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The gauge technique generates vertex functions which automatically satisfy %ard identities and

which are good approximations to the true vertices for small momenta. %e show how to construct
such vertex functions for very general situations, including spontaneously broken non-Abelian gauge
symmetries and finite-temperature gauge theory. Potential applications are outlined.

I. INTRODUCTION

This work describes the construction of three-point ver-
tex functions for the gauge mesons of a non-Abelian
gauge theory which satisfy the relevant Ward identities by
construction, even when the gauge theory is spontaneously
broken or at finite temperature. Such gauge-technique
vertex functions have not previously been constructed, to
the authors' knowledge, except for the work of Delbourgo
and collaborators, ' which emphasizes different aspects of
the problem.

The gauge technique has a long history. Its modern
era begins ' with the recognition that the propagator
equation for a charged spin-0 or - —,

' particle becomes
linear (thus soluble} if the full vertex is approximated by
the gauge-technique vertex and the photon propagator is
replaced by the bare propagator. This approximation, ex-
act in the infrared, is not renormalizable but can be made
so' without sacrificing hnearity by adding specific trans-
verse terms to the gauge-technique vertex. More recently
numerous authors ' have used the gauge technique for
(quarkless) QCD, where the relevant equations are neces-
sarily nonlinear. " In these applications the gauge symme-
try is unbroken, and Lorentz (or Euclidean) invariance
holds. For the applications we have in mind either the
gauge symmetry is spontaneously broken with no elemen-
tary scalar fields in the Lagrangian (which necessitates the
addition of fermions in other than the fundamental repre-
sentation of the gauge group' }, or the theory is at finite
temperature so Lorentz invariance no longer holds. In ei-
ther case it is not obvious how to use the standard tech-
nique of exploiting the Lehmann representation of the
propagator. This is unfortunate, because the spectral-
representation form of the gauge technique is convenient
for computing in the nonlinear cases of interest. In this
work, we show that in the case of spontaneously broken
symmetry a gauge-technique vertex can still be construct-
ed from a propagator spectral representation, but now in-
volving a double spectral integral. We also show that for
both this case and for finite T, where there is no useful (as
far as we can see) I ehmann representation for the propa-
gator, there exists a vertex expressed algebraically in terms
of proper self-energies which satisfies the Ward identities.
It is generally possible to write the spectral form of the
vertex as an algebraic form involving proper self-energies
(as King has done for the spectral form of the QED ver-
tex).

The main idea behind our construction is to introduce'
auxiliary massless scalar fields with the help of which one
may construct gauge-invariant mass terms for the gauge
potentials. The auxiliary scalars are elim. inated by using
their equation of motion, and masses replaced by proper
self-energies. The result is an effective Lagrangian con-
taining three-point (and higher) vertices which are
guaranteed to satisfy the Ward identities, whatever the
form of the proper self-energies (which are conserved, ac-
cording to other Ward identities). At T=O an alternative
approach identifies the gauge-meson mass with the in-
tegration parameter of the Lehmann representation, and
gives rise to the spectral-representation form of the ver-
tices.

In the effective Lagrangian the vector-meson masses
are treated as constants, and the resulting gauged non-
linear 0. model is not necessarily renormalizable. But the
effective Lagrangian is only used as a tool, later discarded,
to solve the Ward identities. The renormalizability of the
spontaneously broken original Lagrangian depends on the
vanishing of dynamically generated masses at large
momentum, which is known ' to happen for the models
discussed here.

II. THE EXTENDED GAUGE TECHNIQUE

The Ward identities which we wish to "solve" are very
complicated, except in ghost-free gauges where they take
on the naively expected form. We will use the light-cone
gauge throughout this paper, but this is not at all a re-
striction. The conventional propagator and vertices even
in a ghost-free gauge are virtually devoid of physical
meaning because they depend nontrivially on the gauge
chosen, so it is of the utmost importance to recall that a
resummation of the graphs entering a physical, gauge-
invariant process yields new proper vertices and proper
self-energies which are completely gauge independent in
ghost-free gauges' and which obey the same Ward identi-
ties (but not the same Schwinger-Dyson equations) as the
usual self-energy and vertex in a ghost-free gauge. Our
considerations apply to both types of vertices and self-
energies; it must be kept in mind that the modified self-
energy of Ref. 7 depends on only one scalar function in-
stead of two, as occur for the conventional self-energy in
noncovariant gauges.

