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Lattice meson electric foi~ factor using Wilson fermions
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The electric form factor of the pseudoscalar meson (generic pion) is calculated in quenched lattice

quantum chromodynamics with SU(2} color using the Wilson formulation for fermions. Charge ra-

dii are calculated for different. values of the hopping parameter. It is observed that heavier quarks
have distributions of smaller radius. The results are compared with a previous calculation which

used the staggered fermion scheme.

I. INTRODUCTION

The methods of lattice quantum chromodynamics
(QCD) are now well established' and are being widely ap-
plied. However, the best way of dealing with fermion
fields on the lattice is still not clear. The problem arises
because locality, explicit chiral invariance of the action,
and suppression of species doubling cannot be imposed
simultaneously ' At present the %ilson scheme, which
avoids species doubling, and the staggered formulation, s 7

which preserves a remnant of chiral symmetry, are com-
monly used in Euclidean lattice QCD simulations. Of
course, in the continuum limit it is expected that the
differences between these schemes are irrelevant. It is im-
portant, at finite lattice spacing, to demonstrate that the
same physical results can be obtained with different lattice
fermion formulations, or, at least, that the differences can
be understood and ultimately controlled. To some extent
this has already been done for mass spectrum calcula-
tions. Recently there has been some progress in the
study of lattice hadron structure9'0 and it is natural to
ask how these results depend on the way in which fer-
mions were put on the lattice.

Hadron form factors, extracted from the vector current
three-point function, are a useful probe of hadron struc-
ture. They can be calculated in lattice QCD in a (color)
gauge-invariant way and, ultimately, are directly compar-
able to experimental result. In Ref. 10 it was shown how
to calculate the electric form factor for the pseudo-
Goldstone boson (a generic pion) on the lattice. A de-
tailed study" of the pseudoscalar-meson electric form fac-
tor, and the charge radius extracted from it, was carried
out as a function of quark mass with the physically
reasonable result that heavier quarks have distributions of
smaller radius. The calculations of Ref. 11 were done us-

ing the staggered scheme for lattice fermions. In the
present paper a similar study of the form factor is done
using Wilson fermions. The calculation is done in a way
(e.g., using the same gauge field configurations) that the
results can be compared with the previous staggered fer-
mion calculation.

In Sec. II expressions for the vector current three-point
function and the meson electric form factor are derived.
With Wilson fermions the derivation is much more

straightforward than in the staggered case. ' Since, in the
Wilson scheme, there is a Dirac field associated with
every lattice site one can start with hadron interpolating
fields that are local. In contrast, the staggered scheme re-
quires construction of Dirac fields on hypercubes in the
lattice. Considerable effort is then required to reduce the
three-point function to a form involving effectively local
operators. ' This leads in the staggered scheme to lattice
matrix elements with contributions from states of dif-
ferent parity. In the Wilson scheme this problem does
not occur. The final result of Sec. II is an expression for
the electric form factor in terms of three-point and two
point hadron correlation functions.

Section III contains details of the numerical work and
the results. The calculations were done for quenched ap-
proximation in a model with SU(2) color (at P=2.3) and
use gauge field configurations that were also used in Ref.
11. Five different values of the hopping parameter, from
«=0. 134 to «=0. 158, were used. The electric form fac-
tor was calculated for a flavor-nonsinglet 0 meson. The
charge radius was calculated from the derivative of the
form factor at zero-momentum transfer. Form factors
and charge radii are presented for a meson constructed
from an equal-mass quark-antiquark pair and also for the
case of unequal-mass quark and antiquark. The qualita-
tive features of the results, e.g., the decrease in the radius
of the quark distribution with increasing mass, are the
same as observed with staggered fermions.

A more detailed comparison of the present results with
those of Ref. 11 is given in Sm. IV. A superficial exam-
ination of charge radius versus mass in lattice units would
suggest that Wilson and staggered fermions give different
results. If the results are converted to physical units by
fixing the length scale using pion and p-meson masses, the
charge radii become quite compatible. However, the
length scales that emerge for the VA'lson and staggered
schemes come out to be quite different, indicating,
perhaps, that one is still quite far from continuum phys-
Ics.

