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Chiral anomalies, nonminimal couplings, and Kaluza-Klein theory
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By making use of the heat kernel, the chiral anomalies for two- and four-dimensional Abelian

gauge theories with Pauli couplings (such as Kaluza-Klein higher-dimensional models) are derived.
These are reduced to the minimal anomalies after adding counterterms to the action and by redefin-

ing the axial-vector current; confirmation of these counterterms is provided by diagrammatic
analysis. Summing over the fermion modes, both the counterterms and the anomalies disappear.

I. INTRODUCTION 2iN—Tr[ysa~(x, x) ]I(4ni )

Upon dimensional reduction of an N-dimensional
Kaluza-Klein theory coupled to fermions, nonminimal in-
teractions of the resultant gauge fields to the fermionic
matter are generated. ' Known as Pauli terms, these cou-
plings make gauge theories power-counting nonrenormal-
izable and seem to be of no help in solving long-standing
difficulties such as the chiral fermion problem. Such
terms are also not invariant under a chiral transformation,
making them akin to a mass term.

The purpose of this paper is to study the chiral
anomalies of Abelian versions of such theories, using the
path-integral approach. ' In particular, we completely
solve the two-dimensional case, reproduce the result of
Clark and Love in four dimensions, and consider another
model, directly motivated by the original Kaluza-IGein
theory. For this final model we find, unexpectedly, new
terms due solely to the nonminimal interaction. However,
these extra contributions can be gotten rid of by gauge-
invariantly redefming the axial-vector current and supple-
menting the effective action with counterterms.

The paper proceeds as follows: The next section is de-
voted to general considerations: Secs. III and IV contain
the two- and four-dimensional cases, respectively; Sec. V
reproduces the results through Feynman diagrams and in
Sec. VI we discuss the additional contributions to the
Kaluza-Klein theory and their removal. The summation
over modes eliminates the modifications of the axial-
vector current, reducing it to the classical expression, and
it also removes the axial anomaly. There is an appendix
listing our conventions and some useful identities.

II. GENERAL CONSIDERATIONS

Take the 2%-dimensional theory described by

e' (*)=I dtPdfexp t I f(te)++)Q

where X represents some configuration «gauge field.
The chiral anomaly can be regarded as due to the nonin-
variance of the fermionic measure" or as the noninvari-
ance of the action under a chiral transformation. In ei-
ther case the result is '

with boundary condition

H (x,y;0) =5 (x —y) .

Expressions for the az(x, x) have been constructed. In
particular, if one defines a differential operator &„such
that

X=gi —&i, g=iel+X

is not a differential operator, then

ai(x,x)= —tX, (2)

a2(x,x)= —X /2 —Y""Y&„/12—[N&, [&z,X]]/6,

with Y„„=[&„,&„] In gene. ral, for g=ie)+X, the
choice for & is

e„=ta„+Iy. ~I/2

from which we get

X=i t)X i [y",t)„Xj —/2+ X~—
I y„,X I t yt', X I /4 .

The formal solution for the flat-space chiral anomaly in
two and four dimensions in provided by the coefficients
a, (x,x) and a2(x,x), respectively. However, as originally
discussed by Bardeen, it is possible to add counterterms
to the Lagrangian whose variations cancel some of the
anomalous terms. This is effectively a redefinition of the
action and an appropriate choice leaves us with the
minimal anomaly; see Balachandran, Marmo, Nair, and
Trahern for such a calculation of the chiral anomaly for
non-Abelian vector and axial-vector couplings in four di-
m ens1ons.

The evaluation of Eq. (1) for the cases of interest,
namely X=V+Ay5+ G o + iF cry5 in two di.mensions

where the aiv(x, y) come from the series expansion of the
heat kernel (for small t),

H (x,y;t) = i (4m—t) ~e "-" '-""'-g a„(x,y)t"

and the kernel satisfies the equation

—iaH(x, y;t)/at = —(t 8+x) H(x,y;t)
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and X=Ay5+ 6 o or X=P'+iF oy5 in four dimen-

sions, is straightforward. It is the determination of the
counterterms that is the crucial part of the next two sec-
tions.

for which the chiral Ward identity simplifies to

+2jGP~ 2)FP'& S ~x(g V )
6

l $A $FPQ gGP~ ~ K A,

III. THE T%0-DIMENSIONAL CASE

For the two-dimensional action, I P8g, Eqs. (2) and

(3) give the chiral anomaly to be

i tr[y5(g —M~ )]/2m .

