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Mean-fteld renormalization-group technique for Z~ gauge theories
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The mean-field renormalization-group technique which has been applied to spin systems with consider-

able success is adapted to lattice gauge theories. Because of the simplicity of our block-spin choice, results
are not as successful as they are for the spin systems. Taking larger blocks is expected to improve the
results.

I. INTRODUCTION

%'ilson's' lattice regularization of divergences by defining
any field theory on a lattice reduces the renormalization
problem to determining the form of dependence of the cou-
plings on the lattice spacing. The lattice formalism conse-
quently enables one to use the real-space renormalization-
group methods, ' which were initially introduced for the spin
systems, in any field theory.

The success of the renormalization-group method lies in
the choice of transformation prescription. Methods which
are developed for the spin systems cannot be directly used
in gauge theories. However, there are very successful
prescriptions3 ~ which are used in Monte Carlo renormaliza-
tion™group calculations of lattice gauge theories. The major
drawback of the Monte Carlo renormalization-group
method5 is its requirement of large computers and extreme-
ly extensive computer time.

Mean-field techniques6 provide a successful alternative to
Monte Carlo methods for lattice gauge theories despite their
problems with gauge in variance. The success of this
method gives rise to hope for the application of Kinzel's
mean-field renormalization-group technique7 to lattice gauge
theories.

Kinzel's mean-field renormalization-group technique
combines the mean-field techniques with real-space
renormalization-group transformations. This combination
brings considerable improvement to the computation of crit-
ical indices and of critical points. The values are closer to
the exact values rather than the mean-field values for the
two-dimensional Ising spin system. 7 In this paper we have
combined the simplest mean-field ideas in lattice gauge
theories with Swendson's renormalization-group transforma-
tion prescription3 in order to apply the mean-field
renormalization-group ideas to lattice gauge theories.

In Sec. II we will outline the mean-field renormalization-
group technique as it is applied in Z~ gauge theories. Sec-
tion III is devoted to discussions of the results.

transforms as a "block spin. " The interactions between the
spins of a given block are calculated exactly while interac-
tions between the spins of different blocks are taken as a
mean-field effect.

Blocking procedures have some concrete rules for spin
systems. In gauge systems, this blocking procedure is not
so clear. It is impossible to define distinct blocks in which
links will be treated exactly, since each link is used by
d(d I) piaqu—ettes. In this work, we have the simplest
block of link variables: namely, three links which lie on the
straight path between the sites A and 8 (Fig. I). All sur-
rounding links are taken as mean values. In effect, the sur-
rounding links are decisive on the renormalization-group
transformation. We have employed Swendson's renormal-
ization-group prescription, 3 such that after one transforma-
tion these three links will be replaced by one link of the re-
normalized system. The lattice-gauge-theory action, in the
Wilson form,

S ~ X KCr &0'20'so'4 (I)
plaqgettes

under the renormalization group transformation, becomes

S'(~t') - inTrp(~, ', ~t„)e

JC CTItr2 0'st74 + Ep
new plaquettes
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H. MEAN-FIEI. D RENORMAI IZATION-GROUP TECHNIQUE
FOR Z& LArrICE GAUGE THEORIES

The essence of Kinzel's mean-field renormalization-group
technique lies in blocking the system such that after the
real-space renormalization-group transformation each block

FIG. 1. Ordered configuration for two-dimensional lattice gauge
system. Since the same pattern repeats itself, after the renormaliza-
tion transformations the system remains ordered.
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Here, the o., 's are defined by the renormalization-group
transformation P(of', a,„) which couples the new link vari-
ables ~i' to all link variables O.,„ in the block i, where E is
the original coupling constant, and E' and Eo are the renor-
malized coupling constants.

In Kinzel's prescription one takes two configurations: one
ordered and one disordered. In transformation, the proper-
ties of these two systems give the renormalized coupling
constants as a function of the original coupling constants:

S'(+) —S'(-)
2/~/u(u- l)/2

S'(+) -S'(-)
Eo

(3a)

(3b)

S(a(„,m) -E rr,„m
d(d 1)—

is the usual mean-field lattice-gauge-theory action. If g&„'s
are chosen such that the majority of the plaquette action
yields a positive value, Et[. (4) defines the mean value of
the link variables for the ordered state which is given in

where S'(+ ) and S'( —) are the actions of ordered and
disordered configurations. For a gauge-invariant system the
ground state is not unique, but all of the ground states are
related to each other by gauge transformations. Conse-
quently, the choice of any one of the ground states will be
sufficient for the ordered configuration. The same is also
true for the disordered state. In Figs. 1 and 2 we have
given our choice of ordered and disordered states for two-
dimensional Z~ gauge theory. For any Z~ gauge theory,
the link variables o.i, cr2, and c3, are the elements of the
gauge group being studied and m's are the mean values of
the link variables'.

1

XP(o,", tr,„)o,„exp XS(a,„,m)
I I|r

i

XP(rr, ', trv)ex pXS(o.,„,m)
I ir

Fig. 1. Our choice of link variables and plaquette actions
for an ordered configuration in Z2 and Z3 gauge theories
are given in Table I.

