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The anomaly in the supercurrent amplitude S„„is analyzed to one-loop order for S=1 super-

symmetry in the Wess-Zumino gauge within the framework of preregularization, in which loop-

momentum-routing ambiguities percolate into shift-of-integration-variable surface terms peculiar to
exactly four space-time dimensions. We find the supercurrent anomaly to be a consequence of the

inability of such ambiguities (within a demonstrably finite set of quantum corrections) to absorb

violations of gauge invariance (q"S„„&0)and supersymmetry (&"S„„—:8 S&0) simultaneously, a
feature quite similar to the inability of VVA-triangle ambiguities to absorb violations of gauge in-

variance and the axial-vector-current Ward identity simultaneously. We also find that if gauge in-

variance is preserved, the contribution to the supercurrent anomaly obtained from O{g ) quantum

corrections to the supercurrent involves no infrared or ultraviolet infinities and resides in 8 S rather
than y S. This last result is a consequence of maintaining exactly four space-time dimensions, as is

necessary for momentum-routing ambiguities to appear at all in the quantum corrections. The con-

nection between our results and similar results obtained from an Adler-Rosenberg symmetry argu-

ment is examined in detail.

Loop-momentum-routing ambiguities, which percolate
into shift-of-integration-variable surface terms in 4 (but
not 4—e) dimensions, ' may be used to uphold Ward
identities (i.e., "preregularize") in non-dimensionally-
continued perturbative calculations. Anomalies manifest
themselves in perturbation theory when such ambiguities
prove insufficiently general to enforce the full set of La-
grangian symmetries. A textbook example is provided by
the chiral anomaly, associated with the current diver-
gences at vertices of the VVA-triangle graph and cross-
graph.

Contractions of vertex momenta into these graphs yield
finite shift-of-integration-variable surface terms from
which the anomalous component of the axial-vector
current may be obtained. In his pedagogical review arti-
cle of 1970, Adler avoids explicit parametrization of ul-
traviolet infmities while showing how an anomalous con-
tribution to the axial-vector-current Ward identity would
vanish (using standard four-dimensional Dirac algebra} if
naive shifts of the integration variable were permitted in
four-dimensional Feynman integrals. However, the re-
tention of shift-of-integration-variable surface terms in
Adler's analysis does not automatically lead to the usual
chiral anomaly. Rather, one finds that ambiguities in
how one chooses to label the internal loop momenta per-
colate into vector and axial-vector current divergences.
These ambiguities have been examined in an earlier pa-
per, in which the following results were obtained.

(1) Vector and axial-vector current divergences (i.e.,
t). V, t).A) do not require explicit parametrization of ultra-
violet or infrared infinities. Rather, one-loop quantum
corrections to 8 V and 3 A are manifestly finite, though

ambiguous as a result of surface terms sensitive to the
routing of internal moinenta.

(2} VVA loop-momentum ambiguities in exactly four
space-time dimensions are resolved fully through the im-
position of gauge invariance (i.e., t) V=0). The resulting
expression for 8 A then yields the usual axial-vector-
current anomaly.

(3) VVA loop-momentum-routing ambiguities in exact-
ly four dimensions correspond fully to the ambiguities in
dimensional regularization that 't Hooft and Veltman ob-
served to be associated with the arbitrary choice within
VVA y-matrix traces for the initial location of the non-
fully-anticommuting y5 matrix (appropriate for a Dirac-
matrix algebra continued to more than four dimensions).

(4) VVA loop-momentum-routing ambiguities in exact-
ly four dimensions correspond fully to ambiguities in di-
mensional reduction associated with arbitrariness in
choosing which triangle-graph vertex should initiate VVA
y-matrix traces, as trace cyclicity is no longer automatic
when less-than-four-dimensional loop momenta are pro-
jected onto four-dimensional Dirac matrices. '

In supersymmetry, the supermultiplet structure of
anomalies" would suggest a similar set of properties to
those enumerated above for quantum corrections to the
supercurrent. In particular, the old problem of
regularization-procedure dependence of anomalous quan-
tum corrections to either' ' ' y.S or' ' 8 S might be
expected to correspond on a more fundamental level to a
loop-momentum-routing ambiguity within manifestly fi-
nite corrections to the fermionic supercurrent.