Taking g=iB+P'+Ay5+ 6 0+iF oy5, .which we can
rewrite by virtue of Eq. (Al) as

8=i B+F'+ Ays+ Gy5+iF,

where 6 =G„„d'", F=F„„eI'", we see that the non-
minimal terms are similar to mass terms (for this reason
we would expect them to give no new anomalies). Now

g = —8 +V —A +6 F+i(B—P')+2iV 8

+iy5(el' )+2t O'"A„'B&+i(BG)yq —(BF)—2Fi3

2d'"V&A—„+2iFP'+ 2iFQ y 5+ 2i FG y s,
and here &p= l 8~+ Vp —ed+ + l ypF, so

& = —8 +V A 2F —+i(B—V)+2iV 8

i e„„((PA—") 2i e„„A'—8" (BF) 2—FB-
2eq„V"A "—+2iFF2i e„„y"A

' "—F .

Thus we find

X= ie& (8"V—')ys+lys(i3 A)+i(elG)y&+2iFAyq

+2I', e„„yI'A 'F—2G —2F —4&G„„F&"y

where we have used Eqs. (Al) and (A2) to simplify the ex-
pression. Carrying out the trace, expression (4) reduces to

Hence for our two-dimensional theory we can now
write the chiral %'ard identity as

i 8 +2i6"" 2iF"" S-
5F"" 56""

i.e., the minimal anomaly is just the usual one due to vec-
tor coupling.

IV. FOUR-DIMENSIONAI THEORIES

The four-dimensional chiral anomaly is given in the
standard way by

i trIy—,(X'/2+ Y„„Y""/12+[&",[&„,X]])I .

Owing to the identity (I):

y &cr&"=i el'"~cr~,

valid only in four dimensions, the two types of Pauli cou-
plings, namely G.o and F o.y5, are virtually the same but
with

2G~„~iF~

Gp„~—2IF~„.

Let us look at two instances.

A. Example of Clark and Love (Ref. 6)

This has the action

S= 4x I. + y, + 0.

leading to

N~ =LB'—l ysl7p+ +ysy Gp~

X =iy5i3 A+2A —28"G„,y —2G +iy5G. G .

Then

tr(y5X /2)=gi(A —6 )(8 A+6 6) .

Also

Yp
——2y5o„(pB„)A"+2iA o.

p +4iA "g„(„A„)

+216 ~G~gg + 2E p5g Q) G

+~~ YS V ~x'A.pfIJI, Gv)

=—e" (B„Vg)——(B.A )+ F„gG"—
We may account for the last two terms on the right-hand
side by redefining the action

S,rr=S+(i/2m) I (aF PG A) with a+P=—2—using the definition [pv] =(pv —p, )v/2. After some work
this yields (A„„=B„A„—BQ„)

—„try5Y„„Y""=, iA A" Si—A (8 A)+ —i—P'(A A )+ iG 8 A ——iG "6 "8 A ——iGGA—

+ —,iG GpgAPA —
3 iG~„G pGpgG~ /~,

where we have made abundant use of matrix algebra and trace properties. We also find
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—,
'
try [Ni', [N„,X]]=——', ia (a A) —',—ia (66)—,'i—G""a„a"6„,——', ia"(G„a„G"')+—"

, '6 (a A)

, i—G"A„a"6,2„+ ",—iG 66 .

Putting all this together and noting that the A 8 3 term
vanishes (as it should, because it violates the current-
algebra consistency relations, we get the chiral anomaly
to be the sum of five terms which we label by L;
(i = 1, . . . , 5) and define by

L] ——

L2 ——

1

6iA„„A"',
38 la (APA2) zi—a2(a A)+ 8iG2GG

, iG—~„GpGp26~~e ~ ,'iG——""a@a"6„2,

5A" " 56" 4n2, .

using the four-dimensional identity (I) stated earlier.
We recognize Li as the normal chiral anomaly for an

axial vector and no further comment is needed. As for

Li= —,'ia —(GG)——', ia"(G„„a„G""),

L4 ——8iG (a A) —", iG —"G~"a„A„,iG——'A„a"G~„,

L5 ———,&GGA

Then the relevant Ward identity reads

L2, we can compensate exactly for it by adding to the ac-
tion,

(i/12m ) f [2A A +(a A) —26 6
+16G qG~"6 „G~"+4G" aqa"6„2„] .

Compensating for the remaining three terms is trickier as
no simple counterterm gives any one of them exactly.
However, by adding

( i/—6~ ) f (2A 6 +4AqG "a~Gap —6 Ga A)

we may eliminate L4 and L5, generating only

( —l /677 )[a (6 6 )+4a„(6 ~a~ 6.,)] .

The first part cancels a term from L& and all that is left
(in addition to L, ) is

(2/3n' )aq(G""a"G„„G&'a"—6„„)
which we can account for by adding to S:

( —l /4'lr ) f (6 ~a„a&6.,/3 46„„a~a„—G"'/3) .

