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The one-loop superconforrnal anomalies for a chiral superfield in background S=1 super Yang-

Mills and % =1, n = ——, supergravity fields are derived by considering the dependence of the

chiral measure on the supergravity compensator superfield. The superspace g-function method is

used for regularization.

A nongraphical technique for calculating one-loop
chiral and trace anomalies for matter fields in background
Yang-Mills and gravitational fields has been given by
Fujikawa. ' This involves considering the variation of
the functional-integral measure of the matter fields under
the chiral and local scale transformations. We show here
that one-loop superconformal anomalies may also be cal-
culated from the functional-integral measure. The system
considered consists of a chiral superfield q, coupled to a
background N =1, super Yang-Mills field described by a
real superfield V, and coupled to background %=1,
n = ——, supergravity, described by a Hermitian axial-
vector superfield H , and chira. l compensator superfield

First define the one-loop generating functional (we
work in Euclidean space)

Z[H, V,4,4]= f DpDp, exp(S[H, V, @,C,&,rl]),

5 lnZ
O=b L lnZ=(b, LH )

aa

5 lnZ
(b L4) +c.e. (4)

where AL is the super Yang-Mills- and supergravity-
covariant infinitesimal variation with respect to L, de-
fined in Ref. 4. The variation of lnZ with respect to V

simply serves to make the variations with respect to H
tp, and 4 super Yang-Mills gauge covariant. One has (see
Ref. 4)

b, tH =V+.—V La,
(5)

b L@=5L@=(V +R }[Va(4L )] .

V z
——( V', V,V } are the super Yang-Mills- and

supergravity-covariant derivatives. From here on we will
drop the wiggly underlines and Vz will stand for Vz.
Define the one-loop supercurrent and supertrace by

where the action S is ( Jaa)
aa

5 lnz

S[H, V,e,e, rl, ri]:—f d ZE s(1 e H) /

x(+g)(cg),

and the functional-integral measures are

Dp=D(4 / rl), Dp, =D(4 tl) .

Notice that as 4 is covariantly chiral, so is (J). From
Eq. (4), then,

f d'zE '(VQ. —V L)(J ).
= —f 1 z4 (V2+R)[V (tin L )](J)+c.c.

Notation and conventions are those of Ref. 4. il(4} is the
super Yang-Mills- and supergravity-covariant conjugate
of ri(4). The integration variable 4 ri is the superspace
version of the integration variable g' 4 which is used for
an ordinary scalar field 4(x) in a background gravitation-
al field gz„(x) (g=detgz ). This latter choice of variable
is fixed by the requirement that there be no gravitational
anomaly. Note that @ =e '+ (8 terms) where
e —=dete, " (see Ref. 4).

%e will now assume that there is no local supersym-
metry anomaly for the system we are considering (see the
comment at the end of this paper). This means that the
generating functional Z defined by Eq. (1} is invariant
under the I.-gauge transformations of super Yang-Mills
plus supergravity. Thus

Now,

(J ) — D(C I/2 )D(@ i/2 —
)

Sl~
g@3 Z g@3

&& exp(S'[H, V, ri, ii]),

where

S'[H, , V, ri, ri]= f 1 zE ' (l.e )'/ rirl.

To evaluate Eq. (8) we need to define the measure. We
will not do this with any rigor here, but will just make
such assumptions as seem necessary to give the result one
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might (naively) expect [Eq. (22) below]. A proof would
require a full discussion of analysis in superspace which,
to our knowledge, is not yet available.

First let C= Ig:V g =0I be the space of left covariant-

ly chiral superfields. Take q to have no spinor indices for
simplicity. Assume firstly that the appropriate "inner
product on C 18 given by

P du =det(rlJ, [1+—,4 {5e )]gk) g da;

T

=exp g(i', 64 3(543)rl. ) ff dg,.

J

(rl, g)= f d z4'ii) (10)
= g(rlj, —,+ (54 )il. ) ada; . (20)

for rl, gE C. Then assume that there exists a complete set
of superfields rl;&C, orthonormal with respect to the
"inner product" of Eq. (10), which are the eigenstates of
the kinetic operator Cl+ with real positive eigenvalues, i.e.,

= 2Q+q; =k;g;,

5D(C'"q)= g f d'ze'q, —,'e-'(5e')q,
l

xD(~'"~) (21)

with A,; real and Cl+ being (V +R )(V +R), in the form
it takes when acting on superfields in C: l/2

(tr 1 ),D(4' rl),@3

where for an operator A:C~C we define

, (V R)V—~+RR+(V R ) —2 i (V~W~) . (12) (tra), =—g q, (z)Wq, (z) (23)

Notice that CI+ is self-adjoint with respect to the defini-
tion, Eq. (10), i.e., (Cl+il, ()=(rl,Cl+g). The proof uses
covariant integration by parts (see Ref. 4, Sec. 5.3b), as
well as the relation (J)= —,'4 (trl)g . (24)

[this requires regularization —see below Eq. (32)]. From
Eq. (8) we now conclude that

f d z+' (V' +R)= f d'zE

For left covariantly chiral (antichiral) q (il ), expand

e'"il= pa, g, ,

and define

D(4' rl)D(4 ' g) =—ff da;db
l,j

Now, under a variation 54 of 4, one has

5{a '"~)=-,'e-'"(5e')~ .