Begin by introducing the gauge potential in the stan-
dard anti-Hermitian matrix form
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U(8) =exp —QA,,8'
2

and postulate the gauge-transformation property

U'=U(8')= VU .

It then follows' that the modified gauge potential

a„=v '~„v-g '(a—„v-')v-

(4)

is invariant under the gauge transformation (2), (4), and
an invariant-mass term -m Tr8&8& can be added to the
usual Lagrangian. Upon variation of the new term with
respect to the angles 8', equations of motion for these an-

gles are found which can be solved in a power series

8'=g —a ~~— -'(a ~)x —(a ~)I g i 1

C3

which under a gauge transformation V changes to

Aq ——vA„v ' —g '(a~v) v (2)

Introduce' also a matrix U depending on angles 8' as

I py(k), k2, ki)=if~I' py,

{m) m2 ki k2p(ki —k2)y
I p„—(—ki k—2)yg p+ 2 +cp

k) k2

where c.p. refers to cyclic permutations of the indices and
momenta. The longitudinally coupled massless particle
poles are akin to Goldstone poles, and never appear in any
physical process; they are purely gauge degrees of free-
dom, as (4) makes evident. The massless poles in (8) are,
of course, the momentum-space transcription of the CI

appearing in (6). Even though use of (6) may appear to
introduce an element of nonlocality, this appearance is
spurious; we have merely integrated'out degrees of free-
dom originally appearing in a fully local Lagrangian. All
properties of local field theory, i.e., the Lehmann repre-
sentation, still hold. One may similarly find mass correc-
tions to the four-paint vertex, which we do not record
here. The vertex (8) obeys the Ward identities appropriate
(in a ghost-free gauge} to the massive theory:

k i I'~py b'py(k——i) b, —'py(ki),

where in the light-cone gauge n A =0, n =0,

+a~pa —a w +, (6}
1

a

py(k)= gpy+ — (k —m )—kpk~ n

k '9
(10)

where

(& X&),=f,b, ~b&—

in terms of the group structure constants The gauge
transformation law (2) when used in (6) verifies the sup-
posed law for the 8' given in (4). When (7) is substituted
in (6}, the mass term in the Lagrangian contains a series
of terms, not only of 0(A ), but also with Ai, A, . . .
terms. The three-point terms thus found, when added to
the three-point functions of the massless theory, yield an
effective vertex for the massive theory (see Fig. 1 for nota-
tion):

FIG. l. The three-point Yang-Mills vertex.

(12)

[A term in Q„„which vanishes with y) of (10) has been
dropped. ] Corresponding to the modified propagator
there is a modified vertex I'

py, obeying the Ward identi-
ty (9) with 3, in place of h. The gauge-technique vertex
given in Ref. 7 is implicitly defined by

3PP(k, )r.p, .z yy'(k, )

QPP'(k )I (m) Qyy'(k )
dmp(m ) 2(k2 —m +i@)(ki2—m +is)

which obeys the %ard identity only for the index a, and
lacks complete Hose symmetry.

