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A model is developed for the leading-baryon velocity distribution in the reaction p +A ~@+X.
The model is compared to an existing theoretical model and to experimental data for five different

target nuclei with incident-proton momentum of 100 GeV/c.

INTRODUCTION

The subject of nuclear stopping power is of great
current interest as it pertains directly to the question of
what types of quark-gluon plasma might be created in
high-energy nucleus-nucleus colhsions. In contrast with
the case of a charged particle traversing an ordinary ma-
terial medium, we are unable to make predictions of nu-
clear stopping power from first principles, and instead
must use crude models based on experiment. The best
known data so far come from the experimental work of
Barton et al. ' Several theoretical papers have already
analyzed the data of Barton et al. , and some important
points have come to light. Wong showed the importance
of realistic nuclear densities and proper normalizations in
stopping-power models. Date, Gyulassy, and Sumiyoshi
have stressed the importance of separating geometrical ef-
fects from dynamical effects. We shall use the same nu-
clear geometry as they, so that a direct comparison of our
dynamical models is possible.

The major difference between this work and previous
papers is in the treatment of successive collisions. We
take concepts that have been used as input in some hydro-
dynamic calculations and apply them to the stopping-
power problem to test the validity of the assumptions used
in an area where experimental data exist. In our model, as
collisions occur the mass of the projectile increases, thus
making successive collisions less and less effective in stop-

ping the projectile. Furthermore, greater momentum loss
in earlier collisions implies greater resistance to loss in
later collisions. Previous models have assumed that
momentum loss in each collision is dependent only on the
number of previous collisions and is independent of the
momentum lost in those collisions. The effects of these
assumptions mill be illustrated below.

THE MODEL

For the case of p +p~p+X we assume that there is a
conservative collision between the two protons that hap-
pens on a time scale that is much smaller than the time
needed to create on-shell secondary particles. Both pro-
tons emerge from the collision in excited states and even-
tually evaporate particles, leaving at least two baryons in
their ground state. This process can be written schemati-
cally as p +p ~p '+p ' ~(p +X)+ (p +X). By assuming

Pflna] = (Pp hP), — (2)

where Po is the initial momentum of the projectile proton,
m is the proton mass, m i is the mass of the excited pro-
ton, AP is the momentum exchanged in the collision, and
Pr,„,i is the momentum of the proton that is detected
Since the final longitudinal momenta are 2 orders of mag-
nitude greater than the transverse momenta, we solve the
one-dimensional problem and let any contribution to the
energy due to the transverse degrees of freedom enter
through increases of the excited masses. From the experi-
mental Pf,„,] distribution we can use the above equations
to find the distribution of bP and hence mi. This pro-
cedure is obviously self-consistent and reproduces the ex-
perimental Pf,„,I distribution.

In order to describe a collision between a proton and a
nucleus we need to model the process of a series of n ra-
pid nucleon-nucleon collisions creating excited nucleons,
followed by a period of deexcitation and particle evapora-
tion. Once again we assume the collisions are strictly con-
servative and that all of the collisions take place before
the deexcitation begins. In the rest frame of the projectile
we have for each of the n collisions

+( 2+P 2)1/2 ( 2+gP2)1/2

+[m '+(P„—&P)']' ', (3)

where rn„ i is the mass of the projectile before the nth
collision, m„ is the mass of the projectile after the nth
collision, P„ is the momentum of the nth target nucleon
in the rest frame of the projectile, m is the mass of the
nth target nucleon after collision with the projectile, and
dkP is the three-momentum transferred. Since there are
three unknown quantities in this equation, m„, m, and
hP, we need two more assumptions in order to solve it.
First, we assume that the t distribution (t is the squared

strict conservation of energy and momentum in the col-
lision and by assuining that the secondaries boil off iso-
tropically with respect to each excited proton we have, in
the laboratory frame,

rn+(P +m )' —(m +bP )'

