is 10 fm when the temperature is about
100 MeV, and we would probably expect freezeout by this
temperature. To bc more precise requires a cascade com-
putation which we have not performed. At such late
times and low temperatures, the matter is not doing much
work and a sloppy treatment of freezeout should not alter
the predicted final-state distribution of the matter. The
number of pions is also expected to be conserved at tem-
peratures much higher than this, and the multiplicity dis-
tributions are not much altered. Put another way, at such
low temperatures, interactions are so weak that multiplici-
ty and momentum distributions are not expected to be al-
tered much in the future of the system. We shall check
this assumption in our later computations presented in the
second paper of this series.

These additive quark-model estimates must surely be
modified for high energy densities where perturbative
QCD adequately describes the dynamics. At these high
energy dcnsltlcs, thc quark and gluon cross scctlons be-
come smaB, and approach zero as o -a, /q2, where a, is
the QCD interaction strength and q is some typical energy
scale, q —T'. The mean free path is

A,- I/( aT) . (15)

At large temperatures, a, —1/ln(T) and A, -ln T/T.
Two groups have independently computed the mean

free paths of quarks and gluons in a quark-gluon plasma,
along the lines previously advocated by Shuryak. ' These
different computations differ in the way that small angle
scatterings are treated, where high-order perturbative, and
possibly nonperturbative, corrections are required. Also,
the value of the strong-interaction coupling constant
which is used in this evaluation is somewhat ambiguous
since it is not precisely clear at what momentum scale the
coupling constant is to be evaluated, that is, should the
momentum scale be T or 10T. Finally, at the tempera-
tures for which we shall apply their results, the effects of
higher-order perturbative corrections due to inelastic
scattering should be important. The lowest-order compu-
tations only evaluate the effect of elastic scattering, and
these higher-order corrections should reduce the mean
free path and increase the total cross section. Given these
intrinsic ambiguities, it is impossible to draw any precise
conclusion. What we shall do is give a range of values
which span the results of Hosoya and Kajantie and of
Danielewicz and Gyullasy, and allow for some uncertain-
ty in uncomputed contributions. ' We find for all
values of energy density in the range of e-1—1000
GeV/fm

fm1 I

g 20 2

kq ——,
' —2 fm.

ds /d7 —S/1 (18)

The change in the entropy density due to entropy produc-
tion is

ds /dr- (v, /7. )s /7,

where r, is the collision time. The criterion that perfect-
fluid hydrodynamics be valid is therefore simply

z, /~~(1 . (20)

Since the collision time is roughly independent of ener-

gy density, and therefore of r, after some time r, the sys-
tem always is capable of expanding to a good approxima-
tion as a perfe:t fluid. This is because as a consequence
of the similarity solutions of the hydrodynamic equations,
at later times the system is expanding more slowly.

The gluon mean free path is As and that of the quark is
A,~ in this equation. The variation in mean free path as
the energy density varies over this wide interval is at most
a factor of 2 in our estimates. The mean free path may
therefore be effectively regardful as a constant as the ener-

gy density varies over this range. The gluon mean free
path is about a factor of 4 smaller than that of the quark
as a consequence of the larger color charge of the gluon,
which forces it to interact more strongly than the quarks.

For the mean free paths of Eqs. (16) and (17), one
would expect the surface effects for quarks to be large for
large nuclei only under the most pessimistic scenario.
Under optimistic scenarios, the corrections even for had-
rons might be small. For gluons, one would not expect
large effects for large nuclei, but might find large effects
in hadrons. For large nuclei, the effects of finite nuclear
size should be manageably small, but for hadron interac-
tions the situation is entirely unclear. For very-high-
multipHcity pp collisions, the ratio of mean free path to
spatial size may however be favorable, and similar to the
case for a nucleus-nucleus collision. In such a situation,
even if the mean free path at the time of matter formation
is not small compared to the spatial size of the system, if
the initial energy density is sufficiently large, then after
some expansion, the system may have large energy density
and be in a large spatial volume. At such a time, howev-

er, it is difficult to abstract boundary conditions for hy-
drodynamic equations, and also the usefulness of the hy-
drodynamic description of the evolution of the produced
matter as a basis for understanding the characteristic
features of final distributions and providing a framework
to calculate the rates of specific signals becomes marginal.

To what extent perfect-fluid expansion is modified by
viscous corrections is resolved by using the condition that
the rate of entropy production due to viscous terms be
small compared to the change in the entropy density due
to expansion. This criterion may be formulated precisely
in terms of viscous coefficients, but we shall here formu-
late the problem semiquantitatively and qualitatively in
terms of mean free paths. The change in the entropy den-

sity due to expansion is given by the perfect-fluid hydro-
dynamic equations, for power-law expansion typical of
solutions to these equations, as
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The collision times given by Eqs. (16) and (17) show
that for times r & —,

' —2 fm, the quarks may expand isen-

tropically, and the gluons for times r& —,'0 ——,
' fm. These

numbers are not inconsistent with the assumption that
after matter forms at a time r; ——,', —1 fm, the matter
quickly thermalizes and expands to a fair approximation
as a perfect fiuid. At the earliest times, there is the
greatest entropy production, and as time evolves, the sys-
tem behaves more and more as a perfect fluid. To resolve
this problem more precisely, it would be nice to have a
nonperturbative estimate of the viscous coefficients.

0.2
(xs lno, 's

(22)

The evaluation of Danielewicz and Gyulassy gives a result
which is a factor of 3 larger. The hydrodynamic equa-
tions may be used to estimate the total amount of entropy
production

sr,„„-s;„;„„(I+r,/~, ) (23)

a result which is exact to first order in viscous corrections
for (1+ 1)-dimensional hydrodynamic expansion. This
equation illustrates the increasing effects of entropy pro-
duction at increasingly early proper times.

At very early times there is entropy production due to a
variety of effects, and it would be extremely valuable to
have a controlled theoretical analysis of the preequilibri-
um quark-gluon plasma. It would seem that such an
analysis is tractable since at early times the energy density
is high and the effects of interactions are weak. Such an
analysis would be required to rigorously derive the inside-
outside cascade within QCD. The initial conditions for
the hydrodynamic equations would follow from
knowledge of the initial-state nuclear wave functions,
about which little is presently known. A spectrum of
fluctuations could be derived, and the parameter ~; could
be computed. The magnitude and importance of coherent
phenomenon could be deduced.