We are now ready to give the new results which are the
central point of this paper Evidently, .if there is a com-
pletely gauge-invariant field like Bz in (6) we are not re-
stricted, in writing down effective Lagrangians, just to a

and q is a parameter to be set equal to zero once a physi-
cal process has been calculated. In earlier work on un-
broken gauge theories at T=O, (9) and (10) were general-
ized by interpreting m as the integration variable in the
Lehmann representation for a modified propagator b,„„,
which is the usual propagator b„„plus terms arising from
higher-point functions. This propagator has the special
property that its proper self-energy II„„is completely in-
dependent of the gauge and in particular of n„ in the
light-cone gauge, so Il„„(k)=(—k g„„+k„k„)II(k ) and
the Lehmann representation is, in this gauge,

b,»( )k=Q&„Idm
2 2 (11)

k —/Pl +L6

nqk„+n„k„
Q„.= —gp. +

n k
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D"(U[ Gq„, e8"I U ') =0, (15)

where D" is the usual gauge-covariant derivative, and the
+ operation is simply a convolution integral; note that the
arguments of U and U ' in (15) are the same as that of
D" and do not get convoluted. For general (invertible)

6&„ the perturbation solutions to these equations involve

terms such as in (5) plus corrections if 6&„ is not a multi-
ple of the identity; the solution when substituted in 5& of
(14) yields a series of terms from which the three-point
vertex can be read off. It turns out that the vertex in-

volves only the transverse projection of G„„,so we go to
momentum space [using G„„(k) to indicate the Fourier
transform of G„„(x)]and define, for the unrenormalized
self-energy

Ilq„(k) =Pq~(k)P„p(k)G P(k),

krakPq~(k) = —gq~+

(16)

We give the gauge-technique vertex only for the case
when II„„is diagonal in group space, so it could be labeled
by a single index, as II&„. %e suppress this group index
in the formula below; it is to be inferred from the momen-
tum label. Then the result is, for the unrenormalized ver-
tex,

constant scalar mass matrix which is a multiple of the
identity in group space. The most general forin of the
"mass" term of the effective Lagrangian that we need to
consider is

f d x 5W= fd x d y TrB"(x)G„„(x—y)8 "(y), (14)

where the (Hermitian) functions G„„need have no partic-
ular Lorentz-transformation properties, nor are they mul-
tiples of the identity in group space. We can now repeat
the procedures leading to Eqs. (6) and (7). The equations
of motion for the e' fields are compactly written as

As the notation indicates, we are dealing here with the
modified (gauge-invariant) proper self-energies and vertex.
It is easy to see that I p~ of (18) has complete Bose sym-

metry and that it obeys a Nard identity on all three legs,
e.g.,

k, I pr
b——'pr(ki) —6 'pr(k3) (19)

where, in the light-cone gauge,

'p„(k) = gp„k—'+kpkr —II'(k) — . (20)
fl

We will see below how renormalization affects the Ward
identity (19). Note tha't satisfaction of the Ward identities
depends only on the transversality of the II„,. In particu-
lar, II„,need not be Lorentz covariant, so (18) can be used
at finite T.

A special case' of (18) in which the II„,represent a di-
agonal nonsinglet mass matrix,

II q„(k) =Pq„(k)m, (21)

is useful in giving an alternative gauge-technique vertex at
T=O, where Lorentz invariance holds and the Lehmann
representation is available. The alternate vertex will
resemble (13), except that there will be two spectral in-
tegrations for the case given below. To be concrete, con-
sider the Georgi-Glashow model: an O(3) gauge group,
with symmetry breaking to be driven by fermions in the
adjoint representation; we omit all scalar fields. After
symmetry breaking there will be two charged vectors %+-

with the same mass, and a neutral vector of different
mass. In Fig. 1, let line 1 represent a 8'+, line 2 a Z, and
line 3 a W . Substitute (21) in (18), which defines a ver-
tex I ~p&(mii, mz ). Now we will treat both mii2 and
mz as spectral integration parameters, writing (in the
light-cone gauge)

1 ki~k2p
I'~pr g~p(k i k2 )r———— — (k i k2 y'Il„r(k 3 )—2 k, 'k, ' 2 2

=Q „
dm pg z(m )

(22)

k3y[P "(ki)Il„p(k—3)—11 I'(ki)P„p(k3)] +c.p.