+ [m, '+(P, —bP)']'/'
and
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four-momentum transfer) is the same as in a collision of
two particles of equal mass m~ (not necessarily the pro-
ton mass), with the same s (squared total energy in the
center-of-momentum frame) and yo (rapidity difference of
incoining particles). The I distribution in this equivalent
symmetric collision is found from the P-P data by scaling
all of the energies and momenta in Eqs. (1) and (2) by a
factor of m,~/m where m is the proton mass and

2(1+coshyo)

is the mass needed to have a symmetric collision with the
same s and yo as in Eq. (3). Our second assumption is
that there is no net energy transfer during the collision in
the center-of-momentum frame. These two assumptions
are of course somewhat arbitrary. For example, we could
have taken the t distribution from a proton-proton col-
lision with the same s and demanded that the energy
transfer be zero in the center-of-rapidity frame. If we had
assumed that the change in rapidity in each collision had
the same distribution as in a proton-proton collision with
the same yo our model would reproduce the results of the
incoherent cascade model. 2 We have looked at six dif-
ferent variations of these assumptions and although they
all give the same qualitative results and all fit the data of
Barton et ar. reasonably well, the quantitative results vary
somewhat. We chose our particular set of assumptions
because we found them most aesthetically pleasing and
because they ftt that data of Barton et al. at least as well

as the other choices we explored. These assumptions are
unnecessary in hydrodynamic models since they deal with
average values and not distributions.

APPLYING THE MODEL

To apply this model to p+A~p+X reactions we
must first find the probability distribution Q„(by) which
gives the probability of the projectile losing rapidity by
after n collisions. This was done up to n =12 using a
Monte Carlo procedure. For each collision we picked a t
at random from the distribution determined from the P-P
data. By keeping track of the projectile mass and momen-
tum one obtains the final proton momentum from

recoil nucleons we restrict the range of t for each collision
so that the maximum allowed magnitude of the t corre-
sponds to the projectile and target nucleons both coming
to rest in their center-of-momentum frame (this does not
violate energy conservation since we allow both masses to
increase during the collision). In the case of a P-P col-
lision this procedure results in zero probability of the
leading baryon being slower than the center of momentum
of the combined P-P system, and thus the Q&(hy) distri-
bution is identically zero for yb„ /2pbypyb„. For
100-GeV/c incident protons this will cause a 7% change
in the normalization in order to maintain a good fit to the
p-p data. Since the change in normalization increases
with decreasing incident-proton energy, the model may or
may not be applicable to cases with significantly lower in-

itial proton energies.
Figure 1 compares the results of our calculation with

those of Date, Gyulassy, and Sumiyoshi for n equal to 2,
4, 6, and 8 collisions. As the number of collisions in-

creases, a rather dramatic qualitative difference in the
models can be seen. Our distributions become more
peaked with increasing n while their distributions become
more spread out. This difference is mainly attributable to
the "feedback" mechanism built into our model. Al-
though the cutoff of by at the center-of-momentum rapi-
dity in each collision certainly contributes to the peaking,
we believe it is a very small effect, since adding the same
cutoff to the model of Date, Gyulassy, and Sumiyoshi
does not cause peaking. After several collisions projectiles
with low hy's have had relatively small increases in mass
and are more susceptible to increases in by in the next col-
lision, while projectiles with higher hy's have had larger
increases in mass and are less susceptible to further in-
creases in by. If there were some way to experimentally
determine the number of nucleon-nucleon collisions in a
given proton-nucleus collision then these two different
dynamical models could be compared directly with experi-
ment. Otherwise, the geometry of the nucleus must be
considered, and an average over impact parameters must
be performed before a direct comparison with experiment
can be made.
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In actually performing the Monte Carlo calculation we
used the equivalent but simpler calculation

~yrinai=g ~yi .
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Thus we have a prescription for uniquely determining
Q„(hy) using the experimentally measured Q, (hy) distri-
bution as input. For simplicity we approximate this dis-
tribution as

Q, (by)-e
which is known to agree quite well with the existing p-p
data.