To explore further the correspondence between chiral-
anomaly and supercurrent-anomaly momentum-routing
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FIG. 1. Feynman rules. (c)

ambiguities, we examine below how such ambiguities
manifest themselves in quantum corrections to the
fermionic supercurrent S", evaluated to one-loop order
for N =1 supersymmetry in the Wess-Zumino gauge.
Appropriate Feynman rules' are 1&sted in Fig. 1. %'e be-

gin b~ considering the supercurrent amplitude

es(q)S&„(p,q)u, (p) with p and q on mass shell. Thus all
factors of p within S„'„adjacent to u (p) vanish, as well
as factors of p, q, or q„within S„'„(p,q). The lowest-
order contribution to the amplitude is mediated directly
by the two-point supercurrent vertex appearing in Fig. 1:

(S' )" = 2iop„y —q~5'

This contribution trivially satisfies gauge invariance
(q "S»——0), the spin- —, constraint y S„„=O,and on-shell
supercurrent conservation [(p —qy'S» ——0]. The super-
current anomaly manifests itself in violations of one of
these relations when one-loop contributions to S„' denot-
ed henceforth by X&„{p,q}, are considered (Fig. 2).

The diagrams of Fig. 2 are subject to loop-momentum-
routing ambiguities because they are more than logarith-
mically divergent. The contribution of each diagram to

l

FIG. 2. One-loop diagrams.

X& evaluated in exactly four dimensions, will depend on
how one chooses to identify internal-loop momenta in
each diagram. %'e have chosen to parametrize this ambi-
guity by introducing arbitrary additive contributions
s„,sz, sc,sD to the internal loop momenta of Figs.
2(a)—2(d), respectively, consistent with momentum con-
servation at each vertex. Each such s is an arbitrary
linear combination of the external fermion and gauge-
boson momenta p and q:

sx =mxp +nzq (X=
( A, B,CD I ) . (2)

Respective contributions of Figs. 2(a), 2(b), 2(c}, and 2(d)
to X„'„(p,q) are then given correspondingly by the expres-
sions

(5)

&&[—(k+q+ }.sgDp +(2q —k sn}pg..+(2k —q+»D}.g.p],—

X"=N f d k[(p+k+s„) 2(k+s„) 2]cr „y„(p+k+g„)yI',

X = —(N/2) f d k[(k+ss) (k+sz+q) ]o ~y&[g~( 2q —k —sz) +g —(q —k —sz)&+g &(2k+q+2sz)„], (4)

X =N f d k[(p+k —q+~c) (p+k+~c) (k+sc) '][o ~y (p+II q+pc)y (p+—&+sc)y (k+s )&],

X =N f d [k( k+s )D(p+k —q+sn) (k —q+sz) ][a'~y&(p+k qg +) D(yks+)—,D]
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where N= ——ig C2(G)5' /(2n) [C2(G)5~=—c' sc fs], and where X" are understood to carry indices ]u, v, a, and b.
(The sum of X" D is, of course, Xz ) Thus we see that eight arbitrary parameters (mz D,n„D) correspond to
momentum-routing ambiguities which we wish to resolve through the imposition of appropriate conditions (i.e., gauge
invariance) on the aggregate amplitude X„'

To demonstrate how explicit parametrization of infiiuties can be avoided in the aggregate amplitude, we will present
our Feynman-integral manipulations in some detail. Propagator denominators in X" are combined in the standard
way:

