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Field theory of paths with a curvature-dependent term
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A novel theory of paths, in which configurations are weighted according to their curvature as
well as their length, is developed.

Theories of manifolds At embedded in higher-dimen-
sional spaces 4' are a subject of much current interest. The
guiding principle in these theories is invariance under arbi-
trary reparametrizations of the coordinates used to label

Usually, a further assumption is made —that only in-
trinsic properties of At enter; then the corresponding ac-
tion must be proportional to the invariant volume of At It.
is conceivable, however, that the manner in which At is
embedded in 4' is of consequence, for there are always
terms which depend upon At in an extrinsic fashion, and
yet are still general coordinate invariant. Perhaps it is
worthwhile to consider the most general theory possible, as
long as it respects other physical principles such as renor-
malizability.

For the case in which At is a surface, such an "extrinsic"
theory has been studied by Pol akov, ' and separately by
Helfrich, and Peliti and Leibler. In this Rapid Communi-
cation I follow their lead to develop an analogous theory of
paths.

In the theory I propose, the action of a path involves
both its curvature and its length. The coupling of the cur-
vature term is dimensionless, so I begin by showing that
this coupling is asymptotically free. I then assume that the
dimension d of b' is very large, and calculate in a large-d
expansion.

This theory of paths might be relevant to polymer phys-
ics. Models with a term involving the square of the curva-
ture are well known in polymer systems, they are apphc-
able to long chains for which the effects of self-repulsion
can be neglected. It is not difficult to imagine how terms
in the curvature squared can arise in an expansion of the
free energy F. If k is the curvature and F—(a +bk
+ )', for small k F-a+bk /2+ . . In contrast,
for the model I study, F has a term which is linear in the
curvature. This can only occur at an isolated point in the
phase diagram where a -0 so F-v bk. Thus, at best my
model is only applicable to polymers at those critical
points for which a-0. I do not know whether such points
can be reached in physical systems.

In this paper my interest in the model is merely field
theoretic, for as a field theory it is rather curious. To be-
gin with, it is unusual to find asymptotic freedom in one
dimension. The quantum geometry of the model is also
distinctive —to calculate the small fluctuations about some
background path, it is necessary to assume that the path
has nonzero curvature along its entire length. This as-
sumption is justified by the large-dI expansion, for the
paths which dominate the functional integral at large dI are
uniformly curved. I should also mention that awhile they

x dx/dt, x dzx/dt . S has a local gauge symmetry —it
is invariant under t f(t ), where f(t ) is an arbitrary
differentiable function of t Notice a.lso that the curvature
term is invariant under scale transformations, x (t )

crx(t); since s os, the mass term is not. For each
value of t, the model has d —1 degrees of freedom: x (t )
contributes d, minus one for the gauge symmetry. For
paths in a plane (d 2) the single degree of freedom is
trivial, so I presume that d «3.

Of course when a ' 0, 5 is the action for a relativistic
particie, so that t can be viewed as the time. This connec-
tion is lost when a 'e0, but the model is still perfectly
sensible as a type of statistical mechanics, as long as t is
treated just as a parameter.

%hile I, is not really a time, a canonical analysis is still
of aaa. Tira Lagrangian L(g fCdr) dapanda on x and

x, so two canonical momenta must be introduced:

bÃ 1 bL bXgo=
dt

(3)

p~ is conjugate to x, and pq to x. The (gauge-dependent)
equations of motion are dp~/dt 0. The Hamiltonian

are not apparent at first, there are close similarities be-
tween this theory and a nonlinear gr model with long-range
interactions.

Let x represent a path in d flat, Euclidean dimensions,
R . The arc length s is defined by the relation

(dx/ds ) 1. Then any action formed frotn just x and s is
automatically reparametrization invariant. I choose

1
tO

5 — kds+ m ds,a4
where k is the curvature, k (d x/ds )2. The coupling a
is dimensionless, and m is a mass, m «0.

This action is uniquely determined by two requirements.
The first is that the action density (over db) be a polyno-
mial in k or like terms. The other is that there be no cou-
plings with dimensions of inverse mass, which will ensure
renormalizability. The effects of couplings which do not
appear to be renormalizable will be discussed later.

The similarities between Eq. (1) and the models of Po-
lyakov' and Helfrich are obvious. For surfaces, the term
with the dimensionless coupling involves the square of the
(mean) curvature; there is also a term for the area of the
surface.

With a given parametrization x x (t ),
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1s

X-—(x2)'/2+ (x' —1) .
a 2a

(5)

r0 ro(s) is a constraint field which enforces the gauge
condition. In contrast with Eq. (1), which has two cou-
plings of which one has the dimensions of mass, the local
Lagrangian of Eq. (5) has only a single dimensionless cou-
pling constant.

