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Complex Langevin equations and lattice gauge theory
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We consider the use of complex stochastic equations in the evaluation of ensemble averages. For
a certain class of functions, it is shown how to relate averages over real parameters to those over
complex degrees of freedom. %'e apply these techniques to the Abelian lattice gauge theory and dis-
cuss its extension to the non-Abelian case.

I. INTRODUCTION

A major problem in lattice gauge theories is the large
size of the statistical errors in numerical Monte Carlo
simulations. A new generation of supercomputers will
certainly be of benefit in this regard, but the measurement
of some quantities, such as exponentially small correlation
functions, will remain frustrated if the usual "brute force"
algorithms are applied. This paper discusses an alterna-
tive Monte Carlo technique which is potentially very
powerful. It also applies not only to the correlation func-
tions to be discussed here but also to other aspects of lat-
tice gauge theory, e.g, dynamical fermions.

Specific examples of the problems to be addressed can
be found in measurements of the properties of the heavy-
quark —antiquark system with gauge group SU(3). Calcu-
lations of the static potential exist which have very small
statistical errors. ' However, attempts to measure the spin
dependency of this potential, ~ and also the chromoelectric
and magnetic fiux densitiesi have suffered due to the
noisiness of the observed signals when the qq pair are
separated by more than a few lattice spacings.

A fundamental reason for this is that the procedures
used can only generate configurations weighted by the
vacuum action E&„I'I'". Observables are then calculated
as the correlation of some test plaquettes and a large
current loop supposedly generated by the heavy quarks.
This proaxiure is weak in the sense that one relies on the
vacuum field configurations to spontaneously generate
fields which have significant overlap with both our test
probe and the qq current loop. Since this is not necessari-
ly a high-probability occurrence large statistical errors
may result.

A better procedure would be to somehow build the ef-
fect of the current loop into the action used to generate
the fields. Then all the configurations would exhibit the
properties of the qq system and the measured signals
would be much stronger.

The difficulty with this prescription is that the quantity
corresponding to the current loop is not positive definite,
and so the usual, probabalistic algorithms such as the heat
bath and Metropolis methods are not appropriate. In this
paper, however, we discuss the application of the
Langevin algorithm which still has formal solutions even
for complex actions.

The structure of the rest of this paper is as follows. In

Sec. II the Langevin technique is introduced and it is
shown how for a certain class of correlations, including
most of those encountered in lattice gauge theories, the
complex extension of the system is to be understood. In
Sec. III we discuss the application of this algorithm to the
Abelian U(1) theories in two and three dimensions and the
numerical difficulties encountered. In Sec. IV the appli-
cability of this technique to non-Abelian systems is dis-
cussed.

The Langevin approach to this problem is to construct the
associated stochastic differential equation (SDE) to the
probability distribution P (x):

~s& = 1 dP(x) dt+ ~2 dto(t),
P(x) dx

(2.2)

where dio(t) is a normalized Brownian motion. To solve
this equation one introduces a fictitious time t and discre-
tizes to some order in 5t In this pap. er we use the first-
order form

x(t+5t) x(t)=—1 dP(x(t) ) 5t+ &25t il,P(x (t) ) dx

(2.3)

where il is a Gaussian random number of mean zero and
unit variance. This particular discretization corresponds
to the Ito form of the SDE while (2.2) is in Stratonovitch
form. The connection between these two is achieved by
the Zakai-Wong correction (e.g., Ref. 7). For the type of
systems to be considered here, however, in which the
Brownian motion in (2.2) is multiplied by a constant, the
two forms are identical and so for the rest of this paper
we shall not distinguish between them.

Equation (2.2) describes the evolution of paths x(t)
whose probability density, p(x(t), t} satisfies a Fokker-
Planck equation in terms of the action S(x):

II. COMPLEX STOCHASTIC EQUATIONS

Consider first the case of a real action S(x). ~e wish
to calculate expectations in a probability distribution,
P (x)=e '"', defined by

x xPx
(f(x)) = (2.1)

dx P(x)
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Bp(x, t )

Bt
8 BS BP

Bx Bx
(2.4)

Solutions to this equation are of the form

P(x, t)= g P„(x,t)e " +e (2.5}

and it can be shown (e.g., Ref. 8) that the eigenvalues
satisfy the condition A,„~0 for all n & 1. Thus all solu-
tions q(x, t) of (2.4) satisfy

lim q(x, t) =P(x)=e (2.6)

The ergodicity property then allows us to calculate en-
semble averages such as (2.1) by

1 T
(f(x)) = lim —I dt f(x(t,xc)),

T m 1 (2.7}

where x(t,xo) is the solution of (2.2) at time t given an in-
itial value xo at t=O.