(p+k +s„) (k+s~ ) = f dx I(k+s~+px) —[p2x(l —x)]I (7)
1

(k+ss) (k+ss+q) = f dx I(k+ss+qx) [q—x(1—x}]I (8)
1

(p+k —q+sc) '(p+k+sc) (k+sc) =2 f dx f ydyI(k+sc+py —qyx) —2p qxy(1 —y)+[y(p +q x)]I
(9)

1 1

(k+sa) '(p+k —q+sa) (k —q+sD) =2 f dx f ydyI(k+sD+pyx —qy) —2p qxy(1 —y)+[y(p x+q )])
(10)

Quantities in square brackets on the right-hand side (RHS) in the above four equations vanish on the mass shell and can
be disregarded. Surface terms proportional to sz n (=m„np +n„Dq}arise when the origin of the integrals over k is
shifted. For example, we can use the formulas of Ref. 3 to find that

1 1

J d k f dx f ydykxkxk'[(k+xx+Pyx —Py)' —2P Pxy(1 —y)]

(k sD pyx—+qy—Y'(k sD-pyx—+qy)~(k —sn —pyx+qy)'d'k dx y dy0 0 [k —2p qxy(1 —y}]

+ I [(»mn+1)pi'+(»nD 2)qi']g—" +(p rl)+(p::r)]I .
72

After utihzing the above procedures, we find after considerable Dirac algebra that one-loop quantum corrections to
q "S&„aregiven by

q~ab qv(XA+XB+Xc+XD)

=N(2p~q —p qy„) iver [ (2m„+ I—)+ ,'(»mc—+2)+—,'(3mD+ I)]

4
&

d
2 z

& 10—4y —10xy

k 0 [k —2p qxy(1 —y)]

+pq
8xy [2(1—y) +(I—3y)(1 —xy)]

0 [ki—2p qxy(1 —y)]'

+Nq„q i+[ 4n„—9 (3n—c—I)+ 9 (3nD —2)]

f d4k f d 8k2 f dyy(1 —2y+xy) f ' dyxy (I —y)
[ki—2p qxy(l —y)]~ 0 [k —2p qxy(1 —y)]

(12)

Partial integration over the Feynman parameter y leads to the relations

yy I f ' dyxy
0 [k 2p.qxy ( I y)] 2k 0 [k 2p.qxy ( I y)]

(13)

dyy I 2 f ' dyxy (I+y)
[k 2p qxy(1 —y)] —3k» [k2—2p qxy(l —y)]ig + p'q

Upon substitution of (13) and (14) we find that the integrands in large parentheses in (12), respectively, become

(14)

20y 44xy 8y S2xy

IO 1
' 3 3 3 3

x +@g
k —2p-qxy 1 —y

(IS)
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4 8x i dyxy'[ ——", + —",y ——",x ——",xy —32y(1 —y)]
3 3

+p.q
[k —2p qxy(1 —y)]

(16}

We see that the 1/k terms in both integrands disappear upon integration over x. {In the absence of explicit regulariza-
tion, the order of integration for such potentially divergent terms must be rigidly respected, thereby necessitating in-
tegration over x prior to integration over k.} The remaining portions of each integrand are finite upon integration over
k, x, and y, thereby permitting a reversal of their order of integration. Using the finite Feynman integral

d'k i—m
(17)

[k —2p.qxy (1—y)] 4xy (1—y)

we find that the multiple integration of (15) yields a finite result of

1 lxy 2y 13xy
3 3+ 3

ydy
iver—f [(1—y)(2 —3y/2)+4(1 —y)i]= 7in —/6 .

o (1—y)
(18)

The y-parameter integral of (18) shows how potential manifestations of infrared divergences (poles at y = 1) factor out to
yield a finite result. In a similar manner, poles at y =1 factor out for the corresponding multiple integral over (16),
which is found to equal 2im —We t.hus find that violations of gauge invariance arising from quantum corrections to
the supercurrent are subjo:t to momentum-routing ambiguities:

q"X„'„=in N(2p„q pqy„) t
———,+ [ (2m&+—1)+—', (3m&+2)+ , (3rnD—+1)]I

+iHNq„q I
—2+[ 4ng ——', (3nc —1)+ ,'—(3nn ——2)]I . (19)

Moreover, gauge invariance may be ensured by requiring that the six arbitrary parameters rnid c D n„cD of such ambi-
guities satisfy the constraints

[ (2rng + 1)+—', (3rnc+2)—+ ,
'

(3mD—+1)]= —', ,

[—4na —Y~(3nc —1)+ ,' (3nD ——2)]=2 .