Another possible place where perfect-fiuid hydro-
dynamics might break down is when the quark-gluon
plasma expands through a first-order phase transition, or
if the quark-gluon plasma must be produced from ha-
dronic matter by undergoing a first-order phase transition.
In either of these possible scenarios, large-scale density
fluctuations might be produced, and a global hydro-
dynamic description might break down. ' The system
might break apart into droplets of rnatter which might
slowly burn, or explosively detonate the plasma. The pos-
sibility that the system might break up into slowly burn-
ing droplets has been proposed by Van Hove, and mould
occur if the plasma spinoidally decomposed, that is, the
system falls apart rapidly with a large volume change and
consequent large density fluctuations. If the plasma
could supercool, then explosive detonation droplets might
form. If these large-scale density fluctuations were not

Perturbative estimates of collision times have been used
to estimate the coefficients of shear and bulk viscosity.
Hosoya and Kajantie find '

(21)

too strong, the rnatter might recombine in the hadron
phase, and a viscous expansion would smooth out the den-
sity fluctuations. There would be some entropy produc-
tion, but the final matter distribution might be consider-
ably smoothed out. If the density fluctuations were too
severe, the plasma might break apart into isolated droplets
each of which might be treated hydrodynamically.

Although in exceptional circumstances, large-scale den-
sity fluctuation might be expected to occur, we argue that
for average collisions, such fluctuations should be
smoothed out. In a typical collision, large-scale density
fluctuations are seeded when the pion gas begins to dom-
inate the volume of our expanding system. At this time,
we can describe the system as a pion gas with droplets of
plasma embedded in it. If the droplets of plasma are
equally spaced, as should be approximately the case for
average collisions, the first density for which plasma be-
comes embedded in a pion gas, rather than pion embedded
in plasma, is given by computing the fractional volume
occupied by closest packed spheres. The ratio of plasma
volume to total volume is f-( , mRq )!(—8Rd)- —,'. At
the time that this occurs the separation between droplets
is twice the droplet size, d -2Rd. As the system expands,
the separation between the droplets increases. Assuming
that the expansion is 1 + 1 dimensional, the separation be-
tween droplets is determined by requiring that the drop-
lets of plasma uniformly fill all of the volume. If this is
the case, as it should be if the motion of the plasma drop-
lets is random, the total volume of the system increases by
rlwi~i where ~i&i is the time at which the closest packing
of plasma droplets occurs. Since ~i&2-2~~, where ~~ is
the time it took for the plasma to lower its density to a
small enough value so as to enter the mixed phase, and
since the last time the droplets appear in the system is
when the system completes the mixed phase is ~i„ the
separation between droplets when they disappear from the
system is d-2Rd(vl, /2i. )' . As we will argue in later
sections, the ratio between ri, /r~ is given by the ratio of
degrees of freedom of a hadron gas and that of a quark-
gluon plasma, —15. The separation is therefore d -4Rd.

At this late time, the expansion time for the system is
The typical diffusion length during one expansion

time is therefore 1 ;dr(v lri, )' A. where ~, -A, are the
scattering time and mean free path, respectively. For a
pion gas at a temperature of 200 MeV with a pion cross
section of 20 mb, this mean free path is about 2 fm. Tak-
ing the hadronization time to be ~i, &30 fm, a number
which we shall later show is at the low end of values ap-
propriate for uranium-uranium nucleus collisions, we find
Id'f 8 fm. If the droplet size at closest packing is taken
to be a fm, then the diffusion distance is larger than the
separation when the droplets disappear. In this case, we
expect that any thermal gradients which are generated due
to the density difference between plasma droplet and pion
gas will be largely smoothed out by diffusion. Even if the
droplets are as large as 2 fm at formation, diffusion in one
expansion time should be sufficient to largely smooth out
density inhomogeneities.

To make this case more firm, it would however be use-
ful to carry out a detailed cascade computation. At the
least, there is no reason to assume that the system does
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not expand to a good approximation as a mixed phase
with only small energy density inhomogeneities in average
collisions of large nuclei. The situation is less clear if the
nuclei are smaller so that the time for longitudinal and
transverse expansion is shorter, or if the droplets of plas-
ma are larger than a few fm at formation. For very small
nuclei, we would in fact expect that if a quark-gluon plas-
ma is formed in a collision, there may typically be a good
deal of spatial inhomogeneity generated by nucleation. A
cascade computation would determine the extent of such
inhomogeneities for arbitrary size nuclei.

In the analysis which we shaB present, we shall assume
that the quark-gluon plasma smoothly turns into a ha-
dronic gas. This might occur if the plasma converted to a
hadron gas through a mixed phase, and the nucleation
time for the formation of hadron matter was short com-
pared to the expansion time. Also, in the van Hove
scenario, if the droplets formed as matter falls apart
quickly rehomogenize themselves in a hadronic gas, again
the scenario we describe applies. Finally, if the transition
from quark-gluon matter is only a rapid transition and
not a true first-order phase transition, then the dynamics
of the transition region is well approximated by an equa-
tion of state with a mixed phase region corresponding to
the region of rapid transition. In this latter scenario,
large-scale density fluctuations are not expected. As our
explicit computations indicate, the matter formed in a
high-energy collision seems to spend a large amount of
time in a mixed phase, compared to natural hadronic time
scales, and in the absence of strong first-order phase tran-
sitions, which might generate strong supercooling, the
mixed phase scenario is probably appropriate.

Since, as we shall show, the matter takes a long time to
get out of the mixed phase, and because the hydrodynam-
ic expansion is power law the matter expands slowly as a
hadronic gas. The freeze-out occurs therefore at a very
late time and low temperature. In Sec. IV of this paper
we shall describe in detail our algorithm for decoupling.

III. THE INITIAL CONDITIONS

In this section we shall consider in detail the initial con-
ditions for perfect-fiuid hydrodynamic equations which
should be appropriate for high-energy collision processes.
We begin by studying spherically symmetric initial condi-
tions, and their relevance to a class of fiuctuations in high
energy pp collisions. We then turn to initial conditions
which are boost invariant along the collision axis, and dis-
cuss their relevance to both fluctuations in Pp collisions
and ultrarelativistic nuclear collisions. We begin by re-
viewing the one-space one-time scaling solutions proposed
by Bjorken. Then following the analysis of Baym
et a/. , we generalize these considerations to include the
central region of collisions of finite nuclei. We analyze
various possibilities for the initial transverse entropy and
velocity profile. We also relate the initial time of matter
to the initial temperature. We also present methods of ex-
tracting some of the paraineters which characterize initial
conditions from experimental data.

In some fluctuations in high-energy pp collisions,
matter may initially form in a region which is spherically

y = —ln tan(8/2), (24)

where 8 is the angle relative to the beam axis. Suppose
that the fluctuation is centered at zero rapidity. Then for
a spherical fluctuation,

dN dN d8 dX 1 dN 1

dy d8 dy d8 coshy dQ cosh2y
(25)

Since, by assumption, for spherical expansion the angular
distribution dN/dQ is uniform, a spherically symmetric
fluctuation is characterized by a cosh y falloff centered
around the total rapidity of the fluctuation. Such a fiuc-
tuation is shown in Fig. 2.