In order to avoid ambiguities associated with target
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FIG. l. Q„ is plotted as a function of Ay for n =2, 4, 6, and
8 collisions. hy =0 corresponds to the beam velocity. hy =5.3
corresponds to the rest frame of the target. The histograms are
from our model and the smooth curves are from Date, Gyu-
lassy, and Sumiyoshi. All curves are normalized such that

„de= l.
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GEOMETRICAL EFFECTS

The forward distribution of baryons in rapidity

y
—=yb —by for a target nucleus A is taken to be

Nq(b)=e, tt f dzp(z, b),

~," =f d b Il —[I—N„(b)/a]" I .

=g P~(n)Q. (~y), (&)
dp

where P„(n) is the Glauber probability that the incident

proton interacts with n nucleons in nucleus A„and
Q„(hy) is the rapidity distribution of the projectile after n

collisions as calculated above. We have chosen the fol-

lowing normalization conventions:
r

COMPARISON TO EXPERIMENT

The results of Barton et al. give the inclusive cross sec-
tion, Ed o "/dp for protons emitted in the reaction

p +A ~p +X, with incident-proton momentum fixed at
100 GeV/c and final transverse momentum fixed at 0.3
GeV/c. The speed of the protons can be measured by the
variable x:

(10)

(E +Pz )final Pfinal
X = «+P.).i.i P.i.i i,b

(20)

QPg(n)=1 .

p(r) = po

1+exp[(r —Ro)/d]
(12)

Our computation of the Glauber probabilities P„(n) is
based on the same Woods-Saxon nuclear density distribu-
tion as used by Date, Gyulassy, and Sumiyoshi;

Ed o" ~ dN=~."ttr,g(pi) d
(~y), (21)

The target A ranged from H to Pb. Our model as well
as the work mentioned above predicts inclusive leading-
baryon distributions, which are not necessarily what were
measured by Barton et a/. In order to relate our predic-
tions to the experimental data several assumptions are
necessary. These assumptions are stated precisely in Ref.
5. In particular, we assume that the leading-proton distri-
bution can be factorized as follows:

where rz is the ratio of protons to baryons, g(pi ) is the
transverse-momentum distribution, and o,"&t is the effec-
tive inelastic cross section as defined above. In words, we
assume that dN/dy is a function of A and hy but rz and

g (pi ) are not. In order to compare our model with exper-
iment we transform the data of Barton et al. from
Ed o/dp vs x to dN/dy vs y by using the relations'

Z, =(1.19~'"—1.61~ -'") fm,

d =0.54 fm,

(13)

(14)

and po is determined from the normalization

rp r (15)

We confirm that these densities in conjunction with a
proton-nucleon inelastic cross section (o;„,i) of 32 mb
reproduce within stated experimental errors the measured
inelastic cross sections for the five target nuclei which
concern us here. However the o;„,l used above includes an
inelastic-diffractive contribution, 0;„,l z;tt, of approximate-
ly 4 mb (Ref. 7), which corresponds to one of the incom-
ing particles going to a low-lying excited state while the
other incoming particle remains unexcited. One-half of
o.;„,ld;ff corresponds to the projectile becoming excited,
and this half contributes to both the data of Barton et al.
and the energy-loss mechanism we are modeling. The
half of cr;„,i d;ff that corresponds to target excitation results
in negligible energy and momentum loss of the projectile,
and was not within the rapidity range of the data of Bar-
ton et a/. Likewise, our model only deals with collisions
that result in projectile excitation, so we treat one-half of
o;„,i d;tt as effectively elastic and define an effective
nucleon-nucleon cross section O.,ff such that

dN E d o "(y)/dp +fr
(A,y) =a

(x 'Ed tJt't'(y)/dp ) o,"qt
(22)

by = —ln(x),

where a is defined as

(23)

a = 1+exp( —yb„ /2) = 1.07 (24)

to maintain proper normalization of the p-p data. Figure
2 shows the results of our model along with the data of
Barton et al. and the results from Date, Gyulassy, and
Sumiyoshi. They used a normalization for the experimen-
tal data which is slightly different froin ours, and we ad-
justed the normalization of their results to keep the same
ratio of theory to experiment as in their paper. Their
choice of oaff was 32 mb, the full inelastic cross section.
Changing to 30 mb might improve the agreement of their
model with experiment.