(20}

(21)

Precisely the same procedures may be employed to evaluate quantum corrections to 8 S through contraction of
(p —q)i' into the sum of Eqs. (3)—(6). By combining propagators as in (7)—(10) and extracting surface terms as in (11),
we find that

(p q)r X&„—Np„q—i+[——(2m&+ I)—2n„+ ,' (3mc+2) ———', (3nc —1)+—,
' {3mD+ 1)+—,

'
(3nD —2)]

2 2
' yy 6+4y —14xy

k 0 [k —2p.qxy(1 —y)]i

+spq .'' dyxy [—3+y+3xy —xy +(1—y)( —6+6y+2xy)]
[k —2p qxy(1 —y)]

+Np qy„ in. [ (22m& +1) 2nz ——,(3m—c+2)——', (3nc —1)—, (3m&+—1)+, (3nD —2)]—

+ f d'k f dx, +8k'f dy
k 0 [k 2p.qxy(1 —y)]—
+ 16p-q

' dyxy [1+y—xy —xy +(1—y){2—yx)]
[k —2p qxy(1 —y)]

Application of the partial integration formulas (13) and (14) within the two expressions in large parentheses in (22) yields
coefficients of k that vanish when integrated over x. [These coefficients are (7—14x)/3 and (—8+16x)/3, respec-
tively. ] The remaining integrals are evaluated precisely as in (18); poles at y = 1 are seen to be removable singularities;
and we eventually obtain a purely finite result
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(p —q)t'X„'„=itt2Np„q[ —", +[ —(2m„+1)+ ', (—3mc+2)+—,'(3mo+1)]+ —,
' [ —4nz —,—(3nc —1)+ ,'—(3nD—2)]J

+in Np q.y„I ——", —2[ —(2m„+1)+ ', (—3mc+2)+—,
' (3mD+1)]+ —,

'
[ 4n—z —, (—3nc —1)+ ,'—(3no—2)) J .

(23)

Remarkably enough, the same two linear combinations of
m's and n's appear in (23) as appeared in (19). When the
constraints (20) and (21) for gauge invariance of the quan-
tum corrections are substituted into (23), we find that

(p qF—'X„'.= [3g'Ci(G)5'/8'')(p„q p—qy. ), (24)

a result identical to that obtained in Ref. 16 from Adler-
Rosenberg —type symmetry arguments. '9 The full
correspondence between our procedure and Adler-
Rosenberg —symmetry constraints on quantum corrections
is explored in the Appendix to this paper.

We thus see that the imposition of gauge invariance re-
moves all loop-momentum-routing ambiguities from
quantum corrections to 8 S, which are seen to be
anomalous. However, we also see that these ambiguities
do not provide a mechanism for the anomaly to reside in
quantum corrections to y S. Indeed, our result differs
from that expected from the supermultiplet structure of
anomalies in that y"X„„is necessarily zero from four-
dimensional Dirac algebra; y"X" =0 in (3)—(6), be-
cause y&tr ~y& ——0. 0 We can, of course, construct a su-
percurrent whose anomaly resides in y S rather than 8 S
by adding to quantum corrections the gauge-invariant
O(g ) structural contribution delineated in Eq. (4.2) of
Ref. 16. In this regard, the nonzero result for quantum
corrections to 8 S following from {24) ultimately leads to
the "correct" supercurrent anomaly, as is discussed in

I

d'k
(25)

We will now need to keep track of factors of p appearing
in the square brackets on the RHS of (7)—(10}, factors
which are zero on mass shell, so as to parametrize any in-
frared divergences with X" as logarithms of p . Using
the mass-shell conditions described earlier, and defining
L =—ln(A /2p q) ——', ,I=ln( p /2p q—), we find from
(3)—(6) that

Ref. 16, if the additional 0{g ) term is normalized so as
to cancel the nonzero quantum corrections to B.S (Ref.
21}.