Finally it should be noted that information about
charge distributions can also be extracted from charge-
density correlations. ' This has been done for pseudosca-
lar mesons using the VA'lson scheme. The results present-
ed in this paper are compatible with those of Ref. 13.
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II. FORMALISM

In this section the relevant formulas for calculating the two-point and three-point functions are given. The Wilson
scheme for lattice fermions is used. Two flavors of quarks (called u and d) are introduced. The Wilson fermion action
is (suppressing color and Dirac indices)

x,p, ,f=Ig,dI

aJ[/I(x)(r +y„)U„(x)p(x +aq )+f~(x +aq )(r y~—) Uq(x)pq(x)] —g g J(x)p(x),
x,f

where a& is the unit vector in the p direction and xf is the
hopping parameter. The coefficient of the Wilson term r
will be put equal to 1 in numerical calculations. The fer-
mion matrix M is diagonal in flavor and satisfies the rela-
tion'

x ~e' x,
p J(x)~g~(x)e (4b)

for each flavor. Using the Noether procedure a conserved
vector current can be derived. The result is (for each fla-
vor, f= u or d)

j q~(x) = i' [pJ(x—)(r +yq) Uq(x)P(x +aq)
—P~(x +aq)(r yq) Uq(x)g—(x)],

An advantage of the Wilson scheme over staggered fer-
mions is that local composite hadron operators with de-
fmite quantum numbers can be defined. For the flavor-
nonsinglet pseudoscalar meson the operator

00=/ "(x)yzP (x)

is used. For the vector meson (generic p-meson) we use

0'~ ——P "(x)y;P (x) .

The correlation function

Xs~ rs=~
where y5 acts on Dirac indices. For SU(2) the relation'

xsx2O2~O2z2zs =~'
with oz acting on color indices, is also satisfied.

The fermion action is invariant under global transfor-
mation 00x e'q'pz0 0

z

where the charge-density operator is

P(z) =i [tJ J4(z)+tJ "J'4(z)]

with q, q" equal to the quark charges (q"—q =1). At
large time separation 0 &&t, &&t„,

A(p, q„t„,t, )~C+(O,p)C (O,p')e ' " ' e

x & O,p I
p(0)

I
O,p'),

with p'=p —q. The form factor' ' is related to the
charge-density matrix element by

Ep+Ep(O,p i p(0)
i
O,p') = F(q) . (14)

2 EqEp

For numerical calculations it is convenient to take the ra-
tio"

A (O, q, t„,t, )A (q, q, t„,t, )

Gp(O, t„)GO(q, t„) (15a)

where
~
J,p) denotes the meson state with spin J and

momentum p, and Ez ——(p +MJ )'~ . In the numerical
calculation a nonperiodic boundary condition is used in
the time direction. Quarks are not allowed to propagate
across the time edges of the lattice. This introduces non-
vacuum contamination' into the correlation functions
and is the reason why a distinction is made between left
and right vacua (Q+) in (10).

To get the pseudoscalar-meson electric form factor we
calculate the three-point function

A(p, q, t„t,)= ge

with

G~(p, t„)=ge ""(0~(x)0~(0)), Eq+Mo
F(q) .

2+E Mo
(15b)

( )=Z ' I dUdgdge ( )

and SG equal to the gauge field action, describes the prop-
agation of meson states with momentum p. At large time
separation

GJ(p t ) (Q+
~
OJ(0)

~
J,p)(J,p ~

0 (0)
~

Q )e

The three-point function is calculated as the derivative
of a two-point function with the charge operator acting as
a source. ' This does not differ in any essential detail
from the staggered fermion calculation. The details can
be found in Ref. 12.

III. RESULTS

~C+ (J,p)C (J,p)e

(10a)

(10b)

Numerical calculations were done in a model for QCD
using only SU(2) color. The lattice was 10X20X 10X 16
sites in size with the charge operators carrying momen-
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turn in the 2-direction. Eighteen gauge field configura-
tions were used. These were prepared in quenched ap-
proximation using the heat-bath Monte Carlo method
with the Wilson gauge field action at P=2.3. The gauge
field Monte Carlo was done on a 10 X16 lattice which
was doubled in the 2-direction.

Quark pmpagators were calculated for one initial
space-time point in each gauge field configuration using
the conjugate-gradient method. ' Iterations were carried
out on the propagators until the maximum change in the
two-point function Go(O, t„) at any time point was less
than 0.025% in four iterations. The absolute value
squared of the residual vectors was less than
10 ' —10 ". The calculations used about 20 h on a
two-pipe Cyber 205 using half-precision arithmetic.