(13)

From Eq. (7) one concludes that

V (J., ) =-,'V.(trl), . (26)

One may derive the antichiral versions of Eqs. (23) and
(24), with (J,rl, k) replacing (J,il, 4) in a similar way.
The first term on the right-hand side of Eq. (7) can be
written, using Eq. {24),as

—f d z4 (V +R)[V (4 L )]—,'4 i(tri),

= ——,
' f d z[V (4 L )](trl),

= ——, f d z4 L V~(trl),

'zE-'L, V tr1, . 25

This is equivalent to considering instead a variation of rl:

5g= 6N (54 )g.

The variation of the measure, Eq. (14), under Eq. (16) can
then be found. Define il'=g+5rl and let a„' be the coef-
ficients in the expansion of 4' q' in terms of the g;. By
the completeness and orthonormality of the q; one has

g vp;(z)q;(z') =4 '(z')5'(z —z')

To calculate (trA )„as defined by Eq. (23), one can use
the g-function method in superspace. Define

g(z, z';s) —= g g;(z')(A, ;) g;(z) . (27)

(trA), = lim [A,g(z,z';s)] .
s —+0

(2&)

(We will use chiral superspace coordinates so that
V.=B ..) Then
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where the superspace heat kernel h satisfies

CI+h(z, z';t ) = — —h(z, z';t ), (trl),"'s=s b—&(z,z) . (35)

lim h (z,z', t ) =E5 (z —z') .
t~o

(30)

—fA,f dt t' ' g ri;(z')e ' i);(z)

dt t' '(E) 'i'h(z, z';t)(E ')
I'(s)

from Eq. (31). The g function provides a regularization
for the sum in Eq. (23) in the sense that one regulates by
selecting only the finite part of the right-hand side of Eq.
(28). Now expand the coincidence limit of h as

h(z, z;t)= g s b„(z,z)t'"— (33)

We will assume that the operator A, has no free deriva-
tives, so that the coincidence limit in Eq. (28) may be tak-
en directly on the g function. When this is not the case,
one must expand h (z,z';t) in a supersymmetric generali-
zation of the Schwinger-DeWitt expansion (see also Ref.
8).

Substituting Eq. (33) into the coincidence limit of Eq.
(29), which is to be put in Eq. (28), one sees that the regu-
lated definition of (trA ), is then

(trA ),"s—=A, s b4(z, z), —

The superspace heat kernel has been discussed recently in

Ref. 6. h must be covariantly chiral on z and z'. E is the
superdeterminant of the supervielbein restricted to chiral

~ ~ 1

superspace, and E'=E(z') h. is a density of weight —,

with respect to both z and z'. Equation (29) may be
proved as follows —formally, from Eqs. (30):

h(z, z', t)=(z'}e + ~z),
(31)

(z iz) =ES'(z —z'),

where we have introduced a Hilbert space, spanned by the
covariant basis densities (of weight —, )

~

z ). Then

g(z,z', s) = g i)t(z')(A, ;) 'ri;(z)

McArthur " has calculated s b—~(z,z) for the system
we are considering (he has already noted that this coeffi-
cient is proportional to the one-loop supertrace (J) ). If
one repeats his calculation using our conventions, one ob-
tains

16m s bq—(z,z)= —,
' 8' W~+ —,', W~pyW ~~, (36)

where the background fields have been taken to be on-
sheii for simplicity. Using Eqs. (35) and (36) in Eq. (26)
one thus obtains the superconformal anomaly equation,

(37)

This problem was suggested to me by Dr. P. C. %"est,
and I would also like to thank him very much for conver-
sations relating to it. This work was supported financially
by L. Pallaris and by the Department of Health and So-
cial Security of the United Kingdom.

which agrees with the results obtained by graphical
methods (see Refs. 4 and 12 and references therein).

It is anticipated that the appropriate superfield integra-
tion variables for all superfields interacting with n = ——,

supergravity can be fixed by requiring the local supersym-
metry to be anomaly-free. This could be shown by a
superfield version of the work of Ref. 5. [This would also
justify nongraphically the assumption we made above that
our system has no local supersymmetry anomaly, which is
expressed by Eq. (4).] Using these measure variables, one
should be able to show that the one-loop supertrace (J ) is
proportional to (trl),"'s, evaluated in the appropriate func-
tional space, for any superfield in an S=1 matter-gauge-
minimal supergravity system. Given this result, one can
prove the conjecture that only chiral superfields with un-
dotted spinor indices (and their conjugates) contribute to
one-loop superconformal anomalies. This has been shown

by McArthur " and occurs because (tr 1 ) s, i.e.,
s b&(z,z), vani—shes for all but these superfields.

Finally, we remark that it should also be possible to in-
vestigate local supersymmetry anomalies in the new and
nonminimal supergravities by considering the variation of
the appropriate functional-integral measure under super-
symmetry transformations.
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