We emphasize that the nonzero contribution to 8 S
which we obtain from the graphs of Fig. 2 is a direct

consequence of our rigorous adherence to four-
dimensional space-time and is not an artifact of our re-
fusal to use a regulator in four dimensions. Indeed, we
could have chosen initially to regulate X" n separately
(the graphs are indiuidttally UV and IR divergent) using
cutoffs, while still maintaining four space-time dimen-
sions so as to allow momentum-routing ambiguities to ap-
pear in the amplitudes. To illustrate this point further, we
outline below how the calculation proceeds with ultravio-
let infinities in X" regulated as naively as possible us-
ing cutoffs:

q "X"

=inst

N[{2p&q pqyz)( —2L—+2I 6 2m—z )—+q&q( —4nz )],
q"X =0,
q"X =i' N[(2p&q pqy&)[2L/3—+—', +2(3mc+2)/9]+q&q[ 4L/3 ——", —4—(3nc —1)/9]I,
q"X =i' N[(2p„q —p.qy„)[4L/3 2I+ '9 +5(3m—D+1)/9]+q„q[4L/3+ s +8(3nD —2)/9] j,
(p q)t'X"=in N—[p„q( 2L+2I —6—2—m„2nz )+—(p q)y„(4L 4I+ 12+4m& —2nz )], —

(27)

(29)

(30)

(p —q)t'X =0, (31)

(p —qY'X =in N [ Ap[ 22+(3 cm+)2/9 2(3nc —1)/9]+—(p q)y [ 2L ——"
, 4(3m—c+2)/—9 2(3nc ——1)/9] I,

(32)

(p q)t'X =in. N Ip„q—[2L 2I+7+5(3mo+—1)/9+4(3nD —2)/9]

+p qy„[ 2L+4I —", —10(3mD+—1)—/9+4(3nD —2)/9]J . (33)

In summing (26)—{29) and (30)—(33) we see that the net
coefficients of L and I in q "X&„and (p —q)i'X„'„are zero„
obviating any need for infinite renormalizations. '

The imposition of gauge invariance alone is sufficient
to remove all momentum-routing ambiguities from the
divergence of the supercurrent on shell. The net coeffi-
ciellt of (2p~q —p'q1 p) valllshes ill q X~~ pl'ovided

[—2m„+2(3mc+ 2)/9+ 5(3mD+ 1)/9] =—', , (34)

and the net coefficient of q&q vanishes in q X&„provided

[ 4n„4(3nc—1)/9+—8(3nD ——2)/9] = —, .

These particular linear combinations of m& ~,n& D are
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the only ones that enter (p —qF'X'„ if we substitute (34)
and (35) into the sum of (30)—(33), we again obtain Eq.
(24). Indeed, this result could have been obtained entire-
ly from Figs. 2(c} and 2(d) with no reference to the
"bubble graphs" of Figs. 2(a) and 2(b), provided we allow
m's and n's to contain regulated infinities. If
mz —— I.—+I —3 and nz ——0, we see from (26), (27), (30),
and (31) that X" and X make no contributions to q "X„'„
and (p —q)i'X&„(Ref. 24). Moreover, the calculational
route presented above [Eqs. (26)—(35)] is, in fact, a
straightforward demonstration of preregularization, ' the
supplementing of an arbitrarily chosen regularization pro-
cedure with loop-momentum ambiguities, which, for this
problem, are removed through the imposition of gauge in-
variance.