The possibility to be considered is the case where S(x)
is a complex-valued function of x. If (2.2) holds then it
shows that the variable x must itself become complex. In
this case, however, it is unclear exactly what expression
corresponds to (2.1). In Appendix A we show that for a
certain class of functions, namely those which are entire
and periodic in the sense that

f(z+2m) =f(z)„z=x+t'y, (2.8)

then the expression (2.1) becomes simply

z zPz(f)=— (2.9)

C
dz P(z)

where P(z) and f(z) are the analytic continuations of
P(x) and f(x) and the range of integration is extended to
the whole complex plane.

In this case we are entitled to replace (2.2) and (2.4) by
their analytic continuations. The question of convergence,
answered in the real case by (2.5), is rather more difficult,
however, since the eigenvalues A,„are no longer strictly
positive. In the case where the imaginary part of S(x) is
small it can be shown that the eigenvalues A,„all have real
parts greater than zero which is enough to guarantee con-
vergence, but a more general theorem is unavailable.

III. ABELIAN LATTICE GAUGE THEORY

As an aid to understanding these techniques we begin
with U(1) lattice gauge theory. This is a nontrivial theory
but has the advantage of greater computational simplicity
than the non-Abelian theories and also the existence of
certain analytic results for comparison purposes. The par-
ticular correlation function to be measured is that between
a large current loop 8' and a single orientable test pla-
quette P. In this study we confine attention to plaquettes
lying in the plane of the loop W; This corresponds to
measuring the squared energy density in the electric field
parallel to the axis joining the charges. (See Fig. 1.)
The relevant path integral is

FIG. 1. The relative positioning of the %'ilson loop 8' and
plaquette P used to measure the squared energy density in the
electric field.

[d8]
' I IEPe' m mc ives(c,)=

f [d8] m mElv s
(3.1)

where 5 zii and 5t~p are used to pick out the links
occurring in the loop 8' and plaquette I', respectively.
The action S is the conventional Wilson action

S=P g cos8„„(n)
plaquettes, n

and 8„„is the path-ordered plaquette angle

8„„=8„(n)+8„(n+P) 8„(n+v)——8 (n) .

(3.2)

(3.3)

As explained in the Introduction, we wish to include
the effects of the current loop W in the action used to up-
date the fields. Thus for the update of a particular link
variable 8 we must simulate the complex distribution

2(d —1)
P(8 )d8 =exp P g cos(8 +EJ)+i5~ii 8'd8

(3.4)

(in d dimensions) where EJ is the jth "environment" asso-
ciated with link m.

This leads to the SDE
2(d —l )

cos(8 +EJ)
j—1

~ 2(d —I)
sin(8 +EJ)

j=l

+ l 5 ~ gr dt +~2 dM( t)

(3.5)

As has been observed previously' there are numerical
problems with this sort of equation. In particular the
trigonometric functions grow exponentially as distance
from the real axis increases causing numerical overflows.
Previous authors * have just truncated paths which wan-
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IV. NON-ABRI. IAN GAUGE THEORIES

A crucial question is whether or not this technique is
apphcable to non-Abelian theories. Previous algorithms,
such as the polymer formalism, ' have proved very suc-
cessful in the Abelian case but have proved unfeasible in
the non-Abelian models.

As a guide to understanding the problems involved we
confine attention to the case of SU(2) and study the in-
tegral

L(p) =
f [dU](TrU) exp —Tr(U+U ')

4

f [dU]TrUexp —Tr(U+U ')

FIG. 4. Plaquette-loop correlations in three-dimensional U(l)
lattice gauge theory 5&(. 5 current loop at P=2. and hence the probability distribution

U ESU(2) (4.1)

The results of simulations in three dimensions are
shown in Figs. 4 and 5. This theory is confining for all
values of p (Ref. 12) and we chose to calculate at p=2.0,
where the string tension has a significant value' and one
might expect to find a nontrivial fiux tube. The values
shown are for the squared parallel electric field density,
i.e., for plaquettes lying in the plane of the current loop.
Again we work with 5T=0.01 and b, =0.1. The data for
the 5X5 loop correspond to about 5000 sweeps through
the system or a total elapsed Langevin time T=50. The
data for the 7)&7 loop have slightly fewer sweeps, around
T=40. In both cases the relative errors are around
1—2% and it is encouraging that the Langevin time re-
quired for equilibration is fairly insensitive to the size of
the current loop involved since this means that with only
modest computer resources one might hope to study the
behavior of the theory at quite large distances.

