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Using the equivalence with a derivative-cou ling model, mass perturbation in the Thirring model
is investigated. We show that, for 4%2— 3) &P & Str all ultraviolet divergences cancel. Finite
composite operators are constructed in this range. %ard identities and equations of motion are dis-
cussed.

I. INTRODUCTION

The usual approach to perturbative studies of models
consists in separating the Lagrangian 1. describing the
system into two pieces Lo and L;«.

L =Lo+L
with I.c a free-field Lagrangian and L;„, containing all
relevant interactions. This division is dictated solely by
our ignorance and inability to produce solutions for more
general field equations. It is certainly desirable to have at
one's disposal a perturbative scheme with Lc already in-
corporating as many symmetries as possible. Of course, if
a project has too broad a scope it is probably untenable.
We have, therefore, limited our attention to tnass pertur-
bation around scale-invariant theories. Barring the unin-
teresting and trivial case of perturbation of free-field
theories, this brings us immediately to the context of some
soluble two-dimensional models. A prominent member of
this class is the Thirring model which has contributed so
much to the development of ideas in field theory. ' In par-
ticular, the reader should recall the amazing equivalence
of this fermionic model with a bosonic theory, the sine-
Gordon model. 2 To fix a notation, let k be the Thirring-
model coupling constant in Klaiber's definition. ' Then
the sine-Gordon parameter P which appears in the in-
teraction cos(PP), is related to k by

k P (1.2)

Attractive and repulsive regions correspond to P &4n.
( k & ()) and Pi ~ 4m ( k ~ 0). P2 =4m corresponds to a free
fermion theory Mass p.erturbation played a basic role in
demonstrating this equivalence. Indeed, the result identi-
fying the zeroth-charge sectors of both theories was first
obtained by Coleman, comparing the forrnal mass pertur-
bation for the Thirring model with the perturbation in
cos(PP) for the sine-Gordon theory. It is one of our ob-
jectives to strengthen these results by analyzing in detail
the ultraviolet behavior of mass perturbation for the
Green's functions of the Thirring model. This is not an
entirely trivial task since in principle there could be diver-

gences which should be kept under control (this remark
extends also to all two-dimensional scalar theories with
nonpolynomial self-interaction).

The Thirring model has other interesting connections.
It is also equivalent, in a sense to be made precise later, to
a derivative-coupling model describing two massless sca-
lar fields Pi and $2 interacting with a massless spinor field

P via the interaction Lagrangian

I..t =g i (ter"4) dt 4 i+g z(Pr")"4)r)t 4z (1.3)

The model (1.3) will be called the derivative-coupling
(DC) model. If g, =O it becomes a model studied by
Schroer. The massive model with g&

——0 was considered
by Rothe and Stamatescu.

To be equivalent to the Thirring model, the couplings
g& and g2 cannot be independent, but are related to
Klaiber's constant k by

2 1/2

g, =k 1+ k k
2m 2m

(1.4)

g2
2 2

1+ 1+

Mass perturbation around a massless theory is plagued
by severe infrared divergences. In such a situation, one
should attempt to make partial resumrnations to achieve
finiteness. But, without a guiding principle, this is a
hopeless task. We shall, therefore, adopt an infrared regu-
lator before proceeding. A detailed discussion of the ul-
traviolet behavior is then done and the following result
obtains.

(1) For P &4tr the more divergent contributions are
precisely those of the unperturbed model. We found that
only for 4m(2 —V3) &P the Thirring Green's functions
are well defined. Parenthetically, this does not mean that
the Thirring model is pathological for below 4m(2 —v 3);
the Wightman functions as given by Klaiber are, for ex-
ample, well defined for all values of k. The value

p =4sr(2 —v 3) is the point where the two-point Grmn's
function becomes singular as a distribution. We could
still continue analytically beyond this value, decreasing P,
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II. A DERIVATIVE-COUPLING MODEL

From a technical point of view the study of mass per-
turbation in the Thirring model can be greatly simplified
if one takes advantage of the equivalence of this theory
with the derivative-coupling model specified by

L = ge7$+ -,
'—(B„gi) +' (B„t )('2

2

+g i(itr"4)d~4i+gz(lr"r'4)d„A . (2.1)

At the classical level the equations of motion derived
from such a Lagrangian are

but this process will lead to more and more divergent
Green's functions. Finally, at P =4m[4 —(15)' ] all
Green's functions will become divergent and no continua-
tion to lower values will be possible. %e also mention
that in the interval 4(2—W3) ~ P ~ 4n the only singulari-
ties are volume divergences which, as usual, cancel be-
tween numerator and denominator in the Gell-
Mann —Low formula.