(18)
The resulting W+ W Z vertex is defined implicitly, as in
(13), by

pp, QPP(k2)I pr (my, mz )Qr~ (k3)Z, (k, )r.p, .ay'(k3) = dm, 'p, (m, ')fdm~'p~(m~')
(k2 —mz +le)(k3 —mar +le)

Multiply the left-hand side of (23) by k i to get

Zz 6 py( k 3 ) Zgf 6 py( k 2 )

it is necessary to make the interpretation

ZI
Zz, iv

Z3z, 8'
(26)

Zz gr =fdm pz ~(m ) . (25)

To the extent that Zz ii differ from unity, we interpret
them as renorrnalization effects. If we consider all the
propagators and vertices in (23) to be renormalized, then

in terms of the hatted vertex and wave-function renorrnal-
ization constants which are the analogs, for 2 and I,
of the usual renorrnalization constants; the hatted con-
stants are gauge invariant. In the symmetric case,

5—7Z
&
——Z3z ——Z3~. Previous work shows that the
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gauge-technique vertex must be supplemented by addi-
tional conserved terms, unimportant in the infrared but
needed in the ultraviolet regime, in order to renormalize
the vertices and propagators consistently. Since we do not
take up these additional terms here, it is somewhat prema-
ture to discuss renormalization effects.

III. POTENTIAL APPLICATIONS

We would like to describe actual applications, but these
are in a rather primitive stage of development because for
broken symmetries or at finite T the sheer number of
terms in I N~& is so large that computations —even with
symbolic manipulation programs —are extremely difficult.
Instead, we make some qualitative remarks about the role

I

of (electric and magnetic) gluon mass generation at finite
T (Ref. 10), especially in connection with the deconfining
phase transition. In addition, we give the Schwinger-
Dyson equation based on (18) for the symmetric case (e.g.,
T=O QCD), and contrast the picture of gluon-mass gen-
eration thus found with the analogous picture based on
the spectral form of the gauge technique. The latter will
be taken up first.

A. Gluon-mass generation in @CD at T=O

The Euclidean Schwinger-Dyson equation previously
derived from the spectral form of the gauge-technique
vertex as given in (13) reads, in ostensibly renormalized
form,

' 1/2
2/4

d '(q )=d '(0)+q Kg +bg J dzd(z) 1—
0 2 ll 0 q2

Actually, as pointed out in Ref. 7, (27) does not obey the
expected renormalization-group equations, which tell us
that the equation for d, when written in terms of D =g d,
should not contain g explicitly. This would require an
extra power of g in the integrals on the right-hand side
(RHS) of (27). We accomplish this by multiplying the in-
tegrals of (27) by

g g 2(z) = 1+bg in(z /p ), (29)

where g (z) is the running charge, given to first order in

g on the RHS of (29). Thus, instead of actually calculat-
ing higher-order corrections to (27) which would lead to a
renormalizable equation, we observe that these corrections
must respect the renormalization group, w'hich allows at
least a plausible guess for getting the correct ultraviolet

Here b is the lowest-order coefficient in the P function:
p= bg +—, E is chosen so that d '(q =p )=pi
for some large renormalization momentum p, and d(q )

is defined in terms of the spectral weight p by [see (11)]

ydm p(m )

+P?l

l+b 2l q +q4m ( )+
p

(30)

and put it in (27), with the modification (29). It is legiti-
mate at large q to drop 4m relative to q in the loga-
rithm in (30); saving it corresponds to a redefinition of p.
We assume that m (q ) vanishes as an inverse power of
lnq at large q, which allows us to separate uniquely
(modulo the definition of p and E) the Schwinger-Dyson
equation into two parts: one for the kinetic term going
like q lnq, and one for m (q ). At large q, the factors
(1—4z/q )'~ can be dropped, as can be verified by es-
timating the integrals over z using the ansatz (30). The
kinetic term equation yields the expected result
d '(q)~q (1+bg lnq ), and the mass-term equation is
easily rearranged to

I

behavior. Any uncertainty as to whether z or qz should
be the argument of g in (29) is settled by the solution
of (27) as modified by (29), which shows that z is indeed
the correct choice.