P( U)[dU]=TrUexp —Tr(U+ U ') [dU] . (4.2)

This is of similar form to the loop-plaquette correlation
discussed in Sec. II, but restricted to the case where the
lattice has been replaced by a single link.

Using the identity

XF (U)=1g(U)+1 (4.3)

for the traces of group elements in the fundamental (F)
and adjoint ( A) representations one can calculate an ana-
lytic expression

31'(P)+I) (P)

4I2(p)
(4.4)

Note further that in (4.1) U has not been identified with
U '. Although this would be true for the gauge group
SU(2) it will not be when we make the complex extension
analogous to that used in Sec. II.

To address the problem of the distribution function
(4.2) one first constructs the Fokker-Planck equation re-
stricted to the group manifold. To do this introduce co-
variant derivatives V which satisfy the same commuta-
tion relations as the group generators,

[V~,Vp] =i e~pr Vr, (4.5)

and which can be defined in terms of Pauli matrices by

V~U= , itr U, U—ESU(2),

V U '= ——,'I, U 'o.
(4.6)

In terms of these derivatives the Fokker-Planck equa-
tion corresponding to the distribution I'( U) =e ' ' is

Bt
=V~V~( U, t ) V[ —P( U, t )V+ ( U)] . —(4.7)

Following Ref. 15, this equation is solved by introduc-
ing a discretized Langevin equation for the group ele-
ments

FIG. 5. Plaquette-loop correlations in three-dimensional U(1)
lattice gauge theory. 7X7 current loop at P=2.

U(t+5t) = U(t)exp(5tp+ &25t e),
where, to first order in 5t,

(4.8)



34

fo 18cos 8e~' e Io(p)
K(p}= f 18cos8eI' e Ii(P) P

We thus attempt to model the distribution function

I

I

(4.12)

I.O—
P(8)18=cos8e~' d8, 0&8&m .

Since 0 is at this point a purely read variable the condi-
tions of the segregation theorem apply' and the zero of
P(8) divides the interval [O,m] into two noncommunicat-
ing sectors, [0,—,

' n. ) and {—,
' n.,n.]. Thus, if we use the asso-

ciated SDE

0.9—

0.8—

d8= —(psin8+tan8)dr+a 2dic(t) (4.14)

to generate sample paths of 8 and then apply (2.7) to cal-
culate E(p) we will arrive at an answer where the in-
tegrals have been restricted to one of the above disjoint
sectors.

A second possiblity is to make a complex extension of
the integrals as before. This is in fact trivial since the
range of the integrals in (4.12) can be extended to [0,2m]
and then the construction of Appendix A applied. The
SDE to be solved is now

06—

1

2.0 4.0
0,5

0,0
l

6.0 8,0
I

IO.O

FIG. 6. Numerical calculation of L{p), (4.1), according to
Eq. (4.10). Comparison with the analytic result, (4.4).

dz= —(psinz+tanz)dt+v 2dw(t), (4.15)

which has the same form as (4.14) but for complex z. The
conditions of the segregation theorem do not now strictly
apply, but another problem exists. In Fig. 7 are shown
the trajectories of the deterministic part of (4.15). As can
be seen the paths are strongly attracting to the real axis
and it is simple to show that once there they never leave.
The results of our numerical simulations are shown in
Fig. 8 together with the analytic solution, (4.12), and also
a numerical evaluation of the integral

m/2

fo 18cos'8e~'
(4.16)f d8 cos8e~

which is the predicted outcome according to the segrega-
tion theorem.

y, = —VQ( U), e = —,cr rl, {4.9)

and rl is a vector of independent normal random numbers
with mean zero and unit variance.

In the case where S( U) is real, both p and e are trace-
less and anti-Hermitian which is sufficient to guarantee
that elements evolving according to (4.7) and (4.8) remain
on the SU(2) manifold. However, when S(U) is complex,
the matrices pa and e remain traceless, but are no longer
anti-Hermitian. This results in the extension of the SU(2)
manifold to Sl.(2,C). The inverse of a matrix is still a
well-defined quantity, however, and (4.1) still makes sense,
but it is no longer possible to identify Ut with U-i

Taking these factors into account we can write the
discretized Langevin equation corresponding to the distri-
bution (4.2):

' 1/2

U(t+5t)= U(t)exp —, i5rX(p) —o+1 5t
s '+ & w w 4' + g y i I a a a + ei .