To summarize, we have redefined the action to be

f [2A'A'+(a A )' —26'6'+166.„6i'"6 .G~"+86""a„a"6.2.
12m

G~a„ail 6.—, 4A'6' 8A—„G &ai'6—.,+266(a A)]

and have found the chiral U(1) Ward identity

ia" i d' 6—&„& S,rr —— A&„A "".
5A" " 56" 24m'

whereupon

X=
2

Vq„rrl'"+2F i y5FF+(aqF—"~)yp 2mF o m— . —

Hence we have shown explicitly what Clark and Love did
implicitly; namely, that with a proper redefimtion of the
action, the nonminimal coupling gives no new anomalies.

and

Y„„=iVq„4ia(qF„)l„y y5+—8iF„„F2
cJ"

B. An example from Kaluza-Klein theory

Let us consider the case

S=f d4x ital{i i+ P+iF oy&+imyq')p . .

This is the action one obtains when reducing the conven-
tional five-dimensional Kaluza-Klein action to four di-
mensions, keeping the first excited mode. The treatment,
however, is quite general and we will discuss the effect of
including all the modes subsequently.

For this action one must take

&„=ia„+v„2y5y"F„.„, —

One then discovers

try5 —,X = —,iV& V""—SiF FF—4imV& F""+4im FF,
try, —„Y„„Y""=—, i@" ~ F„„F„2„F"g—'

try' —,
' [&i',[&@,X]]= , i a (FF)+ ', iF„al'ap—l'—

+ 3 i a"(F„a+i )+ ", iF FF . —

In accordance with our observations about the relation-
ship between the two types of Pauli terms, note that the
pure F and derivative pieces are very similar to those of
example A. In particular, they have the same numerical
coefficients.

After redefining our action to be
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S,if =S— (
'
, F—F 4—m Vp„F""+2m F

4m

16 E E EP/F~ l EP~gPE
pK YA, 6 p, v

,'F—~-a„a"F„„),

we can write the chiral U(1) Ward identity for this theory
as

(,a„(gyl'y p) ) 2m—(,gg) —i e'"I' F S,ff

' v „v~.+ —'-t(a„F.,)(a~F"')
P,v 3 P P

+2(a~F„„)(a„F"")].

The following question arises: Can one eliminate the
last two terms on the right of (5) by adding a (vector)
gauge-invariant polynomial contribution to the axial-
vector current and by including a counterterm in the ac-
tion'? The answer is yes. Let us modify the axial-vector
current by the extra piece (b)

r"
~r

5j p5
——— (F„i„al"F"+2'„a+"'), FIG. 1. (a) 2F cr regulator contribution to the axial diver-

gence. (b) 2M regulator contribution to the axial divergence.

and supplement the effective action by the counterterm

f (Fq,a F" +2F&'aqa"F„, ) .
6m

Then (5) will simplify to the conventional anomaly, with
the last two terms absent.

V. DIAGRAMMATIC ANALYSIS

Given the extra BI'-BEcontribution to the axial anoma-
ly (that is, before its ehmination at the end of Sec. IV), it
is worthwhile confirming the existence of this term by a
diagrammatic, perturbative argument, similar to Adler's
original work. In particular we seek to corroborate the
coefficient —1/3m occurring on the right-hand side of
Eq. (5). The most convenient and transparent way is by
extending the classical equation of motion

a(fy„y5$—) =2/(m+F cr)p

so as to include a Pauli-Villars regulator field f with a
heavy mass M and wrong spin statistics. In keeping with
the Kaluza-Klein structure, it will have a propagator

(k,p, v~k', p', v).
After extractin the external factor (k"e"

—k "d')(k'"e' —k' e'"), we are left with the Feynman
integrals

I„,„~= i Tr f—d pS(p+k) 2o„„S(p).rr„,y, ,

Iq„p„——+i Tr f d pS(p) o„„yi.S(p+k) 2M

)&S(p k') cr„„—y5 .

The argument for Pauli coupling is slightly more subtle
than the corresponding one for vector coupling. The
point is that diagrams 1(a} and 1(b) are each logarithmi-
cally divergent (potential quadratic infinities happily
disappear thanks to the four-dimensional identity,
yi~"y&=0). We have to look forward to a cancellation
of these divergences and the absence of possibly damaging
terms proportional to M . Fortunately this is exactly
what happens.