Our interest is in (27) at large q. Make the ansatz

d '(q)=[q +m (q )]

00 g oo 2 2
z( ) d &( )

bg J~ dzm(z)
b 2y" dzm(z) 1 q

z+m'(z) e'&4 z+m'(z) 11 4z

Since, by hypothesis, m (q) vanishes at q = co, the first
two terms on the RHS of (31) must cancel; we verify this
later. Assuming this cancellation, one easily finds that
the solution to (31) is

—12/11
q +4m

m (q)=m 1+bg ln
2p

4ml+bg 21n (33)
m (q)-(lnq )

' ~"[1+0((lnq ) ')] . (32)

As with (30), we make an ansatz for m (q) which is use-
ful down to q 0

Thus m =m (q=O). In view of the relation between g
and p based on the one-loop definition of the
renormalization-group invariant mass A,
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bg =[In(p /A )] (34)

I =d '(0)+bg m e, 0(e~(ln4)/11. (36)

Since m=2A, I differs from d '(0) by less than 5%,
and it is clear that exact cancellation can be found by a
minor adjustment of m (q) at small q.

We conclude that the spectral form of the gauge tech-
nique, when modified to conform to the renormalization

and because m-A, we see that (33) is renormalization-

group invariant.
Consider the cancellation of the first two terins on the

RHS of (31). The integral I, where

bg f" dzm (z)
(35)

z+m~

is greater than the corresponding integral with z+I
replaced by z +4m, whose exact value is

bg m ln(4m /A )=d '(0). The difference of these two
integrals is bounded by dropping the logarithmic depen-
dence, and we finally come to

group, leads to the generation of a gluon mass falling as
an inverse power of lnq, as indicated in Ref. 7. Now
turn to the problem of mass generation as described by the
new gauge-technique vertex of (18).

As is shown in Ref. 7, II„„has the form

Hp„=( —g~ +q~q q )II(q ) (37)

for T=O QCD. Following the prescriptions of Ref. 7, we
have constructed the Schwinger-Dyson equation for II by
adding to the usual one-loop term, based on I of (18), ex-
tra terms arising from the modifications turning II into II
and I into I . In this equation, we drop all terms explicit-
ly dependent on the light-cone gauge vectors n&, since we
know they must cancel, even before doing momentum in-
tegrations. ' The result explicitly verifies self-consistency
of the conserved form (37} for II„and the Schwinger-
Dyson equation is written as a scalar equation for II(q ).
We write this below for the Euclidean propagator

d '(q)=—q +II(q ) (38)

and find

2
4 k.

d '(q)=q Kg f—d k ~ —2d(k)+d(k)d(k+q) 3q +d '(q)+ —k-
(2ir) 3 q

(39)

where again j:is introduced to renormalize the equation.
As with (27), (39) is not really renormalization-group invariant, and we simply guess at a solution to this problem by

replacing each propagator d (p) on the RHS of (39) by

d(p) —=g'g '(p)d (p) .

We identify g g with the second factor on the RHS of (30) and come to

d(p)-'=p'+m'(p) .

Simple rearrangement of (39) then leads to

d '(q)=q Kg fd k—d(k)d(k+q)+ fd kd(k)+ fd kd(k)d(k+q)[4m (k) —3m'(q)]
11m 11m

+ z fd kd(k)d(k+q)[m (k) —m (k+q)] + fd kd(k)[m (k) —m (k+q)].
11~ q 11m. q

(41)

