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Anomalies in conservation laws in the Hamiltonian formalism
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%e present an analysis of anomalies and its relation with the Ehrenfest theorem from the Ham-

iltonian point of view. It is sho~n that when an operator becomes anomalous it is due to the fact
that it does not keep invariant the domain of definition of the Hamiltonian, proving a theorem

which states that an operator which keeps invariant such a domain cannot have anomalies.

In general, we say that an anomaly appears whenever a
symmetry of a classical field theory is not preserved in the
corresponding quantum theory. The history of anomalies
is very long; in fact, the existence of an axial anomaly and
its relevance for current algebra and the PCAC (partial
conservation of axial-vector current) hypothesis was dis-
covered by studying certain Feynman diagrams and fur-
ther in the analysis of the tro 2y decay process and in the
Schwinger model. Since then, similar anomalies have
been discovered in non-Abelian gauge theories. We now
know that such anomalies lead many chiral theories to be
inconsistent, which provides strong constraints for model
building.

Though this phenomenon is now well known, it remains
somewhat mysterious why the full set of classical sym-
metries cannot be preserved in any of the many possible
quantization schemes; in fact, in the Hamiltonian version
we see the origin of the anomaly as a consequence of the
spectral flow induced as one orbits the gauge configuration
space once. 2 Then, after being regularized, some charges
depend on the background gauge potential, and this causes
the anomaly. But in the Hamiltonian formalism, we also
know that the Ehrenfest theorem ensures that the classical
equations of motion remain true at the quantum level once
we take expectation values, thus preventing the appear-
ance of anomalies; then it is not clear why the Ehrenfest
theorem is broken when an anomaly is present. Another
point not yet fully clarified is which kind of operators are
expected to become anomalous.

In this Rapid Communication we present an analysis of
the anomalies and their relation with the Ehrenfest
theorem from the Hamiltonian point of view. It is shown
that when an operator becomes anomalous it is due to the
fact that it does not keep invariant the domain of defini-
tion of the Hamiltonian. Then a theorem is obtained
which states that an operator which keeps invariant such a
domain cannot have anomalies. We analyze some
quantum-mechanical anomalies and the axial anomaly in
the vector, axial-vector, and chiral Schwinger models,
showing that chiral electrodynamics is an ill-defined
theory.

Let us start with a classical field theory given by the
Hamiltonian

H J [dx]H(f4„@,II~,A, yt, y) . (1)

([A,y,@,t] e ' '([A, y,4,0], (3)

where 6 1. Let 8 be an operator acting on the Hilbert
space. The time derivative of the expectation value of such
an operator in the physical state given by g is

(8) -i [(Hg ( Bg) —(( ~ BH()], (4)
dt

where (g ) g') means the scalar product defined in our Hil-
bert space of the vector states ( and g'. Normally, one says
that the right-hand side of (4) is just the expectation value
on the state ( of the commutator of 0 with 8. Then one
writes

(8) -t.([H,B]&,

that is, the Heisenberg equation. The problem is that Eq.
(5) is not true, in general, since in going from (4) to (5)
we have used the fact that 0 is self-adjoint; but this is true
only when H acts on vector states (c DH, so we are impli-
citly assuming that

Vg c DH~B ( e DH,
which cannot be the case. So, in general, we would have

(8) -i&[0,81&+i[(H&
~ 8&) —

(& ( HB&)], (7)

where the "anomalous" second term on the right-hand side
of (7) is different from zero only for those states pc DH
such that 8$ g DH. Then we can see that the anomalous
equation for the operator 8 comes because it does not keep
DH invariant. So we can write (7) as

(8)=i&[0,B]&+&a),

(fermionic) fields and their canonical momenta. In doing
so, we need to fix, at the same time, the domain DH of def-
inition of the Hamiltonian H, such that acting on DH, H is
a self-adjoint operator and keeps DH invariant (DH is
dense in L ):

0 H~,
HDH -DH

Then the Schrodinger equation gives the time evolution
of any state belonging to the Hilbert space as

In order to quantize it, we shall impose the canomca1 com-
mutation (anticommutation) relations among the bosonic

where

(X&-i[(Hg)Bg) —(g(HBg)] . (9)
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Then a theorem emerges: Any operator which leaves in-
variant the domain of definition of the Hamiltonian cannot
have anomalies.