The same statistical analysis was used here as for the
previous study with staggered fermions. " For the two-
point functions the statistical error at each time step was
obtained using the whole sample of eighteen configura-
tions. The error in the meson mass was determined from
the error matrix of the least-squares fit of an exponential
to the zero-momentum two-point function. Covariances
between the different factors in the ratio A [Eq. (15a)]
were included in the statistical error of the form factor.
Again all configurations were included in a single sum.

Pseudoscalar- and vector-meson masses for equal-mass
quark and antiquark are shown in Fig. 1 as a function of
lr ', the inverse of the hopping parameter. Calculations
were done at five values of a (from 0.134 to 0.158) and the
meson masses span about the same range in lattice units
as in the calculation with staggered fermions. The solid
lines in Fig. 1 are fits used for extrapolation. They will be
discussed in the next section.

Figure 2 shows a typical result for the ratio A of Eq.
(15a) versus the time t„of the meson annihilation opera-
tor. The meson creation operator acts at a time (defined
to be r =0) two steps from the lattice time boundary. The
charge density is placed at t, =4. With the time boundary
conditions used here, a net charge is present only between

l.5—

!.0—

+ oeo-

0.85—

I l

7 8 9
I

l2 I3

FIG. 2. The combination 9 of three- and two-point func-
tions [Eq. (15a)] vs the time coordinate of the meson annihila-
tion operator. The charge-density operator acts between time
step 4 and 5.

meson creation (t =0) and annihilation (t =t„). When
t„&t„A is essentially zero.

In contrast with what was found with staggered fer-
mions the ratio R is not completely time independent.
This should have been anticipated since it was known al-
ready from mass calculations in the Wilson scheme that a
large time interval is needed before one sees pure single
exponential falloff of the two-point function. The time
dependence in A' introduces some arbitrariness in the cal-
culation of the form factor. Results presented here were
obtained from an average of A (weighted by statistical er-

rors) for times 8 through 11, i.e., staying away (in time)
from both the charge operator and the lattice boundary.

The pseudoscalar-meson electric form factor was calcu-
lated for all values of the hopping parameter at one value
of momentum transfer, q =n./10, the minimum nonzero
value for 20 lattice sites. For a=0. 150 the form factor
was also calculated at q =rr/5. The form factor
for v=0. 150 is plotted in Fig. 3 as a function of
Minkowskian four-momentum transfer squared

Q =2Mo[(q +Mo )'i —Mo].
The form factor values at q =m/10 are plotted in Fig.

4(a) as a function of Ir '. Larger values of v ' corre-
spond to larger quark masses. As expected the form fac-
tor increases as the quark mass increases. The root-
mean-square radius R, is obtained by first fitting the
form-factor values at q =m/10 with F(Q )

=(1+Q a /A, )
' and then using the relation

]

6.5 jQ 2

FIG. 1. Pseudoscalar- (0) and vector- (5) meson masses vs
the inverse of the hopping parameter. The solid lines are fits
described in Sec IV.

on the monopole fit. The charge radii are shown in Fig.
4(b). In a previous study of the meson form factor it was
observed that the parameter k scales with the vector-
meson mass squared, reminiscent of vector-dominance
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FIG. 3. The pseudoscalar-meson electric form factor vs the
Minkowskian four-momentum transfer squared Q~a 2 for
x =0.150.

ideas. ~ The same behavior is obtained here. This is
shown in Fig. 5 where A, and A, /Mi a are plotted versus
a '. Quahtatively the results obtained using Wilson fer-
mions are the same as those using the staggered scheme.
In Sec. IV a more quantitative comparison will be made.

In the above calculations a local composite operator
was used for the pion, i.e., a quark-antiquark pair was
created or annihilated at a point. It is natural to ask
whether the choice of a local interpolating field biases the
form factor results. A partial answer to the question can
be obtained, without having to do any additional fermion
matrix inversions, by using an extended composite opera-
tor to annihilate the pion. The extended operator

FIG. 5. The A, parameter from a monopole parametrization
of the electric form factor vs the quark. The quantity A,

~ is
sho~n both in lattice units (0 ) and divided by the vector-meson
mass squared (0).