(42}

If, on the RHS of (42), all momentum-dependent masses
m (p) are replaced by constants m, and the integrals are
further integrated over the spectral density p(m ) of (28),
the result is precisely what would be found using the spec-
tral form of the gauge technique. That is, Eq. (27) would
follow from this procedure. This immediately shows the
infrared equivalence of (27) and (42) since for small q, k
the running masses can be replaced by constants. Not
unexpectedly, these two equations are not the same in the
ultraviolet, if for no other reason than that we have
guessed at modifications to the original forms which
make them renormalization-group compatible, and these
modifications are not unique. For example, replacing
4m (k}—3m (q) by, e.g. , m (k) in (42) is equally good
both in the infrared regime and for renormalization-group
compatibility. But (27) and (42) do lead to the same
lowest order behavior of -the running mass m (q) at large

q, as one may see by replacing all m on the RHS of (42)
by a bare term mo and renormalizing, as was already
done for Eq. (27), namely,

m (q)=m (1——,', bg lnq ), (43)

~here the omitted terms are small at least by one power of

which is, of course, the expansion of the solution (33) at
lowest order in g . Past perturbation theory, it is interest-
ing to note that (42) may have solutions in which m (q)
behaves like q (up to powers of logarithms) at large q.
The RHS of (42) yields, after angular integrations and
separating off terms gro~ing like q lnq,

2

bg m (q)lnq = f dk [6m (k) —3m (q)]+
llq
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lnq [we have dropped constants which must cancel, as
also appear in the spectral version, Eq. (31)]. Because of
the already-mentioned ambiguity in choosing the argu-
ments of the running masses, the logarithmic power in

q m(q} is also ambiguous. It is very hkely that the
correct QCD running mass m (q) does fall off like

q (lnq )', but to decide between this behavior and the
behavior of (32) is beyond our powers, until the gauge
technique is further refined in the ultraviolet regime as
King has done for QED and the electron mass.

B. QCD at finite temperature

We wish to imitate the T=O procedure of finding a
modified propagator Z„„whose self-energy is gauge in-

dependent. However, at finite T there are two conserved
tensor forms for the proper self-energy:

IIp„(q)=II)(q ) —g„„+

+Ili(q ) U„—
U 'iggp

g
(45)

where U& ——(1,0} signals the distinction between time and
space for T&0. The kinematic gauge dependence of 5„„
is more complicated than at T=O; for example, in the
light-cone gauge we find, instead of (11),

q nU nU
(Uq)i qi "— nq " ' nq

~M(q)

2 2 0 ~P(U. )2 q2 8 n q
U„— q„hz(q),

7l 'g
(46)

where the gauge-invariant electric and magnetic propaga-
tors h&, A are

q II2——q —H)—,AM ——q —H),
(U q) —q

mz M A fz M(T/A)+ T——gz M(T jA), (48)

where the f's and g's are regular at T=O, and positive at
least judging from nonperturbative finite-T results found
in Ref. 10. Only the gz term can be found in perturba-
tion theory. It would be wrong to expect a signal for the
deconfining phase transition of (quarkless) QCD of the
sort seen in the behavior of fermionic mass gapa, as in su-

and the functions II; depend on U.q as well as q . The
dependence on U q essentially makes the Lehmann repre-
sentation useless at finite T.

Next, in principle at least, we would use (45} in the
gauge-technique vertex (18) and then write down two
Schwinger-Dyson equations, one for b,z and the other for
3M, following the rules of Ref. 7. We would find cancel-
lation of all n-dependent terms, before momentum-space
integration, and thus we could transfer these equations to
Euclidean space and replace the integral over q4 with the
usual finite-T sum. Part of this program has already been
carried out We have calculated bz M in jierturbation
theory, and looked at the large- T limit of the hM equation
using the spectral form of the gauge technique (which is
possible since at large T the electric and magnetic sectors
decouple' ). At finite T, the electric and inagnetic sectors
couple in an elaborate way, and we are still working on
the problem. A few qualitative remarks are in order, if
only to forestall confusion.

At finite T, there is an electric gluon mass mz and a
magnetic mass mM. Both have contributions of the sort
discussed in Sec. III A, as well as terms —T; schernaiical-
ly,

perconductivity. There the fermionic gap goes to zero at
the critical temperature T„because the gap equation has
a kernel -tanh( —,Pcs) which decreases as T increases.
But a bosonic mass gap has a kernel coth(-, Pco) which in-

stead increases, eventually leading to the dominance of the
T terms in (48). Instead, the most remarkable feature of
the electric and magnetic gluon masses is that they show
no special behavior at all near T, . This simple feature
largely determines the character of the deconfining phase
transition, in the absence of quarks.