Since the fluctuations are in general not spherically
symmetric, it is essential to use the predicted rapidity dis-
tribution to select those fluctuations which are in fact
spherical. It is also important to note that the initial radi-
al velocity distribution for the fireball is not in general
zero throughout the matter. Since we expect that the
matter is initially randomly distributed throughout the
fireball, it is plausible to assume that on the average, the
outward initial velocity will be zero throughout the
matter. There will of course be fluctuations in these ini-
tial conditions, but we shall only study the generic typical
fireball.

Since matter distributions with sharp edges are difficult
to use in numerical simulations, we shall smooth out the
matter distribution at the surface of the initial fireball.
(For any reasonable physical system, this smoothing

1-2 UnltS

FIG. 2. An example of a rapidity fluctuation which might
occur in a pp collision which might produce high enough energy
density to yield a quark-gluon plasma.

symmetric. For example, in a high-energy gluon-gluon
collision, the gluons in the colliding hadrons may undergo
a central collision and radiate a large number of gluons
which are on the average at rest in the center-of-mass
frame of the two gluons. Such a situation has been pro-
posed in the Pokorski —van Hove model.

In a spherical fluctuation, we shall show that the fluc-
tuation is in a lixnited region of rapidity, and determine
the shape of the distribution. This fluctuation is centered
on the rapidity of the "fireball" produced by the gluon
collision. In the frame comoving with this fireball, parti-
cle distributions are spherically symmetric. A first ques-
tion we must ask is how the spherical nature of the fluc-
tuation is reflected in the rapidity distribution. To under-
stand how this might be done, we make a massless pion
approximation, and identify pseudorapidity with rapidity.
In this limit,
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length is naturally the mean free path for particle interac-
tions. ) We therefore take an initial matter energy density
profile to be a Fermi-Dirac distribution:

In this equation, the radius of the initial matter distribu-
tion is taken to be R. The surface thickness is 5, a param-
eter which we shall make sufficiently small so that the re-
sults of our numerical simulations tend to a uniform lim-
it.

For the hydrodynamic numerical simulation which we
shall later use, it is also not convenient to take the velocity
to be zero everywhere. We shall choose the initial fluid
velocity to be zero inside the matter, but to initially ap-
proach Uo outside where there is no matter. We shall later
probe the sensitivity of this assumption to arbitrary
choices for Uo. (For a physical system, it is plausible to
assume that the initial velocity in the diffuse region out-
side the matter distribution is of the order of a typical
particle transverse velocity appropriate for average multi-
plicity Pp collisions. ) The specific choice which we make
for the fluid velocity profile is

E/S and E/V is straightforward to understand. At low
temperatures where there is an ideal pion gas, and high
temperatures where there is an ideal quark-gluon plasma,
E/S is 3 T/4. At temperatures where the system rapidly
crosses over between a hadronic gas and quark-gluon plas-
ma, the temperature and E/S remain approximately con-
stant. At low temperatures, the energy density changes
less rapidly with increasing temperature than at high tem-
peratures since the degrees of freedom of a pion gas are
less than those of quark-gluon plasma. At the phase tran-
sition, the energy density changes while the temperature
remains constant. In Fig. 3, E/S is plotted versus E/V
for a bag-model equation of state, with a bag constant of
8'~ =200 MeV. The fiat region where E/S is constant
as E/V changes by an order of magnitude is indicative ei-
ther of a rapid crossover or a phase transition between
hadron gas and plasma.

It is experimentally straightforward to measure the to-
tal energy E of particles in the initial plasma fireball.
This is measured in the rest frame of the fireball and is
proportional to dE/dy the transverse energy per unit rapi-
dity, dE/dy-p, dN/dy. Since the volume scales as p,
the energy density is, up to an undetermined numerical
constant a,

(27) E 4dN
V '

y
(28)

We have not yet estimated the radius R of the fireball
arising as a fluctuation. The uncertainty principle sug-
gests that the initial size of the matter distribution is
—1/p, where p, is the typical transverse monmntum of
particles in the initial fireball. This value should also
arise in any scale-invariant description of the initial fluc-
tuation process; that is, 1/p, is the only quantity with the
dimensions of a length. It is necessary in this connection
to assume that these fluctuations are rare enough so that
overlapping fluctuations are not important. Also, unless
R gg 1 fm, finite-size effects due to the size of the had-
rons which constitute the beam, are important. The pro-
portionality constant which relates R and p, is difficult to
estimate without a more detailed description of the forma-
tion process.

Using the above assumptions about the nature of the re-
gion in which the matter initially forms, and the assump-
tion that the matter expands according to the laws of
perfect-fiuid hydrodynamics, it is possible to abstract the
correlation between multiplicity and transverse momen-
tum of pions. To find this correlation, we must use
an equation of state. We shall also need to study decou-
pling, that is, how the matter freezes out from a flowing
nonviscous fluid into a free streaining hadron gas.

To make a relation between initial and final distribu-
tions of particles, consider the quantities E/S and E/V
(Ref. 39). The energy per unit entropy is conserved in
perfect-fluid hydrodynamic expansion since both total en-

ergy and total entropy are conserved. The energy per unit
entropy is roughly speaking a measure of temperature,
and is computed by standard techniques. The energy per
unit volume is determined by the conserved total energy
and by the volume which is an initial condition.

The theoretical thermodynamical correlation between

The energy per degree of freedom is more difficult to
extract. Experimentally, the energy per particle, or aver-
age transverse momentum, is measured. The average en-

ergy per particle and the transverse momentum are related
as p, =(n/4)E/N, wh. ich follows only from the assumed
spherical symmetry of the matter distribution. To relate
the total number of particles to entropy requires a brief
study of decoupling. As the temperature decreases below
the phase transition temperature, at some temperature
heavy mesons are no longer important and there is an al-
most ideal gas of massless pions. For a range of tempera-
tures where this is true, the total entropy and total num-
ber of pions are both conserved and are related as
S—3.7N. Before this temperature is reached, pion-
number-changing processes, which involve four-body col-
lisions, have frozen out. This happens much before there
are significant modifications of the equation of state due
to finite pion mass, since the pion-number-changing pro-
cesses involve four powers of Boltzmann factors, e

FKJ. 3. E/S vs E/V for the bag model.
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With the relation between S and N, we may now find that
between p, and dN/dy. The phase transition tempera-
ture, and the ratio of energy densities below and above the
phase transition, which is the ratio of degrees of freedom
of the pion gas and the quark-gluon plasma, therefore fol-
low in a model-independent way from a plot of p, vs

p, dX/dy.
In this analysis, the initial energy stored in thermal

fluctuations reappears in the transverse momentum of
pions. The thermal energy is converted into energy of col-
lective radial flow. Since the system is in isolation, this is
required by energy and entropy conservation.