This point of view is important especially for those
quantum-mechanical problems where we are dealing with
compact-support spaces, and in particular, for gauge quan-
tum field theories. In both cases we must identify our
wave functions {or functionals) at different points, that
give nontrivial boundary conditions to be imposed on the
vectors belonging to DH. Let us see that point in some ex-
amples.

The first is the simplest one that one can consider in
quantum mechanics. Consider a classical particle moving
on a circumference of unit radius, whose Lagrangian is
given by

L —,'m8

The classical equations of motions are
0

Pg 0 Pg m8.

(io)

The quantum Hamiltonian corresponding to that problem

defined on

2

2m d82
(i2)

D„-[f~ L'[0,2nl ~f(o) -f(2n);
f'(0) -f'(2n),f" e L2[0,2ir]j .

Taking a general state defined as

g(e) - g e„&„(e), (i4)

where v „(8)are the eigenfunctions of H, it is easy to ob-
tain

(8&- —g g (n+k)
dh n k~n 2m

~exp[ —i(n' —k')r/(2m )],
i([H, e]& -(P,& -gk [ ek ~

'/m,

(A) = —gg (n+k)exp[ i (n —k )t/—(2m)],
2@i

p(e) g(e)J(e)- p (8) g(e)—
2m de

It must be noted that in order to avoid the anomaly we

where in (16) we have used the extension of H to the entire
Hilbert space. It is clear now that it is Eq. (S) which is
satisfied rather than Eq. (5). The problem here arises be-
cause given a periodic function f(0) f(2x), then ef(8)
is no longer a periodic function; in fact, the anomaly can
be written as a surface term

(a&-[eJ(e)l',.

cannot define

DH -[f~L'[0,2n]
~ f(0) -f(2n) -0,

f'(O) -f'(2n) -0]
since Pe would then be symmetric but not self-adjoint.

The above problem is similar to the case of a charged
particle moving on a two-torus and coupled to an Abelian
gauge field. This problem was analyzed by Manton. 5 As
in Ref. 5, we suppose the mass and the charge of the parti-
cle to be unity and specify the gauge field, saying that it
acts as a magnetic field normal to the torus and that its to-
tal flux must be an integer multiple of 2n. After fixing the
gauge, this leads to the Hamiltonian

iB' i B0 +2Ãlx
2 Bx2 2 Bg

where x e [0,1) and y c [O, ll and the points x 0 and
x 1 (y 0 and y 1) must be identified. The problem
now arises because x is an angular variable, whereas H de-
pends on x and x2, so we cannot define DH as periodic
functions at the points (O,y), (l,y) and {x,o), (x, l), since
then Eqs. (2) are not satisfied. Then we must identify the
functions of DH at the points (x,o) and (x, l), (O,y) and
(l,y ) up to a unitary general transformation

&(O,y) e'I(~ &(l,y),
B,((o,y) e'~ B,((l,y),

(Is)

(19)
({x,o) e'e " g(x, 1 ),
By (x,o) -e'g'iB(x, 1 ),

where f(y ) and g (x ) are functions to be determined im-
posing (2). It is easy to obtain f(y) ki+2ny and
g(x) k2, where ki and k2 are constants and therefore ir-
relevant in our discussion; so we shall take them to be zero
in what follows. Now defining DH as in (19) we have a
well-defined Hamiltonian, but the price we must pay is
that again P» does not keep DH invariant,

P,g(x,&) [„.~e'I&"P,g(x,&) [„,, (2o)

and will have anomalous equations. Related to the defini-
tion of DH is the problem of the spectral flow which
causes a permutation in the eigenfunctions by the opera-
tion of circling the torus in the x direction. In any case, it
then is easy to realize on a general state

r 1

(Py) =n P (x,y)g(x,y)

—P (x,y) &(x,y) dy, (21)x

so the anomaly is a surface term due to the boundary con-
ditions (19) that we must impose on DH. In a similar way,
it is obvious that the x and y operators will also have
anomalous equations of motion since, as in the previous ex-
ample, they are coordinates on a torus.