By introducing Feynman parameters as usual and
remembering that we are taking k =k' =0 for ease of
computation„we can simplify the integrals to

S(p) =(p —iMyq) '=(p iMyg)/(p M— ) . —

It will be enough for our purposes to consider the ma-
trix element (0

~ a(gyygN
~
y(k)y(k') ) with the photons

taken on mass shell and F„„ in Eq. (6} interpreted as
a„A„—aQ„. There are two one-loop fermion diagrams
[Figs. 1(a) and 1(b)j which can contribute to this process
in the limit M~ m, as well as their crossed counterparts

1 Tr( o'~~~ py 5)'I„* ~=2M f da f dp z z2PW
(p —M )

1 1 a + Xp~p
p (p'+2k. k aj M')'—
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with
X„~ =TrI(p' —M')o„~„y,+( —ka+O'P)o„„ys[k(1 —a)+O'P] „„

+o „ys[k(1—a}+O'P][—k'(1 —P)—ka]o „+( k—a+O'P)cr „[—k'(1 13—) k—a]o „ysI .

To show the cancellation of the infinities, we shall extend our momentum integrals to 2l dimensions, rather than apply a
momentum cutoff, and go to the limit I~2 at the end. Then

I +Ix=Tr(a ~ ~ys}limi-2 (4~)'
2M I (2—I) q t ll (2 —I)

(M )
' (M —2k k'aP)

I"(3—I)[k k'( —1+2a+2P—6aP) —M ]
(M —2k.k'a/3)s

—i Tr(o~~~ ~ys) 2M' dadP —2ln 1—,—1+2k.k'aP [M2 —k.k'(1 —2a —2P+6aP)]
(4n )' Mi M~ —2k k'ai3

which is perfectly finite. Also, the M terms go away.
Thus there is no difficulty in passing to the limit M~ ao

for the regulator so as to extract the anomaly

00 2 2

v v~-
8m

'
(a v )(a~ v ~ +

}M aP

«k k(I +I }„„„p — ——Tr(o„~„„ys)
8m

X I da dP(1 —4a —4P+ 12aP)

1
epvp v3~2

which precisely corresponds to the extra term

(I/3m )BiF„,B F

as determined through the heat-kernel method in Eq. (5).
There is little doubt that other approaches to regulariza-
tion (dimensional, path integration, g function, etc. ) will

yield the same answer.

VI. DISCUSSION

If we now identify F&„of the general result in Sec. IV
with xV& as in Kaluza-Klein theory, then the very last
term on the right-hand side of Eq. (5) vanishes identically
by virtue of the Bianchi identity for electromagnetism,
B„V"'=0so no counterterm is required for it. However,
the previous terms i}i'V B„vpersist. This means that we
disagree with the formal results of Duff and Toms' who
claim that under a chiral transformation the change in the
measure of the fermion fields for the Kaluza-Klein model
is simply the same as conventional vector theory. Rather,
we have demonstrated that there are many new terms in
the anomaly, associated with derivative couplings, before
it is minimalized and reduced to the conventional value.

At this point let us take into account all the fermion
modes and sum them over. %'e now show that it is un-
necessary to modify the classical axial-vector current or to
add counterterms to the action. Reinstate the mode
dependence of the charge in front of VV and consider the
sum

Thus the summation gives a zero chiral anomaly overall,
consistent with the knowledge that there are no chiral
anomalies in an odd-dimensional space and agreeing with
the end result of Duff and Toms; the sum over modes not
only nullifies the counterterms but also the ordinary
anomaly.

As a final point, we note that, following a suggestion of
Delbourgo and Jarvis, " if we use the five-dimensional
Christoffel symbol I ~s„———a V„„/2, we may express the
term on the right-hand side of (5) as

, , &"' l~s.lps —,&"i (~ l„s )(~ I ps }

It must be admitted that this does not give us much in-
sight into the structure and origin of the anomaly.

APPENDIX: ON CONVENTIONS AND IDENTITIES

%e fo11ow the notation of Itzykson and Zuber. ' Addi-
tionally, we sha11 abbreviate G„„G" by G and G„„G""
by GG, where we define

In two dimensions we use the identities

l'p, Tv= —«pv75+'ttIpv ~

= —g»q

(A 1)

(A2)

—[I+2((0)] (8 V p)(a" V ~)+
3m'

where g(z) is the analytic continuation of the Rieinann g
function. Two of its properties are'

g( —2m)=0, m =1,2, . . . ,

g(0)= ——, .
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In four dimensions,

[~""r"I =2&~rsrt
[tt""r"I=2t (r"n"" r—"n""»

I cr"", rt" I =2rit ri 2—ri" ri +2iet' r, ,

and, since for any vector 8"„

for S and T antisymmetric tensors. Special cases of this
last identity are used frequently and referred to as Eq.
(A3); for example,

ti GG =4t)„t)"(G„„G""),

me cs,n derive (a„F.~)(y F t') =2(ag„.)(a~F~)+2(a~r„.)(a/~ ) .
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