Some features of the hydrodynamic expansion may not
be extracted from the general considerations presented
above. For example, if the initial energy density is large,
the transverse momentum of large mass particles is ex-
pected to be enhanced by a much greater factor than that
of pions. This follows since the transverse-momentum
enhancement for pions arises from collective radial flow
of a fluid. Heavy-mass particles with the same outward
flow velocity acquire a larger transverse momentum. It is
also difficult to extract the lifetime of the fireball, or rates
for dilepton and photon emission without a detailed com-
putation.

Average ultrarelativistic nuclear collisions, and fluctua-
tions in pp collisions of high multiplicity, but which are
uniform over a wide rapidity interval, must be treated dif-
ferently from the case of spherical fluctuations. For
head-on nuclear collisions, and probably for uniform rapi-
dity high-multiplicity pp collisions, the matter forms
more or less uniformly over a transverse area which is the
geometrical cross section of the colliding nuclei or had-
rons, and the geometry of the collision is cylindrically
symmetric. To simply analyze this problem, we first as-
sume uniform matter distribution in the transverse direc-
tion. Following Bjorken, we also assume that the distribu-
tions are uniforin in rapidity. Fluctuations may be found
which satisfy this criterion, and for average ultrarelativis-
tic nuclear collisions between nuclei of equal A, this cri-
terion should be approximately satisfied for rapidities not
too far from the central region.

If the particle distributions are uniform in rapidity, the
local comoving distributions of particles are Lorentz in-
variant. The fiuid velocity vector u must therefore be a
Lorentz form invariant vector under transformations
along the collision s axis, which is only a function of x.
Since u = —1, u must be of the form

(29)

The scalar energy density e, the pressure P, and the entro-

py density e are Lorentz scalars and are therefore func-
tions only of v.

As w becomes smaller, earlier times are probed in the
collision. As discussed in the first section, at too early a
time, the perfect fiuid hydrodynamic description must
break down. This happens at some time which is of the
order of a scattering time ~, appropriate for the matter at
the time w. Before this time, entropy-producing effects
are important, as is particle production of the matter
which produced the quark-gluon plasma.

If the initial energy density is sufficiently large, it is
possible to relate the initial temperature and the formation
time 7.; In .this context, formation time is meant as the
earliest time when it is a good approximation to treat the
evolution of the matter as a perfect fluid. To estimate
this time in terms of the temperature, we must relate the
collision time to the temperature. In a scale-invariant
theory, a good approximation if the initial energy density
is sufficiently large, the scattering time is~ ~

r, =v/T;, (33)

where x is an as-yet undetermined constant of order one.
It should be noted that this relationship is also typical of
uncertainty principle relationships between the formation
time and the typical energy scale of the matter.

The constant of proportionality may be estimated by a
variety of means. Phenomenological analysis of
Japanese-American Cooperative Emulsion Experiment
(JACEE) data, which we shall soon discuss, and various
theoretical estimates suggest that if the collision time is
chosen to be a fm/c, then the initial temperature is ap-
proximately 250 MeV. We therefore have an approximate
relationship of the form

f / )
250 MeV

(34)

the energy density is
' 4/3

(36)

The uncertainties in this relationship are probably of or-
der 50%%uo.

The solution to the perfect-fluid hydrodynamic equa-
tions for the scale-invariant longitudinal expansion is
especially simple and has been discussed by Bjorken. For

(35)

where

(r2 —z2)1/2 (30)

the temperature is
1/3

is the proper time. The space-time rapidity variable is

q= —,
'

ln (31)
and the entropy density is

(37)

For the Lorentz-invariant situation we consider here, the
fiuid rapidity 8 and the space-tiine rapidity i) are equal:

CT =0]
'T

(38)

The entropy density may be related to the multiplicity
per unit rapidity. Since the total entropy 5 is
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S= I rdyd'r, ~

we have that the entropy per unit rapidity is

dS 2=mR xo=mR w;o; .
@fan

(39)

(40)

The entropy rapidity density is therefore invariant in time,
a feature which is generally true independent of the equa-
tion of state, and which follows from the isentropic nature
of the perfect-fiuid hydrodynamic equations.

As was argued above for the case of spherical expan-
sion, the entropy density and pion multiplicity may be re-
lated as

dS dN

dy dy
(41)

so that the multiplicity distribution may be used to
abstract the entropy density. Since the initial entropy
density is related to the initial temperature as

4 m

u =y, (r, r)(t/r, ui(r, r },z/r),
where y, is

(48}

verse radial coordinate, not the radial coordinate, appears.
If we have a fully three-dimensional situation, we

would in general expect the perfect-fluid hydrodynamic
equations to involve t, z, and the transverse coordinate r.
This is not the case if the central region multiplicity den-
sity dN/dy is independent of y, since if we express the
hydrodynamic equations in terms of r, g, and r with r
and ri as given by Eqs. (30) and (31), then the Lorentz co-
variance of the equations allow scalar quantities not to de-

pend on ri. This is not the case when dN/dy is not in-

dependent of y, as would happen if we applied this
analysis to the fragmentation region. In this case, the lack
of boost invariance of the assumed multiplicity distribu-
tion induces a lack of boost invariance of the hydro-
dynamic equations. The longitudinal boost invariance to-
gether with u = —1 rixluires that the fiuid four-velocity
be of the form

(1 U 2)—1/2 (49)

where NDF is the number of degrees of freedom (DF) of
the quark-gluon plasma,

N DF
——( 10.5Nf + 16)-40 (43)

—-0.4x
1 -32

~l

1 dN
mR' ~y

(45)

if the number of participating quark flavors is approxi-
mated as 2.5. We have therefore that

' 1/3

T -06m 1/3 1 dN
mR' ~y

If we assume that T; and r; are related according to Eq.
(34), then we can determine r; from experimental data.
VA'th ~-250 MeV, we have

T

8= —,
'

ln
1+vz
1 —V'

(51)

The perfect-fluid hydrodynamic equations for the
stress-energy tensor may be written in a simple form. If
we use

The Lorentz-scalar quantities such as the pressure, energy
density, Ui, and entropy density are functions only of r
and r, with no dependence upon g. Notice that as was the
case for the (1+ 1)-dimensional expansion, the fluid and
space-time rapidity are equal:

(50)

where the fluid rapidity is defined to be

ch

-4A

then the relation between time and A becomes

This form of the functional relation between multiplici-
ty and formation time has been observed in string models
of high-energy collisions, and is probably more general
than its derivation here. If we take the results from the
JACEE experiment as

T =(e+P)u u P—
T01 (&+P )u 0u 1

the hydrodynamic equations are

B,TM+ 18,(rT01)+ 1(TM+P) =0
r

(52)

(53)

(54)

(4~) and

For large nuclei such as uranium, this formula suggests
that the formation time might be as small as 0.3 fm/c,
with a temperature as high as 700—800 MeV. For small
nuclei, Eq. (47) most surely breaks down, as does a hydro-
dynamic analysis for average collisions, and v; probably
saturates at a fixed value of r; —I fm/c.