Equation (5) has the form of a nonlinear cr model with a
peculiar square-root-type kinetic energy for a d-
component cr field x(s). In the language of the a model,
straight paths correspond to an ordered state, x(s)

a constant vector. Thus, the analysis of the large-d ex-
pansion, which shows that the dominant paths are curved,
corresponds to a disordered vacuum state for the o model.
It is well known that a cr model with the usual kinetic ener-

gy is always disordered at or below two dimensions; for
the square-root kinetic energy of Eq. (5), this happens in
one dimension.

To calculate the renormalization-group equations to
one-loop order, I use a background-field method —with

Xcl+Xqu~ ~ cl+~qui + +cl++l++2+ ' '
~ +cl

is just X with x,l and ai, l replacing x and m. Xl generates
the equations of motion for x,l and m, l, and is assumed to
vanish. X2is

1 1
xqu2g (-" 2)i/2

1 (xd. xq, )
xcl

1 2 1+ Nc&xqp + ctpq&xc&' xqp2a a

In order for X2 to be well defined, it is necessary to assume
that the background field is everywhere curved —x,l (s)
eO for all s. Paths which have isolated points at which

12 Pi'x+@2'x

/f vanishes identically, as a familiar consequence of gen-
eral coordinate invariance. While in principle /f is a func-

tion of x, pl, and p2, in this theory they are not all in-

dependent variables, and must satisfy the constraints

p x m(x2)'/2 and p x 0.
Initially, one might wonder whether the model has any

interesting dynamics, for with fixed end points the classi-
cal path which minimizes the action of Eq. (1) is just a
straight line.

This overlooks an essential property of the model —its
gauge invariance. It is convenient to choose a gauge in
which the parameter t is the are length s. Henceforth I
work in this arc-length gauge; then x2 1, from which

x x 0, andsoon.
In the arc-length gauge, nothing depends on m, at least

as far as quantities which are local in s are concerned. The
only place in which rn enters is in the total free energy, and
there its appearance is a trivial factor of m times the total
arc length. (This differs from the theory of surfaces, '
where the surface tension does appear as a term in a local
Lagrangian for the conformal mode. )

For this reason, in the arc-length gauge the Lagrangian
can be taken as

x,~ 0 appear to have infinite action, and so make no con-
tribution to the functional integral. As a cr model, the as-

sumption that x,~ ~0 means that the theory is only sensi-
ble in a disordered phase; i.e., at or below its critical di-
mension of one.

To one-loop order in the arc-length gauge, the contribu-
tion of ghosts is independent of x,l and co,l, and so can be
ignored. Integrating over coq„just gives factors of
b(xcl xq„) in the measure of the functional integral. This
8 function can be rewritten as a term in the Lagrangian
-(xcl'xqu) /(2ag), in the limit g~ 0. The remaining in-
tegral over xq„yields the effective action AS:

AS lim tr lnS'
(~0 (7)

g
—l ~D2 1

(-" 2)l/2

4

xclxcl
D

(
—" 2)i/2

.i ~——Dx x D —b "De,iD,

D—:d/ds. Since all I want from hS are the counterterms
to one-loop order, I take some shortcuts in evaluating AS.
rocl is treated as a constant. Within the trace, which
includes an integration over the momentum p, I take

xcl DXcl (p+Pcl)xcl (Xcl )'"-
I p+pcl I wheie J2 l is

the momentum of the background x,l field. Expanding hS
in p, l and rocl, the only ultraviolet divergences arise from
the terms linear in Ip, l I and ro,l. These represent renor-
malizations of (xcl )' and ui, l, and generate the counter-
term Lagrangian hL. The renormalized Lagrangian,

X,i+ AX, is found to be

—(xl)/ 1 — ainA
(d —1)

a (d -1),
Qp. ~ a + 0 ~ ~

8 lnA x
(lo)

and the theory is asymptotically free. To leading order in

a, the renormalization of charge is determined entirely by
that of the ~ave function.

Brezin, Zinn-Justin, and Le Guillou have studied non-
linear cr models with long-range interactions, including an
example with a critical dimensionality of one. For this
model, in momentum space the propagator of the a field is
-1/ I p I . This is essentially how the propagator for x
behaves at large momenta, so it is not surprising to find

cl 2 (d —1)+ x,)
—1— a lnA

2a

where A is an ultraviolet cutoff. Let Z be the wave-
function renormalization constant,

(d -1)
Z 1 — alnA,

and x, x,l/jg' and ro, ro, l the renormalized fields.
Then &„,„can be written as

(x,') '/'+ co (x' —1)1
ren

2ap

if a, a/Z. The P function of a is
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that the renormalization-group equations for these two
models agree to leading order in the coupling constant. I
do not believe this identity persists to higher order. For
the long-range cr models, wave-function and charge renor-
malization are always equal. In the present model,
beyond leading order, ghosts associated with the gauge in-
variance can enter in a nontrivial ~ay and so violate this
equality.