To conclude, we find that quantum corrections to the
supercurrent evaluated in exactly four-dimensional space-
time exhibit loop-momentum ambiguities which are
resolved, as in the VVA triangle, through the imposition
of gauge invariance. We also find that contractions of
external on-shell photon and fermion momenta into these
quantum corrections (corresponding to vector-current and
supercurrent divergences) lead to finite expressions that
may be evaluated without any use of regulators. Similar
momentum contractions into the VVA triangle (corre-
sponding to vector-current and axial-vector-current diver-
gences) have also been shown to be finite and evaluable
without explicit regularization. However, we find that

I

supersymmetric expectations for the quantum corrections
of the supercurrent in four space-time dimensions, specifi-
cally the anomalous violation of the Rarita-Schwinger
constraint y S =0, cannot be accommodated through the
use of loop-momentum ambiguities. This last feature is
disturbing (despite the ameliorating redefinition of the su-
percurrent discussed in Ref. 16) because it suggests some
clashing between supersymmetry and nondimensionally
continued quantum field theory at even the one-loop level.
Of course, discrepancies between supersymmetry and
more standard dimensionally continued approaches to
perturbative quantum field theory are also known to ex-
ist.

We are grateful to H. Schnitzer and P. Majumdar for
correspondence. This research was supported by the
Natural Sciences Engineering and Research Council of
Canada.

APPENDIX: ALDER-ROSENBERG SYMMETRY
ARGUMENTS AND THE RESOLUTION
OF LOOP-MOMENTUM AMBIGUITIES

In this Appendix we show how the imposition of gauge
invariance on loop-momentum ambiguities in the super-
current achieves the same results as the Adler-Rosenberg
symmetry procedures presented in Ref. 16. The tensor
structure of X" D is given by

Xa= ——' dkk X''
2 Pg, &

1 1-x d4kXc=4 dx dy
o o [k2 2p qy(1 —x——y}]

(Al)

(A2)

)( Iy(x +y)(1—x —y)X&'„'—y (1—x —y)X&„'+y(1—x —y)X&„'+2y(1—x —y)X&„'

+ [y (x +y)(1 —x —y)p q+( —1+2x+2y)k'/4]X„'„'

+ [—y (1—x y)p q —yk —/2]X' '+ [(1—x —y}k'/2]X„"„'+(yk~/2)X„"„'—(yk'/4)X„'„'J

—(iH/6) [2m, (X„"„'—X„"„')+X,(2X„"„'—2X„"„'+X„"„')],

1 1 —x d'k
X =4 dx dy0 0 [k~—2p qy(1 —x —y)]

&& ty'( I —x —y)X„"„'—y(x +y)(1 —x —y)X„'„'+y(1—x —y)X„'„'—2y( —1+x +y)X„

—(yk /4)X&„'+[(1+x +y)k /4]X&„'

+[—y(1 —y)(1+x+y)p q+(3 —5y)k /4]X' '

+ [(x +y)(1 —y)(1+x +y)p. q —(1—5x —5y)k /4]X„'„'+[(2—x —y)k /4]X„'„'J

(A3)

+(in /6}[Mn(X„'„'+5X„'„')+MD(X„'„'+5X„„—X„)], (A4)
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where X are given by

&,'.'= (—N/2)~~Y, [p.(piil. p—.7 p)q 1

&p"=—(N/2)&~r) [p (qps —q 7'p)q]

&)-'= (N—/2)a 7') [7'.(qI)p q—up)q]
X„'„'=(N—/2)o~y„[p„(q pp q~—is}],

&)"=(—N/2)a 7'( [7'.(ppr p—rp)]

&)"=(N—/2)~ 7') [7'.(qpl' q—rp)l

&)"=«N—/2)~ 7')(gp pa ga—py»

&)'= (N—/2)a' }')(gp qa g—.qp»

(N—/2)~~r, [(gp.7'. g.—,}'p)q].