%'ith this analysis in hand, we now proceed to an
analysis of collisions taking into account the transverse
matter profile. As was the case for spherical expansion,
we shall take the transverse matter profiles as given by
Eqs. (26) and (27). The only difference is that the trans-

B,T '+ —B„[r( T +P)U„]+ T'+ B,P =0 . —(55}
r

It should be noted that the hydrodynamic equations for
spherical expansion are the same as those above with the
trivial modification that all terms proportional to 1/r are
dropped and everywhere r~r . The initial conditions for
the spherical and Lorentz-invariant cases differ only in
that the initial time can be taken to be zero for the spheri-
cal expansion, and is finite for the Lorentz-invariant'case.
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IV. DECOUPLING

As the matter expands according to the laws of
perfect-fluid hydrodynamics, at some point it achieves a
sufficiently low density that in the entire future history of
the fluid, a typical particle may be expected to scatter less
than once. In the future, it should therefore be a good ap-
proximation to treat the particles as free particles. To
analyze this problem, we must follow through the history
of the fluid and determine roughly when the fiuid freezes
out. %e must also determine the entropy production at
freezeout. Since in our analysis, freezeout occurs at a late
time when the local excitation energy is small and when
most of the work has been done on particles, the amount
of entropy production should be small compared to the
total entropy, and in our analysis, we shall ignore this
contribution. We therefore make the approximation that
the system expands as a perfect fiuid until freezeout,
which happens instantaneously. Finally, we need an algo-
rithm for determining particle distributions if the fluid
velocity and density is known immediately prior to
freezeout.

As we discussed in the second section, at some time
after the collision which forms the matter, the expansion
time becomes large compared to the collision time. This
may be seen from the power-law nature of the expansion,
combined with the assumed slow variation of the collision
time. The collision time should be slowly varying until a
phase transition between quark-gluon plasma and hadron
gas is initiated.

%'e can estimate the time at which the plasma begins to
become a hadron gas. We shall first consider the case of
Lorentz-invariant expansion. At the initial time, the tem-
perature is r; —a /~;. The system expands as
T=T; (r; /~) 'i, so that

K
7 72T3 ' (56)

l

If an initial time of r; —1 fm/c, then v is about 2 fm/c at
a temperature of 200 MeV. If, on the other hand, the for-
mation time was as small as 0.3 fm/c, as it might very
well be for ultrarelativistic uranium collisions, then the
time is 20 fm/c at the phase transition temperature. For
an initial temperature 500 MeV, corresponding to an ini-
tial time of 0.5 fm/c, the time is about 10 fm/c at the
transition.

For such large times, we might legitimately worry
about whether transverse rarefaction might disrupt the
system. For large nuclei such as uranium, except for the
highest initial temperatures, this is probably not the case
for two reasons. First, if the system were to transverse
rarefact with a rarefaction wave with sound velocity typi-
cal of an ideal gas, U =3 ' =0.6, the rarefaction time is
10 frn/e. On the other hand, as the matter expands it
reaches the critical temperature at the edge. Then the
pressure gradient disappears and this part of the wave is
not accelerated any more. Closer to the collision axis only
the forward edge (that is, the slow part) of the rarefaction
wave reaches the matter before it is cooled to mixed phase
and the transverse acceleration ceases. As a result at time
~=r~ a large part of the system is in the mixed phase

rglrq-Xp)/X~-15 . (57)

This time might be anywhere in the range of 30—300
fm/c. If the time is so large as 300 fm/c, the assumption
that transverse rarefaction may be ignored has surely bro-
ken down. Nevertheless, the time it takes to complete the
transition is long both compared to a natural time such as
a fm, which controls the rate of pion scattering, and long
compared to the time that it takes the system to reach the
phase-transition temperature. The system spends a very
long time in a mixed phase at a temperature close to the
phase-transition temperature. Dilepton and photon emis-
sion must surely be affected by the long time spent in a
mixed phase. There should be a contribution to the emis-—M /T
sion spectrum of dileptons of the form e ' i' where M,
is the transverse mass and T~ is the phase transition tem-
perature. This contribution might dominate the emission
spectra for moderate values of the transverse mass. This
might be studied at low mass and moderate p, so as to
avoid problems with background due to resonance decays
and still have a significant thermal signal.

The situation is also probably quite similar for spherical
expansion. The time the system spends in a mixed phase
is probably large. The system emerges from the mixed
phase expanding slowly compared to natural hadronic
time scales.

If the system is expanding slowly when it reaches the
hadron gas phase, it probably maintains itself in equilibri-
um with respect to pion number, and expands to a fair ap-
proximation isentropically for some time after completing
the transition. As the system cools, at some temperature
the effects of finite pion mass begin to become important.
Also the density of pions is decreasing and interactions
begin to decrease in magnitude. This effect of low density
probably begins to show up first in the interactions which
change pion number. These interactions involve four pion

which extends radially beyond the original radius Rz and
expands slowly transversally. A shock wave propagates
slowly inward at the interface of the mixed phase and
hadron gas and in the inner parts the expansion is almost
one dimensional until the time w=~~ when longitudinal
expansion alone had diluted the energy density to eH, the
energy density of the pion gas at the critical temperature.

For spherical expansion, long times are also required
before the system begins to convert into hadronic matter.
This follows because the rarefaction must proceed against
an expanding fluid into a region of mixed phase where the
sound velocity is zero. As we shall see in the next paper,
for modest values of the temperature, we find that ex-
tremely long times -2—20 fm/c are required before the
system begins to hadronize.

After the quark-gluon plasma reaches the phase transi-
tion temperature, it must convert the entropy stored in the
plasma into the entropy of a hadron gas. Since the de-
grees of freedom of the plasma are an order of magnitude
larger than those of a pion gas, this conversion takes a
long time. If the system is only longitudinally expanding
during this time, the ratio of the time at which the plasma
began the phase transition, v.

~ to that at which it com-
pletes the phase transition, ri, is given by the ratios of
these degrees of freedom
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collisions, and as the density decreases, these interactions
rapidly shut off. The reverse reaction of two pions goes
to four shuts off because the reaction takes a lot of energy
and the tails of the two-pion distribution are sampled. %'e

assume that both 2~4 and 4~2 pion-number-changing
reactions shut off at the same time. As this occurs, the
pion number becomes frozen at some fixed value. We as-
sume that this freezeout occurs at a temperature which is
sufficiently large that the massless pion approximation is
still valid. This seems to be the case from explicit studies
of pion-number-changing processes. The entropy and
particle number are related as X—3.7S.