0 (x,v) = —,Q "(x)y5U„(x)P(x +a„)

+ tA(
"(x +a„)y,U„(x)t)/'(x) (16)

was used and the form factor was extracted from the
three-point function

A(p, q, t„t,)= ge

00xv 8q pz000

0.95—

0.90—

E 2.0—
CL

l

7.Q

FIG. 4. (a) The pseudoscalar-meson electric form factor at
q=m/10 vs the inverse of the hopping parameter. (b) The
meson root-mean-square radius 8, vs the inverse of the hop-
ping parameter.

The calculation was done at a =0.150 with the operator
Oo extended in the 1-direction (transverse to q) and the
2-direction (parallel to q). The two-point and three-point
functions change substantially in magnitude when the ex-
tended operator is used. However, in both cases the form
factor agrees, within statistical errors, with the form fac-
tor obtained using the local operator.

Finally we consider the situation where quarks of dif-
ferent flavor are not degenerate in mass. A calculation
was done fixing one of the quarks at a =0.134 and allow-
ing the other a to increase to 0.158. Form factors were
calculated with the charge-density operator acting either
on the light or-the heavy quark. The result for one unit of
momentum transfer (q =n/10) are shown in Fig. 6. The
charge radii extracted from these form factors are plotted
in Fig. 7. The physically reasonable result that in a meson
with unequal-mass quarks the charge distribution of the
heavy quark has a smaller radius than that of the lighter
quark is observed. How&ever, in the %wilson case the radius
of the heavy-quark distribution does not shrink as
dramatically with decreasing light-quark mass as eras
found in the staggered fermion calculation (see Fig. 8 of
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Ref. 11). This probably indicates that, for the values of s
used here, the ratio of effective quark masses was not as
extreme as it was for the staggered fermion calculation.

FIG. 6. The electric form factor for the light () and heavy

(8} quark at q=m/10 of a pseudoscalar meson with an

unequal-mass quark-antiquark pair vs the inverse of the hop-

ping parameter for the light quark. The heavy-quark mass is
fixed at sr=0. 134. For comparison the meson form factor in a
meson with an equal-mass quark-antiquark pair (0) is also
shown.

teresting to compare the pion structure that emerges with
the two schemes. To enable readers to make this compar-
ison in the way they feel is most appropriate a complete
enumeration of the results, including those of Ref. 11, is
given in Table I.

In lattice units the pseudoscalar mass range covered is
about the same in the %'ilson and staggered calculations.
A superficial examination of Table I clearly shows that
the form factors and charge radii are different. However,
the different mass splitting between pseudoscalar and vec-
tor states observed in the %"ilson and staggered schemes
shows that different ranges of effective quark mass are be-

ing covered in these calculations. Therefore, a direct com-
parison of the results in lattice units is probably not mean-
lligf ill.

For a more detailed comparison masses and radii are
converted into physical units. The usual procedure for
fixing the scale is used here. Masses are extrapolated to
the light-quark region, that is, to where a realistic pion
and p-meson splitting is obtained and the scale (i.e., the
lattice spacing a ) is set by fitting the p-meson mass.

With staggered fermions the meson masses are extrapo-
lated by fitting with the formula

coshMJa =A +Bma

as was done by Billoire, Lacaze, Marinari, and Morel.
The results are shown in Fig. 8. For the pseudoscalar
meson (pion)

coshMoa = 1.013(6)+3.35(4}ma, (19}
IV. COMPARISON OF RESULTS WITH WILSON

AND STAGGERED FERMIONS

In the continuum limit the Wilson and staggered for-
mulations for lattice fermions should contain the same
physics. At finite lattice spacing the chiral properties of
the fermions are obviously different so it is clearly in-

which agrees very well with Ref. 23. The vector-meson
mass fit is

coshM ia = 1.50(6)+3.4(2)ma, (20)

which is slightly different from that of Billoire, Lacaze,
Marinari, and Morel. The end result is a lattice spacing

l.5
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l
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FIG. 7. The root-mean-square radius R, for the light ()
and heavy (0) quark in a pseudoscalar meson with an unequal-
mass quark-antiquark pair vs the inverse of the hopping param-
eter of the light quark. The heavy-quark mass is fixed at
a=0. 134. For comparison the root-mean-square radius of a
meson with an equal-mass quark-antiquark pair (o} is also
shown.

I

0.l 0.2
I

0.3
I

0.4
fAQ

FIG. 8. Pseudoscalar- () and vector- (5) meson masses us-

ing staggered fermions vs the bare-quark mass. The solid lines
are fits described in the text.
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TABLE I. (a) Masses and form factors (at q =m/10) calculated using staggered fermions. (b)
Masses and form factors (at q =~/10) calculated using %ilson fermions.