The phase transition is signaled by the disappearance of
certain parts of the vortex condensate which has been ar-
gued self-consistently accompanies gluon-mass genera-
tion. An individual vortex inhabits a region -m thick
around a closed two-surface or world sheet; this closed
surface can link topologically with a Wilson loop, and a
condensate of vortices leads to an area law for a Wilson
loop. At finite T we consider instead Wilson (or Po-
lyakov) lines, extending in the time direction from t=O to
t =P. Vortices which can link with such lines have world
sheets largely perpendicular to the time axis, thus a thick-
ness which extends in the time direction. As T increases
Pm decreases, because of the A terms in (48), and the
vortices are squeezed; their action goes up and their entro-

py goes down so these vortices are energetically disfavored
and decondense. But vortices whose world sheets contain
the time axis are not squeezed. Both their action and
their entropy decrease by losing the time degree of free-
dom, but the energetics still favor their condensation.
These three-dimensional vortices, whose world sheet at
large T has been reduced to a spacelike world string, sup-
port the magnetic mass gap and give rise to an area law
for spacelike Wilson loops (which has nothing to do with
confinement).

%e are hardly in a position to supply quantitative de-
tails for the above scenario, but there is a counterpart cal-
culation which could be carried out, in principle, using the
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gauge technique developed here. One ~ould calculate the
vacuum energy E„„asa function of T, to see when it
rises to equal purely perturbative ( —T ) contributions of
thermal gluons. In Ref. 7, a crude estimate was made for
E„„at T=O as a function of the gluon mass m, and for
m =500 meV rough agreement was found with the known
value coming from the trace anomaly and @CD sum
rules:

Z„„(T=0)= g (6„„')=—4X10-'Gev'.
Sg

The leading finite-T correction to the rules of Ref. 6 is a
term -m T, where m depends on T but is not singular
or vanishing at T =T, . %e will not explicitly exhibit the
dependence of m on T. Let us make the crudest of esti-
mates of this term by using a high-temperature expansion
of the momentum-space integrals appearing in the expres-
sion for E„«given in Eq. (6.22) of Ref 7, .turning fre-
quency integrals into sums in the usual way. In so doing
we ignore the distinction between electric and magnetic
gluons. The result is, for E, colors,

—1
E„„(T)=E„„(0)+ m T +0(T ), (50)

T, =m P(g) (6 2)
8 Pv 130 meV, (51)

where (at large T, at least) the T terms represent the usu-
al perturbative terms. The first two terms on the RHS of
(50) vanish at a critical temperature T, given by (for
N, =3)

where the numerical result follows from m=500 MeV.
Then, aside from perturbative terms,

i
E„„(T)i

=
i
E„„(0)

i
(1—T /T, ) . (52)

KF(T)=EF(0)(1—T /T, )'i2 . (53)

The results (52) and (53) are also found' in phenomeno-
logical theories of chromoelectric flux tubes thought of as
elementary strings.

Our program, then, is to use the gauge-technique vertex
(18) along with the finite-T proper self-energy (45) and
the Schwinger-Dyson equation rules of Ref. 6 to find the
electric and magnetic masses as functions of T (expecting
no unusual behavior near T, ), then to use the propaga-
tors, vertices, and masses in an expression for E„„to es-
tablish quantitatively the results (52) and (53), as well as
T, itself.
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Of course, we have no reason at all to trust the specific
value of T, given in (51), but the behavior (52) should be
reliable. Now —E„„ is the bag constant, and in
phenomenological models of confinement where the pres-
sure of the vacuum (i.e., the bag constant) balances the
pressure of chromoelectric flux confined into a tube, it is
well known that the string tension EF is proportional to
( —F„„)'~;that is,
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