Since this freezeout happens rather late, when the ex-
pansion is gentle and most of the work has been done in
expanding the quark-gluon plasma and converting into a
hadron gas, the subsequent evolution of the system does
not probably much affect distributions of particles. If we
approximate the system as frozen out at this time, and
compute again assuming a freezeout at a later time, we do
not expect that physical quantities will change much. We
shall verify this in our computations.

It is useful nevertheless to be convinced that the
freezeout does not occur until very low densities at very
late times. To see this, consider the mean free path for
pion scattering

I,—1/eo, (58)

where e is the pion number density and o is the pion-pion
scattering cross section. Since the pion number density
goes as I/~, corresponding to a conserved total number of
pions, for the Lorentz-invariant one-dimensional expan-
sion, and 0 is roughly constant until the pions are non-
relativistic, the mean free path scales as v. For power-law
expansion, the rate of expansion is proportional to I/~.
Thus as long as the one-dimensional expansion scenario is
valid, the pions stay in local thermal equilibrium until
they become nonrelativistic. Of course, once the three-
dimensional nature of the expansion is important, the
mean free path grows as r and the system rapidly freezes
out. This again should happen only at quite late times,
and again the system is quite cool.

Our conjecture is therefore that the systems which we
consider do not freeze out until very late times when the
system has done almost all the work it can do to generate
particle distributions. The results we compute for particle
distributions should therefore be fairly insensitive to the
details of freezeout, such as the time the system freezes
out, and the chosen freezeout temperature. With this in
mind, we shall consider results for momentum distribu-
tions of pion for a variety of freezeout temperatures.
Most of our results will be for a freezeout temperature of
140 MeV, a number which is arbitrarily chosen, but will
not much affect our results.

%e have still not presented our algorithm for freezeout.
This algorithm is essentially that of Cooper and Fry.
%'e repeat their considerations here. %e begin by deriving
an expression for the number of particles passing through
the freezeout surface which is parametrized as W. This is
a three-dimensional space-time surface which is deter-
mined by a freezeout condition such as T(t,r)= To. It
can be visualized as a moving spatial surface S( T)

describing the position of matter which at the time t has
reached the freeze-out temperature. If this condition is
reached simultaneously in a certain spatial volume, then
these regions of space belong to cr"

If dN is the number of particles passing through the
surface element dt7t' and if f(x,p) is the Wigner distribu-
tion function which describes the probability that a parti-
cle of momentum p and energy E=(p +m )' is at the
space-time coordinate x, then

dN=f(x, p)d p[vdt —dxj nd S . (59)

In this equation, the particle velocity is v, the normal to
the surface is n, . The first term in this equation is the
current of particles with momentum d p through the sur-
face element n, d S in the time interval dt when the sur-
face element is in the fixed position. The volume term
d x =dx n, d S takes into account the change of the flux
through d S due to the displacement d x of the surface ele-
ment in the time interval dt. Thus, spatial volumes where
the decoupling condition is reached at a given instant t,
may be included in this volume term. This situation can
take place around the symmetry axis in cylindrical expan-
sion if the initial-temperature distribution is flat and low
enough so that the decoupling temperature is reached be-
fore the transverse rarefaction has time to propagate to
the axis.

As with all breakup criteria, this criterion is not perfect.
At the decoupling surface, particles from either side may
flow in and out. This allows in principle the possibility
that the momentum distribution might become negative
for some values of the momentum. For the situation
where we apply this code, the system is outwardly ex-
panding, and we do not expect that this will happen. In
our hydrodynamic simulations we see no evidence of such
behavior.

The above relation for dN may be written in the
Lorentz-invariant form as

E dN/d'p=f(x p)p do

where the surface element

dtJt'=(d x,dtn, d S)

(60)

(61)

transforms under Lorentz transformations as a Lorentz
four-vector. The expression for EdN/d p is therefore
Lorentz invariant, as it must be.

The particle distributions after the decoupling are ob-
tained from Eq. (60) by integrating over the entire freeze-
out surface o . %e shall assume that at freezeout the dis-
tribution function f(x,p) is that of an ideal fluid

(2n. )
(62)

Here P(x) =I/T(x), u "(x) is the fluid four-velocity, and
g is the number of degrees of freedom, g =NDF, for the
particles in question. If the freezeout condition is
T(x)= Td, then P(x) =1/Td„——constant for the entire
integration.

Before going into the details of the calculation of the
transverse-momentum distributions, we shall consider the
simpler task of computing the average transverse momen-
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turn due to collective flow as a function of the particle
multiplicity. This computation isolates only the contribu-
tion to transverse momentum due to the collective fluid
flow of the system. This should be equal the average total
transverse momentum if the system evolves from a high
temperature to a low temperature, so that at the low tem-
perature of decoupling thermal motion is very small, and
the transverse momentum is given entirely in terms of
that of collective fiow. Realistic cases are handled by a
more complicated algorithm which we shall soon discuss.

In the case of longitudinal boost invariance, we can
compute the multiplicity distribution dN/dy in terms of
the entropy density dS/dy which is known from the local
values of entropy density and pressure. Similarly, if the
local boost invariance holds, the total transverse momen-
tum of the particles arising from collective flow in a given
rapidity interval equals the total transverse momentum of
the fluid with flow rapidity equal to ordinary rapidity in
the same interval. This transverse momentum can be
computed as

P, = f T""der„, (63)

where T"I' is the transverse p component of the stress-
energy tensor, and the integration is over that part of the
freezmut surface o" where the flow rapidity is in the con-
sidered interval.

In the case of spherical expansion, the average p, is
determined simply by the ratio of total energy (assuming
massless particles) and total entropy. Since the total ener-

gy is always conserved, it may be computed from the ini-
tial conditions. On the other hand, entropy may be pro-
duced during expansion, as in the case of formation of
shocks, and should be computed at the freezeout as

S= s do, (64)
gP

where s"=ou" is the entropy four-current
We will now consider details of the decoupling integrals

only for the cylindrical expansion. The spherical case can
I

be worked out similarly. %ith the longitudinal boost in-
variance, the freezeout condition is of the form
F(r, r) =const. The equation for the decoupling surface is
therefore of the form r=rd(r), and is independent of g.
On the other hand, the surface element of any space-time
surface with cylindrical symmetry may be written as

dM=r dr dP(dr dz, kdt dr, r dt dz, O) . (65)

In the decoupling integrals for the densities, Eqs. (63) and
(64), the integrands do not depend on the angle P and we
get

and

u do =2nrrfdr cosh(y, ) —drsinh(y, ))de (66)

g'"do„=do"=2m.r~dr de
leading to

(67)

I',
=2m. f rrd~I m sinh(y, )cosh(y, )dr

w=r~(r)

—[esinh (y, ) +P cosh (y, ) ) I

(68)

for the total transverse momentum due to collective flow
in the interval dq. The transverse rapidity is here y, .
The integral for dS/dpi can be similarly expressed. It
should be noted that (p, ) =(dP, /dg)/(3. 7dS/de) holds
only in the situation where the boost invariance is a
reasonable approximation, as it probably is in the central
region of heavy-ion collisions. Otherwise, the total trans-
verse momentum of particles and of flow do not match in
a flnite rapidity interval.