Since the disordered phase is made up of link variables
with unequal values we need to define at least two different
mean values: mi and m2. To calculate these mean values
one needs to define two distinct sets of group elements.
Disordered configurations are obtained from these two sets
of group elements in such a way that after the renormaliza-
tion-group transformation the transformed system will still
be in the disordered phase. Our choice of configuration is
given by Figs. 2(a) and 2(b). The mean values mt and mi
are calculated by solving

Xa &'„P(o &', o &'„)exp XS(o )„,m f, nil )
l i|r

XP(o,', o,'„)exp XS(o ('„,m(', m2)

and

XafP(o't', tr~„)exp XS(tr~„,m) )
i iv

XP(rri2, tr('„)exp XS(a('„,mt')
ir

(5b)

simultaneously. o.i'„and o.i2 are defined as two distinct sets
of group elements. The plaquette actions and our choice of
the two sets of group elements are given by Table II for Z2
and Z3 gauge theories. If the original action represents the
ordered (disordered) state, after successive transformations
the action of the transformed system will sti11 be represent-
ing the ordered (disordered) system since the new system
will be a replica of the original system. Hence, using Eqs.
(3a) and (3b) one can calculate iteratively how the system
goes to either the low- or high-temperature fixed points. If
a finite-temperature fixed point exists, the same iterative
procedure locates its position. In Fig. 3, the renormalized
coupling constant E of 3-, 4-, and 5-dimensional Z2, Z3,
Z~, and Z6 gauge theories are plotted versus the coupling

TABLE I. A choice of link variables oi„and corresponding ac-
tions are given for the ordered configurations of Z2 and Z3 gauge
theories. The link variables cr,„-exp[i(2n/N)n„] are defined by
the integer numbers n„, ~here n„-0, 1, . . . , N —1 for any Zz
gauge theory.

2
1. 3

FIG. 2. Disordered configuration for two-dimensional lattice
gauge system: (a) The first set of link variables o.i„, of which the
mean value is mi, is disordered by the existence of the mean value
m2, (b) the second set of link variables o» with surrounding links
with mean values mi defines a different disordered system. Juxta-
position of last row of the plaquettes of {a) and the first row of (b)
gives the actual pattern of the disordered configuration.
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TABLE II. Two distinct sets of link variables o I~„and 0 I2„ for the disordered system with corresponding ac-
tions S(crtt„,mf, m2) and S(ni„,mf ) are given for the gauge groups Z2 and Z3. Here, again, the link vari-

ables are represented by the integer numbers n,„as in Table I.

Z2 gauge theory

n'
1

0
0
0
1

n)
0

nj

1

S/[Ed(d —1)/2]
3Ptli

nf
1

1

0

n$
1

0

1

S/ [Ed (d 1)/2—]
—3Nl i

Z3 gauge theory
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constant E of the original system. For E' E the system
reproduces itself and this point is the critical point. In Table
III the critical points are listed for the above-mentioned
gauge theories. A quick inspection ~i11 show that these
values obtained by using real-space renormalization-group
techniques are slightly better than the most simple mean-
fieid approximation. Nevertheless, 2-dimensional Z~ gauge
theories exhibit phase transitions.

It is dwell known in the literature6 that the mean-field ap-
proximation in lattice gauge theories possesses a discon-
tinuity in free energy and consequently a first-order phase
transition is exhibited for any Z~ gauge theory. In the
real-space renormalization-group approach the critical in-
dices can be calculated from the ratio7

log3
SE'

1.0
D 1m Z GAUGE THEORY

2
2. 0 ~ d-Dam. Z GAUGE TllEORY

3

From Fig. 3 one can calculate the critical indices. These
values indicate continuous transitions. It may be seen from
the slopes of the graphs in Fig. 3 that for ZN gauge theories
an increasing N results in a smaller value of v.

IH. DISCUSSIONS

2. U d-D 1m. Z GAUGE THEORY

K'

2 d- D xm. Z GAUGE TllEORY

K

Mean-field renormalization-group techniques have suc-
cessfully been applied to Z~ gauge theories; ho~ever, our
results possess the major defects of the standard mean-field
approximation: namely, Z~ gauge theories exhibit a phase
transition in two dimensions. Moreover, our calculations
have not shown any improvement in the values of the criti-
cal points compared with the standard mean-field approach.

TABLE III. The critical points of 2-, 3-, 4-, and 5-dimensional

Z2, Z3, Zq, and Z6 gauge theories. Some of the known critical
points (Ref. 9) are given below the mean-field results.

Gauge
group

Dimensionality of the system
3 4

F1G. 3. Renormaiized couplings E' vs original couplings E for
(a) Z2, (b) Z3, (c) Z4, and (d) Zs gauge theories for @dimensional
space-t&me.

Z3

2.05

3.05

4.10

4.37

0.68
(0.7613)
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1.33

(1.5226)
1.46

( —2.8)

0.34
(0.4407)
0.51

(0.6V0)
0.66

(0.8814)
0.72

0.21

0.30

0.40
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This is in contrast with spin systems ~here the mean-field
renormalization-group calculations are considerably better
than the mean-field results. The problem, we believe, lies
in the fact that in the case of gauge theories a large number
of ground and disordered states exist, but not all of the
ground states or disordered states are reproduced by the
renormalization-group transformation.

One advantage of the mean-field renormalization-group
approach is probably the ability of calculating the critical in-
dices, in which case it is not successful due to our choice of
block spins. Although in this approach the saddle-point ap-
proximation and related improvements are possible, unless
larger blocks are taken neither the critical indices nor the
values of the critical points may be expected to have any

significant improvement. %e believe that if one takes larger
regions of the lattice as the basic blocks and takes all other
links as the mean value the major drawbacks of the mean-
f|eld theory will be suppressed, and the power of the renor-
malization-group techniques may be more transparent. The
mean-plaquette approach may be of help in this direction of
the studies.
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