0.02S
0.050
0.100
0.200
0 400

iVoa

0.44+0.02
0.60+0.01
0.81+0.01
1.11+0.01
1.50+0.01

0.97+0.13
1.17+0.09
1.24+0.05
1.41+0.02
1.72%0.01

0.930+0.006
0.948+0.005
0.954+0.003
0.965+0.002
0.97820.002

2.15+0.11
1.84+0. 10
1.73%0.06
1.50+0.04
1.17+0.06

0.158
0.1S5
0.150
0.142
0.134

0.54%0.02
0.67+0.02
0.86+0.02
1.16+0.02
1.45+0.02

0.74+0.03
0.81+0.03
0.95+0.02
1.20+0.02
1.48+0.02

0.87+0.02
0.89+0.01
0.90+0.01
0.934+0.007
0.957%0.006

3.11%0.24
2.82+0.20
2.67 %0. 13
2.09+0.12
1.66+0. 12

for the staggered calculation of a'=0.24+0.02 fm.
For Wilson the pseudoscalar mass is extrapolated (see

Fig. 1) using

(Moa)'= ~o~&+ao (21)

with the fitted values Ao ——1.56(4), Bo=—9.6(2). This
gives x, =0.162 as the value where the pion mass vanishes
and chiral symmetry, in the Nambu-Goldstone mode, is
restored. The vector-meson mass looks completely linear
in K and was extrapolated with

The fitted values are A~ ——0.66(2), 8~ ———3.4(1). The
lattice scale inferred from these values is
a =0.157+0.005 fm.

The charge radius E.~s vs Mo, now with lattice spacing
removed, is shown in Fig. 9, It is encouraging that at

smaller meson masses the Wilson and staggered formula-
tions yield compatible results. At larger masses where one
gets further away from the Goldstone (or pseudo-
Goldstone) behavior of the pseudoscalar meson, there is
no reason why the two schemes should give the same
meson structures. For completeness the experimental
value for the pion charge radius is also shown in Fig. 9
although it is premature to take this comparison very seri-
ously.

The reasonable agreement between charge radii (in
physical units) calculated with Wilson and staggered fer-
mions came about because of the rather different lattice
scales required to fit the meson masses in the two
schemes. This is not a very satisfactory situation but also,
not unprecedented. In a study of masses with SU(3) color
at p=6 Billoire, Marinari, and Petronzio found a to be
only slightly larger than o'. However, at p=5.7 the stag-
gered fermion results of Gilchrist, Schneider, Schierholz,
and Teper give a'=0. 28 fm while using Wilson fer-
mions Hasenfratz and Montvay found a =0.15 fm. It
is possible, therefore, that the discrepancy in scales is the
result of being still quite far from the continuum.

V. SUMMARY

0.4—
L

CC

0.8 1.2

Mo (GeV&c )

FIG. 9. The root-mean-square radius calculated using %ilson
() and staggered (0) fermions vs pseudoscalar-meson mass
Mo. The experimental value of the pion charge radius is also
shown (O ).

In this paper the electric form factor of the pseudosca-
lar meson (generic pion) was calculated using the Wilson
formulation for lattice fermions. The calculations were
done in a model for quenched lattice QCD with SU(2)
color.

The form factor, calculated for different values of the
hopping parameter, clearly shows that the meson size de-
creases as the quark mass increases. %ith the parametriz-
ation of the form factor at low-momentum transfer
(1+Q a /A, )

' it was found that the parameters A, scale
with the vector-meson mass squared. This is suggestive of
the old idea that coupling to vector mesons dominates the
low-momentum-transfer behavior of vector-current
three-point functions.

The form factor for pseudoscalar mesons with an
unequal-mass quark-antiquark pair has also been calculat-
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ed. It is found that the distribution of the heavy quark
has a smaller radius than that of the light quark, in ac-
cord with physical intuition.

The charge radii obtained here using the Wilson scheme
are compatible, when converted to physical units, with
charge radii previously calculated using staggered fer-
mions. To make the comparison in physical units, lattice
scales were fixed by fitting pion and p-meson masses.
Considerably different lattice sizes were found for the
VA'lson and staggered calculations possibly indicating that
one is still far from seeing continuum behavior.
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