In the above notation, the momentum distribution of
the final particles has the form

dX g m, cosh( g y) p, c—os(P—)
f7.dp dg

dy d'p (2~)' ~'"~~dec

where

p u =m cosh(y )cosh(g —y) —p sinh(y )cos(P)

Equation (69) is still a three-dimensional integral. If the
denominator of the integrand is expanded as a geometrical
series, the integrals over P and rt can be performed. The
resulting series contains products of modified Bessel func-
tions and converges quite rapidly when Td„& 140
MeV-m . Such an expansion is therefore useful for the
numerical integration. Including the first term of the
series corresponds to replacing distribution functions by
Boltzmann distributions.

Equation (69) is useful for computing the transverse-
momentum distribution including the effects of thermal
motion. Included in the distribution of particles in this

I

equation is this effect. To compute (p, ) we simply in-
tegrate over these distributions with weight p, .

If one wants to study the spectra in the fragmentation
region, the condition U, =z/t does not hold. Also the pa-
rametrization of the decoupling surface then depends
upon q. As a result, the integration over q must be done
numerically. Since we consider here the hydrodynamics
in the boost invariant situation only, we will not go into
details of decoupling in the fragmentation region.

In our analysis we shall choose surfaces of decoupling
corresponding to temperatures in the range T-100—140
MeV. These temperatures are high enough so that the
massless pion-gas approximation is still probably good,
but low enough so that most of the work involved in
transverse expansion has been completed. To go to lower
temperatures, the massless pion-gas approximation must
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be discarded and a pion chemical potential must be intro-
duced. The pion chemical potential is needed since pion
number is conserved, and if masses are nonzero, entropy
conservation no longer guarantees pion number conserva-
tion. With such corrections, it is possible to go to lo~er
temperature than we present here. However, since there is
little work done at such low temperatures, and since the
entropy production at such a low temperature due to
freezeout should be small, our computations should prob-
ably give a good approximation to a more thorough and
complete treatment.

V. NUMERICAL METHODS

The numerical method which we use to integrate the
hydrodynamic equations is a relativistic extension of the
flux-corrected transport (FCT) algorithm proposed by
Boris and Book. The extension we employ has in large
part already been developed by the Frankfurt group.
For completeness of this paper, and since in the case of
rarefaction of shocks, the algorithm does not automatical-
ly yield unique solutions, we shall outline the method
here.

Hydrodynamics is governed by a system of nonlinear
partial differential equations which can possess discon-
tinuous shock wave solutions. In such a situation, many
types of solution algorithms, such as the method of
characteristics, which has been used to consider the ex-
pansion of a quark-gluon plasma in the absence of phase
transition, become inapplicable. In our problem, shock
waves occur as rarefaction shocks when the matter trans-
versely expands into vacuum. They are allowed to exist
because of the first-order phase transition which is incor-
porated into the bag-model equation of state.

When the rarefaction takes place into vacuum, there is
no external constraint which would fix the velocity of the
shock front or equivalently of the matter behind the
shock. Instead they can vary within a certain range in
which the conservation of energy and momentum fluxes
can be satisfied. From the point of view of the numeri-
cal calculations, it is useful to think of the ratio of entro-
py fluxes, R =cryu/ooyuuu, as a parameter which dif-
ferentiates between the possible rarefaction shocks. In the
actual computations, we must then be able to ensure the
right amount of entropy production across the shock
front in order to have the desired solution. We shall re-
turn to this question after introducing general features of
the FCT technique.

The FCT is an algorithm that can be used to improve
the shock-handling properties of many of the usual
finite-difference transport schemes. ' ' To illustrate the
method, let us consider a continuity equation

Bp/Bt = —B(up)/Bx , (71)

where p is a positive-definite density and U is a given velo-
city field. (In the actual problem of hydrodynamics, u is
also defined by the system of equations. )

Assume next that a finite-difference approximation can
be written in the conserving form

Pi Pi (+i+i/2 +i —1/2) ~

where the I' 's are called transportive fluxes and are func-
tions of p and u at one or several time levels t" and several
spatial grid points x;. The explicit form of these fiuxes
depends on the particular difference scheme which is
used. En general, high-order schemes provide accurate
solutions when p is smoothly varying but produce errone-
ous oscillations near steep gradients. These ripples are
due to numerical dispersion (phase error) characteristic to
high-order methods and can result in a failure of numeri-
cal computation. On the other hand, low-order methods
do not suffer from these oscillations, but instead from ex-
tensive numerical diffusion which tends to smooth out
any shock fronts.

The basic idea of the FCT is to construct the transpor-
tive fluxes I' as a weighted average of fluxes I' and I'
which are computed according to some low-order and
higher-order scheme, respectively. The weighting is done,
point by point, in such a way that the higher-order fluxes
wi11 be used only to the extent where no dispersive ripples
arise. The procedure to do this is called fiux correcting or
flux limiting and is the key point of the method.

In practice the computation proceeds through the fol-
lowing steps. At the first step, called the convective or
transport stage, one computes a tentative solution p" +'
using the low-order fluxes F=F in Eq. (72). Then the
antidiffusive fiuxes

A=F —F (73)

are defined in order to cancel the strong diffusion of the
transport stage. If these fluxes were used as such, the re-
sult would be that of the higher-order scheme. However,
in order to avoid the undesirable ripples, these antidif-
fusive fluxes are corrected or limited to

C
~i+1/2 Ci+1/2~i+1/2~ + Ci+1/2 & (74)

and the final values of p at the time level t "+' are calcu-
lated as

P
+ =P + (/Ii+i/2 ~; i/—i) (75)

The criterion for the flux correction is such that p" +' as
calculated from Eq. (75) must not have extrema which are
not already present in p" +'. This criterion appears to be
very efficient in determining the correct balance between
the low- and high-order terms so that no dispersive ripples
appear. It also has the important property that the
antidiffusive stage, Eq. (75), maintains the positivity of p.
Further, it is seen that the whole scheme conserves the to-
tal quantity associated with the density p, any flux sub-
tracted somewhere is added soinewhere else. Several flux
limiters and specific algorithms using FCT have been
developed since its invention. ' The particular algo-
rithm which we are using is the one introduced by Boris
and Book in Ref. 47 and is called SHASTA. In this early
application of FCT, the high-order scheme is not explicit-
ly stated. Instead, the antidiffusive fluxes are defined in
such a way that for the uniform velocity case they cancel
the diffusion caused by the low-order scheme at the trans-
port stage. The algorithm may however be cast in the
general format presented above, and doing so the version
of SHASTA which we have used is defined in the following
%'ay.
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The low-order fluxes are

I'+in =
2 l(1 —Q )'p" —Q 'p"+ i j»

Q, =( —,
' +e, )/(I+a;+i —e;) (77)

l

I ~l
l I

1

I
I I I
I I I

I I l

I
I I
I

I
I I

X

n+ ij2 5t
l

X
(78}

The uantities 5x and 5t are the grid differences and
U;"+' are the centered velocities. The positivity of p at
the transport stage

-n+1/2 e L z Lf i Pi Fi+1/2+~i —1/2 (79}

is maintained if
~
e;

~
& 1/2.