Considering the approximations involved, both models
agrm quite well with the existing experimental data for all
of the targets, and neither model is clearly superior. The
models have a rather dramatic disagreement just beyond
the range of the experimental data, especially for the
heavier targets. The difference is most striking for the
lead target. Date, Gyulassy, and Sumiyoshi predict a de-
crease of dN/dy for increasing by in this region, while
our model predicts an increase. This qualitative differ-

1

jeff +inel T spinel-diff

(17)

and compute the Glauber probabilities from

Pg(n)= „ f d b „[Ng(b)/3]"[1 Ng(b)/3]"—
Oeff
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FIG. 2. dN/dy is plotted as a function of hy for the six dif-
ferent targets of Barton et a/. The hydrogen data are included
for reference purposes only, since they were used as input for the
models. The histograms are the results of our model, the
smooth curve is from Date, Gyulassy, and Sumiyoshi, and the
data points are from Barton et a/. with error bars indicating the
stated experimental errors. See the text for an explanation of
the normalizations.

APPENDIX

We have recently become aware of the experimental
work of Bailey et a/. which describes measurements of
inclusive proton distributions in the reaction
p+A~p+X, with incident proton energy of 120 GeV
and A ranging from Be to U. They measured protons in
the rapidity range of 0.5&by&2. 23. Since our model
predicts leading-baryon distributions and they measured
inclusive leading-proton cross sections, once again we need
to make assumptions in order to make a comparison. We
note that there is excellent agreement of our model with
the data of Barton et al. extrapolated smoothly to by =0.
As mentioned by Date, Gyulassy, and Sumiyoshi this is
typical of most stopping-power models where Q„(0)=0
for n p 1, since dNidy goes to Q&(by)P„(1) as by goes to
zero. Therefore we normalize the data of Bailey et al. by
demanding that a smooth extrapolation of the data down
to hy =0 agrees with our model predictions. The results
of this procedure are shown in Fig. 3. If our assumption
that rz is independent of A and by is correct, then our
normalization factors should all be identical and equal to
r~. Actually the normalization factor increases by about
50% from Be to U, and we conclude that if the Barton

ence is attributable mainly to the fact that our model, un-
like theirs, implies a "feedback" mechanism which tends
to make the net rapidity loss after many collisions ap-
proach a central value, hence the peaking shown in the
figures. It may be possible to explore a larger region of
rapidity experimentally with existing detection techniques
by increasing the beam energy roughly by a factor of 10.
It would also be quite interesting to see if another experi-
ment reproduces the apparent structure in the experimen-
tal results in the region of 0.2&by (0.4, a structure
which neither model predicts.

We feel that the agreement between our model and ex-
periment indicates that the assumptions used in the earlier
and current hydrodynamic models are reasonable. We
hasten to note that mass increases predicted in our model
are not to be taken literally. They are merely used as a
bookkeeping technique to keep track of energy and
momentum conservation, and should not be used lightly
to make predictions of other features of these collisions.
We do hope to make a better model of @+A collisions
that wi11 predict more than just leading-baryon distribu-
tions. However, we feel that such a model must be based
on more realistic and complicated dynamics than used
here.
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FIG. 3. dX/dy is plotted as a function of hy for the five tar-
gets of Bailey et a/. hy =0 corresponds to the beam velocity.
Ay =5.48 corresponds to the rest frame of the target. The his-
tograms are the results of our model, the data points are from
Bailey et a/. with error bars indicating the stated experimental
errors. See the Appendix for an explanation of the normaliza-
tions.
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and Bailey experiments are consistent then there must be
some error in our assumptions.

It is clear that the data do not show any signs of the up-
ward slope predicted by our model, nor the downward
slope predicted by Date, Gyulassy, and Sumiyoshi, in the
region b,y ~ l. Note that an rz decreasing for large values

of by would imply a larger number of baryons in this re-
gion and a more upward slope in the total baryon distribu-
tions when compared with the measured proton distribu-
tions. Precise knowledge of r& in this region may not be
available until an experiment is performed that measures
neutrons as well as protons.
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