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The stability problem of the localized solutions for classical Dirac fields with scalar self-
interactions is considered in the framework of the Shatah-Strauss formalism. %e study the stabil-

ity and instability under dilations and provide an application to the Soler model.

I. INTRODUCTION

The most basic question about solitary waves is their
stability. They are said to be stable if they are not des-
troyed under the influence of a general perturbation. If we
regard them as models of extended particles we would like
to know whether or not the particles decay to some other
states.

Mathematically, the question of stability is related to
the eigenvalues of the linearized operator. This relation-
ship is, however, not direct for the typical wave equations
of physics because, in the absence of dissipative mecha-
nisms, most of the spectrum of the dynamical problem lies
on the imaginary axis. For the case of the ground state of
a nonlinear scalar field, the stability problem has been
completely solved by Shatah and Strauss. ' 3

In the case of spinor fields satisfying a nonlinear Dirac
(NLD) equation, there have been two lines of work. The
first one, developed mainly by Alvarez 6 and Bogolub-
sky, ' is devoted to a numerical study of stability. The
second one, considered mainly by Mathieu and Morriss 9

and Werle, ' "uses energy minimization as a stability cri-
terion. However, this criterion is not necessarily correct,
as is shown by some simple examples with a finite number
of degrees of freedom.

II. THE SHATAH-STRAUSS FORMALISM

We consider some localized solutions, or bound states,
of lowest energy of the NLD equation in three space di-
mensions. The equation is

i ye&, @+iy'Bk t/r+F'(ryt/r) ttr-0,
with

0
0

y-e ' 't/r„(x), (2)

where to is a real parameter and y tends to zero in a suit-
able sense at (x ~. The three important functionals
of the field are the energy, the action (Lagrangian), and
the charge, which are defined, respectively, as

~ fQ f

F. (y) —— (t/ty" Bk y 8k t/tyt/r) d—x —„F(t/rt/r) dx,
(3)

L(t/t, t/t, )-—' (t/rtt/t, —t/tty)dx —E(y),

Q(t/f) -„ytt/tdx .

Next we define the scaling functional:

i
R(W W, ) -

2
„(W'W, —

W,'W)dx

~ fO

+ ( I//7 8k lit Bk Ip'7 1/f) dx

+„ t/rt/tF'(t7/t/t)dx .

(4)

This functional vanishes if qr satisfies the Dirac equation.
Indeed, we multiply (1) by t/t and its adjoint by 1/r and in-
tegrate to get R 0. Finally, we have the dilation func
tional

&(V"Yt) I (Y t/rt)
6 „(my

tiki'/r

Bkyy y)dx

(tl/r lp't IJft lp)dx

+—„(py"Bk t/r Bk t/ry't/r)dx+ „—F (t/rt/r)dx .

where a are the Pauli matrices, t/t t/tty, and F is a real
C' function. The bound states are solutions of (1) of the
form
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Multiplying (1) by r P, x 8,. fr.gives

8 i '
t i

K(y, y, ) - —,rytiirdx+ —„(iirty, +inert@)dx

From the definition of L and Q we may also write

d(ai)-E(y ) —cog(y„) .

Its derivative is

(12)

for solutions of the NLD equation. It vanishes if y is a
bound state (2) of the NLD equation, as follows directly
from this identity or from the virial theorem. ' Note that
by definition we have

L (y, y, ) —R(y, y, ) -„[F(rpiir) ryi—irF'(ryiir)]dx . (8)

It is often the case that the last integral is negative. For
instance, if

F (iiry) —m py+A(iiriir) (m, 1& 0)

d'( co) -—g(y„) . (13)

III. BEHAVIOR UNDER DILATIONS

d'(m)-(s"(w &
—a&g'(v„),

d )
—Q(w &

But (10) can be written as E'(y„) —cog'((i)'„) =0. Hence

then

L —R —
A, (Pier) dx «0 .

a!

A bound state (2) satisfies the stationary equation

~y'W. + i y'~k W. +F'(P.W.)V .-0
As mentioned above, we have

R (y„, i roy„—) -K (y„,—i roar ) -0 .

We define

d(ro) —L(y, i roy—) .

Using (8) and R 0 we find that

d(ro) [iir y F'(ry y ) —F(7)i )ir )ldx .

(10)

We now present two theorems related to the stability or
instability of the bound states under dilational perturba-
tions. These perturbations represent modifications of the
shapes of the localized solutions which preserve the charge
and the spin.