At this point, it is worth mentioning what happens if the
action is generalized to include terms whose couplings
have inverse dimensions of mass. Usually these terms will

generate new vertices for the x's, e.g., J k"ds for n & 2.
In this case, renormalization will induce an infinite set of
counterterms, and so these terms are nonrenormalizable.

There are terms, though, which are quadratic in x in the
arc-length gauge:

fO

k ds g (d x/ds ) ds, „(d x/ds ) ds

and so forth. s These terms only contribute to the x propa-
gator, and thus do not generate new terms under renor-
malization. In fact, they render the model finite.

What, then, is the use of analyzing the action of Eq.
(I)? Let me make the customary and reasonable assump-
tion that any term with a coupling of inverse mass dimen-
sion arises solely as a result of effects at short distances.
Then these couplings should all be proportional just to (in-
verse) powers of the cutoff A, and never to those of the
mass m. This means that for momenta (&A, we can take
the action to be that of Eq. (1).

The infrared behavior of an asymptotically free theory
such as this is bound to be involved. For paths in the quan-
tum theory to be well defined, they must be curved —so
exactly how do paths "curl up" over large distances'? To
develop some insight, I solve the model for d ~ with ad
fixed. The large-d expansion is based on the identity

f j /t2~+ OO

b
dXexp —ak — — exp( —2Jab ), (11)—ce

A,
2 8

a,b & 0. Consequently, from a Lagrangian X',

X'+ + ro(x' —1),1 2 1 x 1 (»)
2Q 2Q g 2c

integration over the constraint field k A, (s) gives, identi-
cally, the Lagrangian X of Eq. (5). For this to be true, it
is crucial that b, which is -x, enters only in the exponen-
tial on the right-hand side of Eq. (11) and not in the pre-
factor. If b did appear in the prefactor, after introducing
X(s) it would be necessary to keep track of curvature-
dependent terms in the measure of the functional integral.
Such terms in the measure can be ignored when the total
arc length is infinite, but since I shall also consider the
case of finite total arc length, it is essential to be certain
that nothing in the measure has been overlooked.

In Eq. (12) x only appears quadratically, and so x can
be integrated out to give the effective Lagrangian L,rr.

.

L,rf(X,co) - X — co+ —tr InG '(A, ,ro),1 p 1 d
2Q 2c 2 p

G '(A.,ro) D D —DalD .
1

x2

[In Eq. (13), the trace is only over the momentum p,
D2 —p . l I expand A. (s) and co(s) about fields A.,l and
al l'. k A, l+A,q„, ro ro l+raq„. If A, l and m l are to give
the true ground state at large d, then the terms linear in
Xq„and alq„must vanish. This gives the equations

X,~d
—tr (i4a)

~cl P +cl + alcl

d 1 1

P +el +cl
(i41 )

where I assume that Xcl and co,l commute with p.
What is the solution of Eq. (14)? A first guess —il,,l and

alcl both constant —does not work, since then the trace in
Eq. (14a) is ultraviolet divergent as -A. This divergence
does not appear with dimensional regularization, but even
so there is no consistent solution for real il,,l and ro, l.

Equation (14) does have an obvious solution, if one is
willin to take a bit of a leap. With A, l ( —D2)'~4,

p /Xd I p I within the trace over momenta, both equa-
tions give

1 1—tr 0.
l IP I+cl

(is)

e,~ p exp

The renormalization of charge in Eq. (16) is consistent (at
large d) with that found perturbatively in Eq. (10). From
Eq. (12), 8;JG (kd, cocl) is the x propagator at large d. For
example,

&x(s) x(s'))-exp( —a)7 Is —s'I ),
as Is —s'I ~. Thus r07 acts like a dynamicaBy gen-
erated mass scale for correlations of x(s). These results
are all typical of nonlinear cr models in their critical di-
mension.

This equation can always be solved by a constant rocl, the
value of the constant will depend on the boundary condi-
tions applicable.

This solution has a simple physical interpretation. From
Eq. (12), X -x, so A,el&0 shows that the dominant paths
at large d are curved. Indeed, since Xcl ——D is an oP-
erator, this solution for X,l introduces nonlocal interactions
into the theory; in some sense, this nonlocality is how one
part of a path "communicates'* its curvature to another.