The transport stage of sHAST& can be represented pic-
torially. In Fig. 4, the density p is shown at different
steps in the transport computation. The transport is ini-
tiated by representing the density with straight lines con-
necting the p values of adjacent grid points, Fig. 4(a). The
fiuid elements defined by the straight-line sections are
then moved to new positions x;+5tu;"+', Fig. 4(b), in
such a way that the area under the curve is conserved. Fi-
nally, the new values of the density, p,"+', are computed
by assigning the part of the fluid element left from
x;+ —,'5x to the cell (x; ——,'5x, x;+ —,'5x) leading to Eqs.
(78) and (79). Clearly F;+,&2 is the flux through the cell
boundary x + -'5x.

As already mentioned, the high-order fluxes are not
used explicitly. Instead, the antidiffusive flux is defined
directly as

~ +in=a(p "+i' (80)

where rl = —,
' +e /2 is called the antidiffusive coefficient.

This form is obtained by demanding that the diffusion of
the transport stage is completely canceled in the case of
constant velocity. The corresponding high-order flux

FP+«2 ——F~~+i&2+ A;+i&2 is a rather complicated four-
point formula which we need not be concerned about
since only the quantities A are needed in calculations.

The crucial step of flux correcting is achieved in the
sHAsTA algorithm by a simple formula

i' =Smax [O,min(5 iy2S,
~
A; ig2 ~,Sg )]

(81)

—n+1 —n+1~i+1/2=P i+1 —P &
(82}

S=sgn(h;+, z2) .

n+1 —n+1 C c
Pi P i ~i+1/2 +~i —1/2 (84)

It can be verified that this equation is a realization of the
general flux-limiting criterion. It ensures that the correct-
ed antidiffusive fluxes cannot push the final values of the
density at x;

I
1

I
I
4

I

1

X.

I I

I I

I

I~l ll~ I

l

I

1

I

I

X ~

1

(c)

FlG. 4. The transport stage of SHASTA. Two fluid elements
(solid walls) and three grid cells (dashed walls) are shown. (a)
Initial location of fluid elements. (b) Location and shape after
transport. (c) Determination of new values of p on the grid.

beyond the values p,"++1' at the neighboring points.
We now turn to a discussion of handling the shocks.

Usually the propagation of shocks is accompanied by en-

tropy production which means that in the solutions of the
ideal fiuid flow, the shocks appear as discontinuities.
Physically, the shocks have a finite thickness and even
though the perfect-fiuid description may be a good ap-
proximation in the smooth regions of flow, viscosity be-
comes important in the region of shocks where the veloci-
ty gradients are very large. %hen a numerical method is
applied to solve ideal-fluid equations in which shocks
arise it must either be capable of fitting the shock discon-
tinuities or of producing enough entropy to allow the for-
mation of shocks. The standard procedure in the second
alternative is the inclusion of an artificial viscosity with
which shocks can be resolved reliably in a few grid points.

In the FCT technique, the entropy production is due to
the residual diffusion which is left uncanceled because of
the flux correction. It seems to have the remarkable prop-
erty of being able to produce the right amount of entropy
within one or two grid points when the strength of the
shock is fixed externally for example by appropriate boun-
dary conditions. %'e have tested it for relativistic
compression shocks up to shock velocities, U,h k

——0.95
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(corresponding to piston velocity 0.9) when the entropy
flux ratio 8= 1.34, and it reproduces a sharp shock front
with only transient ripples.

In the ease of rarefaction shocks which occur (if al-
lowed by the equation of state) when matter expands into
the vacuum, there is no external fixing of the strength of
the shock from the boundary conditions because the con-
tinuous rarefaction wave which joins the shock to vacuum
can adjust to any shock strength. %hat solution is then
produced by a given numerical algorithm (if any) depends
on the diffusive and viscous properties of that algorithm.

In the case of sHAsTA the amount of residual diffusion
can be controlled by the antidiffusion coeffieient ri in Eq.
(80). To ensure the condition

~

e
~

& —,
'

one usually takes
5t/5x ~ —,'. Then —,'e && —,

' for most parts of the fiuid
flow, and one can disregard the velocity dependence of q
and take ri= —„'. It turns out that even with the extra dif-
fusion resulting from this approximation, the sHAsTA al-
gorithm produces a rarefaction shock with almost no en-

tropy production. For these solutions, the matter behind
the shock is supersonic and they can be argued to be un-
stable by general stability criteria. 3' On the other hand,
subsonic shocks are not stationary in the expansion to the
vacuum. Thus the desirable solution, usually referred to
as the Jouguet shock, corresponds to a situation where the
velocity of the outflowing matter with respect to the
shock front equals the velocity of sound c, . It also corre-
sponds to a maximum entropy production for a given ini-
tial density of matter.

We have not tried to implement the condition of sonic
velocity since this would lead to very complicated pro-
cedures for the actual calculations with different initial
conditions. Instead we assure that the code produces

enough entropy to be able to find the Jouget shock. In
SHAHTA this can be achieved at least in two different
ways: artificial viscosity can be added to the algorithm,
or the value of q can be changed. %e have tested both
possibilities for a one-dimensional case with constant ini-
tial density where we know the shock part of the solu-
tion. Both procedures give the desired result and at least
in the one-dimensional case, equivalent results. The value

g needs to be reduced below 0.1 to achieve the maximum
entropy shock. For the calculations of spherical and
cylindrical expansion we have used the value 0.08.

VI. SUMMARY

In this paper we have discussed the limits of the validi-
ty of a hydrodynamical description of high-energy ha-
dronic collision processes. We have formulated the hy-
drodynamical equations for high-energy nucleus-nucleus
collisions, and for fluctuations in Pp collisions. We have
outlined the methods required to extract transverse-
momentum distributions of hadrons. We also have
presented an explicit method to treat systems with phase
transitions using the flux-corrected transport hydro-
dynamic code of Boris and Book. In a later paper, we
shall present solutions of these equations and explicitly
deter mine transverse-momentum distributions.
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