(A5}

(A6)

(AS)

(A10)

(Al 1)

(A13)

We sum (Al) —(A4) to obtain X„'„:
9

gab g Y(i)g(&) (A17)

The set of invariants X„"„'—X„'„' are equivalent to those of
Ref. 16, and on mass shell this set is overcomplete:

(1) (4)
Xq, +2X„„=O,

(5)X~„——0,
{6) (9)X~„+Xp„——0 .

(A19)

(A20)
I

The last square-bracketed expressions in (Al) —(A4) con-
tain shift-of-integration-variable surface terms sensitive to
the definition of the loop momentum whose arbitrariness
we have repararnetrized as

1

x sz +xp =Mzp+Nzq, (A14)
1 1 —x

2 f dx f dy[sc+xp+y(p q)]=M—cp+N—cq *

(A15)
1 1 —x

2 f dx f dy[sD —xq+y(p —q)]—=MDp+NDq .

(A16}

These relations plus the requirement of gauge invariance
(q"X&„——0) impose the following constraints on the F
coefficients in (A17}:

p.qy(2) y(6)+ y(9) 0

2p.q
Z(1) p.q

Z(4) Z(7) 0

(A21)

(A22)

(in /6)( —6Mx+2Mc+5MD)

=q p(2Fo —Yo ) —Fo' . (A24)

We see, therefore, that routings of loop momenta in
Fig. 2 can always be found (or alternatively, appropriate
choices for sz D can always be made) such that (A23)
and (A24) are satisfied, regardless of how one chooses to
parametrize the infinities occurring in the coefficients
Y"'. If one chose to ignore routing ambiguities, one could
perhaps still satisfy (A21) and (A22) with a sufficiently
clever regularization of these infinities. Indeed, the thrust
of an Adler-Rosenberg —type symmetry argument is to as-
sume (A21) and (A22) are true. Loop-momentum-routing
ambiguities provide a general means for substantiating
such assumptions within any consistent regularizing pro-
cedure for Feynman integral infinities.

Contracting (p —q))' into (A17), we find that

The coefficients F"' may be gleaned from the sum of
(Al)—(A4) and are generally ambiguous, because of the
arbitrary last square-bracketed terms in (A 1)—(A4) arising
from loop-momentum-routing ambiguities. To resolve
loop-momentum ambiguities, (A21) and (A22) represent
conditions on Mz n, N& D necessary for gauge invari-
ance. Specifically, if we let each coefficient F" be the
sum of a Feynmann-integral contribution Fo" not involv-

inIt M's and N's and surface terms [i.e.,
F '= Yo" + (terms linear in M„L) or N„D)], then
(A21) and (A22) determine the value of two linear com-
binations of M's and N's:

(in /6)( 3Ng —Nc+—2ND)=q pF() ' —Fo '+1'()

(p —q)"&„'„=(N/2) tp„q[ —16p.q Y'"—Sp qF'"+4p q(2Y"' —F' ')+4Y"'+8( Y' ' —F'")]
+p.qy [Sp.q Y(3) S Y(7)+S( Y(6) Y(9))]

I

p.q~ )(2Y(i) Y(2) Y(3) Y(4)) (A25)

The last line of (A25) is obtained from the preceding line
by using (A21) and (A22) to eliminate F' ', 1"' ', and Y' '.
The remaining coefficients F"' ' ' obtained from sum-
ming (Al) —(A4) are all finite and unambiguous:

1""=4f d'k f dx f dy[k' —2p.qy(1 —x —y)]

Xy (x +2y)(1 —x —y),

Y' '=4 f d k f dx f dy[k 2p qy(1 —x —y)—]

&( [2y (1—x —y)], (A28)

F'4'=4 f d4k f dx f dy[k' —2p qy(1 —x —y)]

(A26)
X[4y(1 —x —y)] . (A29)

Y'"=4f d4k f dx f dy[k' —2p.qy(1 —x —y)]

Xy (x +y —1)(x +2y),
Evaluation of these integrals and subsequent substitution
into (A25) leads once again to Eq. (24) in the main body
of our papei'.
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