As illustrated by Eq. (15), with this A,,l the propagator
for x is.-l/( I p I

+ co,l). Consequently, to leading order in
d ', the results for the large-d expansion are, up to some
minor differences, the same as for a one-dimensional non-
linear a model with long-range interactions. For reasons
that will be explained below, this is not true beyond lead-
ing order in d

It is simplest to solve Eq. (15) for infinite arc length. I
define a„as the renormalized coupling at a scale tu:

f

1 1 1 A——ln-
a,d ad n p

From Eq. (15), the value of rocl for infinite s„reel, is
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1 1 1+ +
Qrd st foci

ecA 1—ln
x g

In Eq. (20), toc~ is implicitly a function of s, . For large s„

foci(s, ) —top 1 — exp + .
qs, » i 2ps, a,d

. (21a)

to,i(s, ) decreases as s, does. There is a critical value of s„
s,', at which ,to( i's) vanishes: s,

'
trexp( —y)/tu, ~. tu, (is)

is negative when s (s,', and it approaches —tr/s, as
s, 0:

foci(s, ) ———1+K 1 +
ps, « l st ln(@st /K)

(21b)

Another quantity of physical interest for a polymer is
how the free energy behaves as a function of the arc
length. At large d, the total free energy of Eq. (1) is the
sum of the effective action S;)f~fdsÃcff(Acj roc/) and
ms, . For large arc length, Sccdf should Produce some con-
stant and presumably positive mass per unit length, but its
behavior should be much more involved as s, decreases.

I shall be interested in the terms O(d) in S;)f, so the
contribution of hosts, which is O(do), can be neglected.

fA.,~ ds -g„ I n -g( —1) by zeta-function regulariza-
tion, and since ((—1) —tr/12, this term just gives a con-
stant, independent of s„which can be ignored. Then

S;)f — to,~s, +—s, tr lnG '(k, i, to,~) . (22)

«»(I@I+foe) can b«ound by tnteg«ting «(Ipl
+tu, l) ', which was needed in Eq. (20), with respect to
fo,~. The constant of integration is given by

trlnIp I
——In(s, )g(0)=—,' in(its, ) .

p is introduced into Eq. (23) as a matter of convention, to

Thinking of the physics of a polymer, it is natural to ask
what happens when a strand of finite length is snipped and
allovred to wriggle into thermal equilibrium. Let the total
arc length be s„and assume that the end points are held
fixed, p ttn/s„n 1, 2, 3, . . . . I use zeta-function regu-
larizatiofi, replacing the trace in Eq. (15) by

———ttr(x ) +0(e),1 1

o (n+x)'+'c-o e

1tt(x ):—d lnI (x )/dx. To recover Eq. (17) for infinite s„ I
take e ' ln(Ast/tr). Then Eq. (15) becomes

make the dimensions work out right. The final result is

Self
2

' tocA
1 1 p&~+—ln

a,d x m

For large s„

cl cPf—1n -- I
jp3S,

S;)f —— " ' +in(ps, )+O(s,o) . (25a)
tM.St )) 1 2 Ã

While it was not obvious from Eq. (22), Eq. (25a)
shows that to7 does act like a positive, mass-type term for
lar e s, . As s, s,', to ~(cs, ) 0, and S;Jf 3dln(ps, '/

tt f )/4. Scctlf is well defined and differentiable about s,', so
at least to leading order in d ', s, s,' is not a point of any
phase transition. S;)f remains real for s, (s,', since
xI (x ) & 0 for —1 & x (0. For small s„

SJ~f 111 ill + 2 ln(p, s, ) +0 (s,o) . (25b)
ps(&&1 2 ps]

One can also calculate for the case of end points which
are free to move, by taking the allowed momenta to be

p 2ttm/s„m 0, + 1, + 2, . . . , fo7 is unchanged, but
to,~(s, ) increases for decreasing s, ; as s, 0, to,i(s, )

tt/[s—,ln(ps, )l The .leading terms in S;)q are the same
as in Eq. (25), although the nonleading ones differ.

The identity between the results for the theory of paths
and a one-dimensional a model with long-range interac-
tions breaks down beyond leading order in d '. For the cr

model, the corrections in d ' are given by expanding the
constraint field to fad+to„„ in small fluctuations about
tocb' ((toq„)2)-d '. To any finite order in d ', this expan-
sion is infrared finite.

For the theory of paths, there are two constraint fields
about which to expand, )i, A,,i+A,~„and to. The fluctua-
tions in Xq„are not only unique to the theory of paths, but
they dramatically alter the physics. From Eq. (13), I/A,

2

appears in G (X,fo), so expansion in Xq„will inevitably
produce terms -I/X, c~2 1/I p I; no higher powers of I/Xci
seem to. These factors of 1/I p I introduce infrared diver-
gences for finite d that do not occur at infinite d. For
d ( co, the end points must be held fixed so that any mo-
menta are always nonzero. Even with fixed end points, the
corrections in d ' will bring in a logarithmic sensitivity to
sf for large s, .
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cussions; he has also considered related theories of paths.
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