Theorem i. Assume sF'(s) «F(s) for all s. Fix roo and
a bound state y (x). If d"(a)o) & 0 then E, subject to the

constraint Q Q(y„), does not have a local minimum at

Proof. By (11) and the assumption on F, d (ro) «0. Let
(() (x) y [x/1(ro)], where

[X(co)]' yt y dx „y~y dx . (14)

Then Q(p„) Qo—:Q(y„). Replacing y by y in (4) and

changing variables, we have

&&(s ~ fO—L(y„, iroy -) il,
3 —

ro„pter„dx

— F(ry y )dx -il,2—,(iir„y"8kiir Bkiir y—"iver„)dx

~ I)I&- —(A,
' ——', X')—'„(i' y'8„iir„Bkiir y"—tir )dx,

since K(y, i roiir ) 0—. By (7) this can be written as

—L ((t), i a)y„) -(3—l —21 )d (a)) «d (ro), (15)

for m near coo. Here we have used the facts that k(coo) 1,
that 3A,

2 —213«1 for ro near roo, and that d(ro) «0. By
(4) and the concavity of d(m), this inequality can be
rewritten as

E(y ) —cog (y„) —L (y, i ai(t&„)—
& d (a)o) + (m —(oo)d'(roo), (16)

for ro near coo(roaroo). By (12) and (13) the last expres-
S100 1S

E(y„)—a)og(y ) —(ro —a)o)g(((v )

-E(y ) —cog(y ) .

Therefore,

E(y„)&Eo—=E(y ),
even though Q (P„) Qo.

Theorem 1 indicates (but does not mathematically im-
ply) the instability under dilations of the bound states, as-

(18)E(y ) -a)g(y„) -p(ro)d(ro),

where p(co) 3A, (ro) —21 ((o). We differentiate and set
ro (oo, iL(roo) -1, to obtain

p(ro, ) -1,
p'(a)o) -6(1—12)Z-O,

p"(a)o) =6(1—1')Z'+6(1 —2l)(A, ')2= —6[X(coo)]2 .

However, from (13) we have

d'( ) )ao

d'(a))
1 ((o)- go

p~dx

so that g(roo) —d"{ a))o/ 3d( (o)o. So, upon expanding
(18) in powers of ro —

(oo, we obtain

f

suming d(ro) is concave. The next theorem indicates the
stability under dilations assuming the convexity of d(co)
and of a related function.

Theorem 2. Assume sF'(s)«F(s) for all s. If d"(a)o)
& 0 and (d 'i )"(roo) & 0, then the energy along the di-
lated curve E (p„) has a local minimum at ro roo.

Proof. As in the preceding proof, we have
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E (p„)—cog (P„)- l 1+—,
' p"(coo) (co —co,)'] ld (co,) +d'(coo) (co —coo) +—,' d "(coa)(tu —coo)']+ O ((co —co,)')

=d (coo) +d'(coo) (co c—oo) + 'a—(co c—oo)2+0 ((co —coo) '),

E(y.) &E, . (20)

This theorem allows us to find the stability regions
under dilations for the localized solutions (2). The unusu-
al assumption that d '/ is convex may be interpreted as a
growth restriction on the nonlinear contribution to the
energy.

IV. APPLICATION TO THE SOLER MODEL

The field equation of the Soler model is

iy c), y+iy"8„y my+—2e(Py)y 0 . (21)

In this case F(s) —ms+es . There are localized solu-
tions separable in spherical coordinates of the form

y(x, t) -e
g(r )

0
if (r ) cose

if(r ) since'e

(22)

where

a -d"(co,)+d(co, )p"(coo)

2 d(d") 4 d"ds/
(d (/z)„(19)

(d')' 3 (d)'
Since d )0, d'aO, d" &0, and (d '/ )")0, we have
a )0. Therefore,

E (y„)—cog (y„) & d (coo)+d'(coo) (co —coo)

for m close enough to mo. That is,

E(y„) & E(y ) —co,g(y„)
—(co —coo)g(y )+cog(y ),

so that

whereO(co(1 and wehavechosenm e 1. Localized
solutions of (21) were found numerically by Finkelstein
et al. ,

'3 but it was Soler' who first proposed them as a
model of extended fermions. The physical properties of
such models are well reviewed by Ranada. ' We compute

E(y )—=E(co) -2tc(coI, + ,'I, )—,

Q(lit )=Q(co) 2trI, , d(co) -trI, ,

~here

I~ (g +f2)r dr,

(f2 g2)2r2dr
~0

Some necessary conditions for the existence of solutions
are given by Vizquez's and by Mathieu and Morris. '7

Cazenave and Vazquez's have proved the existence of lo-
calized solutions of (23). Soler' computed that E (co) and

Q(co) both have minima at co, 0.936. Since d'(tu)
—g(co) we have

co ( co ~ Q (co) (0~ d (co) )0,
co& co,—g'(co) &0—d"(co) &0 .

The condition (d '/2)" & 0 is equivalent to 3gz) —2dQ'.
For co & co„g'& 0, so it is obvious. For co & co„ it has
been partially checked numerically. So d '/2 appears to
be always convex. We note that this convexity implies
d (eg2/3

We infer from Theorem 1 that the localized solutions
are dilation unstable for 0.936 & co & 1. We conjecture
that they are dilation stable for 0 & co (0.936. This con-
jecture agrees perfectly with the numerical computations
of Alvarez and Soler.
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