7

iV) 0

(4.10)
where L-

g (p)= —+, Tr[(U —U ')cr ) . (4.11)
Tr( U+ U ')

v

v

TL

In Fig. 6 are shown the results of simulations of this
equation. Obviously the dynamics are faulty at low values
of p. Comparing the distributions (3.4} and (4.2) the most
obvious difference is that the latter has a zero correspond-
ing to a nonanalyticity in the action, S(U). To study the
effect of this zero consider a much simpler integral which
admits a simple analytic value:

FIG. 7. The trajectories of paths following the deterministic
part of the SDE (4.15) showing the attractive nature of the real
axis. P=1.0.
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t
l.2—

l.0—

calculation of Abelian lattice gauge theories. The
Langevin approach seems to be a viable tool for studying
the long-range properties of the theory.

The situation for the non-Abelian theories is, however,
less clear. Our conjecture is that the complex Langevin
approach will be successful whenever the complex distri-
bution function P(z) does not collapse to a real distribu-
tion which has zeros. In particular this means that it may
be possible to calculate correlation functions in theories
which are coupled to some sort of external field. Similar
conclusions have been reached independently. '
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FIG. 8. Numerical calculation of E(P), (4.12), according to
Eq. (4.15). Comparison with the analytic result (dashed line)
and also the ratio of the integrals restricted to the range [O,m/2].
[(4.16), solid line. j

APPENDIX A

Consider an entire function g (z) with the property that

The agreement with the predictions of this theorem is
quite good. This means that our implementation of Eq.
(4.7) is inadequate for calculating correlations such as
(4.1). This is because the paths, rather than exploring the
whole manifold [C in the case of (4.15) and SL(2,&) for
(4.10)], become restricted to smaller manifolds on which
the conditions of the segregation theorem apply [R for
(4.15) and SU(2) for (4.10)]. Analytically, this should
occur with zero probability, but due to the finite accuracy
of our numerical simulations it always occurs in a finite
time. This leads to a partitioning of the space into non-
communicating regions between the zeros of the associat-
ed distribution function on which, individually, correct re-
sults are found but which cannot be used to reproduce the
required result.

This is a consequence of the fact that we tried to model
actions involving the trace of the large qq loop which has
a zero. It is probably still possible, however, to use this
technique in non-Abelian situations where either no zeros
of the intended probability distribution exist or where, by
coupling the system to an external field for example, the
stability of the paths on the restricted manifold is re-
moved. In these cases the simulations should be ergodic
on the extended space and correct results obtained.

Alternatively it may be possible to develop alternative
implementations of (4.15) which, by remaining complex,
can avoid the segregation problem.

g(z+2ir)=g(z), Vz&C . (Al)

(A3)

Now consider two functions f(z) and P(z) which satis-
fy the analyticity and periodicity requirements. Then we
have

z=x+iy
D

z=x+Zw+ iy

C

Define I (y) to be the integral taken along a contour paral-
lel to the real axis

x+2n+iy
I(y)= f dzg(z) . (A2)

Then consider the contour I shown in Fig. 9. By the as-
sumed periodicity of g (z) we have

f dzg(z)= f dzg(z)

and hence by Cauchy's theorem
x+27K x+2m+ iyf dx g(x+iy) = f dx g(x+iy) . (A4)

We have thus shown that I(y) is, in fact, independent of
3'

V. CONCLUSION

&e have shown that for certain classes of functions, in-
tegrals over real fields can be analytically extended to the
complex plane. In this form they are amenable to investi-
gation by the techniques of complex SDE's. In particular
we have shown that the method is very powerful in the FIG. 9. Contour used in proof of Eq. (A4).
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3'
2' Y 2e (A5}f d» P(x) f dy f dx P(x)

and hence taking the limit F~ ce we Save that

fc dx f(x)P(x) fs dz f(z)P(z)
(A6}

XPX ZI'Z

where S is any strip of width 2tr extending to oe in the
imaginary direction. Now cover the complex plane with
such strips and it follows that

dX XPX ~ Z ZPZ
(A7)f dxP(x} f dzP(z)

APPENDIX 8

For the sake of completeness we present here a formal
definition of the segregation theorem as it is used in this

paper. The notation used is extensively copied from the
original proof of Nagasawa. '

Let D be a connected domain in I with a piecewise
smooth boundary dD defined by

8D= I »& I;P(x)=OI .

Also define X„the diffusion process on D A t}D, and T,
the first exit time for the process from D. Then the segre-
gation theorem states that given a time to and a neighbor-
hood U of the boundary

P(r& ec or X,GU Vt&tc)=0.

In other words, the probability that the process exits D in
a finite time or that it stays permanently "near" the
boundary of the domain is zero.
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