Finally, let us revise the Schwinger model; as in Ref. 3
the space will be a circle of length 2x, since then it is easy
to clarify certain properties of the model without changing
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the physics with respect to the usual versions in any signifi-
cant way. Furthermore, it is straightforward to take the
space as a circle of length 2rrl. and recover the standard
Schwinger model as L EEO. Working in the temporal
gauge, since in the Hamiltonian version the operators are
defined on hypersurfaces at constant time, then doing a to-
pologically trivial transformation, we can make Ai(x)
constant; by a further topologically nontrivial trans-
formation [A(0) A(2ir)+2irn] we can make Ai vary in
the interval [0,1] where the points Ai 0 and Ai 1 are
equivalent, making in this case the gauge field itself an an-
gular variable. The Hamiltonian is

a2x

, +i ry yi'(8„+i'i) ydx, (22)
4ir t)g, 2

or equivalently, absorbing the coupling constant in the
gauge field and transforming to momentum space

82 82
H —,+g(ait pai P -a2t pa2, P)(P+Ai), (23)

4ir

where

FIG. 1. An unexcited basis state. The dots (stars) mean a lev-

el filled by left-handed (right-handed) particles.

y, (x)- ga, ke'"" (j 1,2) .
1

X
(24)

(25)

4,4L4i. V' P] ICE-O ~ '"4,(4i,Ã~, W] ICE-i, (26)

where F is a functional to be determined imposing (2).
Let us define the operators

Qp ni p&l,p —a2p&2, p

Q QQp+,
P

Qs-QQP

(27)

If Eqs. (2) are satisfied, then

pre "Q,

e"qadi

--I] -g(a+1)Q;gQ, -I],
that is,

EFQ REF ~Q (28)

This implies that e ' acting on )[A&, ipt, y] )z, u de-
creases the momenta of all particles by one unit. Then it is
a fact that H is linear on a cyclic coordinate which forces
the existence of nontrivial periodicity on the amplitudes;
this fact is related also to the spectral flow which appears
as analyzed in Ref. 3,

The physical states will be linear combinations, with
complex amplitudes depending on Ai, of those states sub-
ject to Fermi statistics, in which each energy level is either
filled (there is a particle in such a state) or empty (there is

Again, since Ai e [0,1] and we want Eqs. (2) to be sat-
isfied, we must be careful with the boundary conditions on
the functions of DH. As before we cannot define periodic
boundary conditions at A i 0 and A i 1 since H has a
term linear with Ai, so periodicity up to a phase must be
imposed on the functionals of D~.

~2,k+1 ~1,—k

~2,k ~i, -(I+i) .

Then it is easy to find

Q4l~, -o-e' Q4l~, -i,
Q ~l. , -.- "Q &I., - +2 "Cl.

, -, (29)

showing that QDH c DH, whereas QsDH g DH, and corre
spondingly, Q will have a normal equation of motion and

Q5 has an anomaly.
The Qs anomaly can be evaluated and it yields a surface

term as a consequence of the quasiperiodic boundary con-

ditions, explicitly,
2

&(I&I()-—i g[P(ai, a, p, . . .)a, ,g(a, ,a, p, . . .)]
K p

-2&g[Z" (g&, (30)

where E" is the transverse part of the electric field.
Herc the anomaly results from thc gauge invariance

which forces the equivalence of some configurations. It is
then impossible to have a well-defined self-adjoint Hamil-
tonian and an axial-vector current which keeps invariant
the domain of definition of the Hamiltonian.

In the case of the axial Schwinger model we can repeat
the previous analysis and see that again we must define
quasiperiodic boundary conditions for the functionals of

no particle), and in which almost all (except a finite num-
ber) of the negative-energy levels are filled, and almost all
of the positive-energy levels are empty. Let us see one of
these states as represented in Fig. 1, where we have regu-
larized taking a cutoff on the momenta ( —k «p «k).
Since e' must be a unitary operator, by doing the momen-
tum regularization we shall identify
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—iF t iF~
Q2 @02p8 g2 p+ ~02 p+ &

(31)

Then, it is clear that in the chiral Schwinger model it is
impossible to define DH in such a way that Eqs. (2) are
satisfied, since Eqs. (28) and (31) are not compatible; cor-
respondingly, the chiral Schwinger model is an ill-defined
theory. 3

So, after changing the role of the vector and axial-vector
currents, everything remains analogous, that is,

(32)
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