(2) For 8n &P ~4m there are some additional diver-
gences associated with vacuum bubble diagrams. These
are again canceled by the denominator of the Gell-
Mann —Low formula.

(3) Formal analysis indicates that the energy density is
unbounded below if P ~8m. . However, general field-
theoretical arguments show that, already for P &4m, the
field operator cos(PP) {or, equivalently, fP) is not well de-
fined by just Wick ordering. Concerning this problem, we
verify a conjecture by Swieca. We found that a well-
defined operator is obtained by doing a subtraction of the
vacuum expectation value besides the usual %ick ordering
prescription. We also discuss the construction of other
composite operators. In particular this is done for the
current which appears in the field equation.

For P ~8m the theory is unrenormalizable and some
drastic change in the approach is necessary.

The paper is organized as follows. In Sec. II the DC
model is introduced, first at the classical level. We then
show that the fermionic Green's functions of the model
are, for certain identification of the coupling constants,
equal to those of the massless Thirring model. The sec-
tion ends with a brief discussion of composite objects as
the fermionic current and the mass operator. Section III
begins the discussion of mass perturbation by giving the
rules to construct the relevant amplitudes. An infrared
cutoff is introduced and the degree of superficial diver-

gency of an arbitrary amplitude is established. The UV
behavior is extensively analyzed in Sec. IV where we also
discuss the modifications, if any, in the case of composite
operators. Equations of motion and Ward identities are
discussed in Sec. V. Some remarks concerning the elim-
ination of the infrared cutoff are presented in the con-
clusions. %e have also included an appendix, summariz-
ing Klaiber's notation on the Thirring model.

a'P, = —g, a„(Pr"y),
g—,a„(qr&r'y),

g—i(~i 4i)r"0 g—z(d, dz)r"r'0

(2.2)

(2.3)

(2.4)

r"r'=&"r 0 1

—l 0

we could use (2.2) and (2.3) to reconstruct the current

8"$2, 8"=0""8„. (2.5)

Comparing this expression with the equation of motion of
the Thirring model

g(k-r"it)r„it (2.6)

we see that with the choice g~
———gz ———g, the two

models have identical fermionic sectors.
The content of the model (2.1) is actually trivial. As

both vector and axial-vector currents are conserved, {()&

and $2 turn out to be free fields. Moreover, from (2.4) one
easily gets

exP(lglgl+l1 gzfz)$0

with f0 a free massless Dirac field.
The next step is the quantization. It is clear that the

equivalence will continue to hold if the same quantization
prescription is adopted for both models. At this point it
may be instructive to stress a very fundamental difference
between the classical and the quantum descriptions of a
field theory. The classical equation of motion does not
specify a model, because quantum fluctuations make the
interaction terms undefined. To promote these formal ex-
pressions to the status of bona fide quantum operators re-
quires detailed information about the short-distance
behavior of a product of fields. In general terms, this im-
plies that field equations and their solutions must be given
simultaneously to, self-consistently, characterize the
theory In our c.ase we suppose that {{),and $2 will still be
free fields. However, since they are massless an infrared
regulator is necessary to achieve finiteness. The infrared
regulated two-point functions are

( &pi(x)yi(O) ) = ( &yz(x){t)z(O) )

=DF(x) = —(1/4m )in' ( x+i 0—), (2.7)

where DF(x) satisfies d DF(x)= i6(x) —Becaus.e of the
infrared cutoff, the Hilbert space of the states constructed
from the fields pi and $2 does not have a positive-definite
norm. In spite of this, exponentiated field:exp[ iaP(x)]:
are in a good shape, provided a certain charge-
conservation law is obeyed. The precise statement con-
cerning the last remark is that positivity holds in the sub-
space reconstructed from Wightman's functions satisfying
a charge-conservation law:

( T:exp[iai{t(x~ )]::exp[iazg(xz)]::exp[iavP(x„)])=exp —g a;aIDF(x; —xj ) 5~
l gJ

(2.8)
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Thus, at least for small g, and g2, the fermionic sector could be described by the field

i)lr = exp(igi4i+igzA):4o . (2.9)

Indeed, using (2.8), the N-point Green's function can be computed and then compared with Klaiber's. We have (see the
Appendix)

~ TCT(xi ) CT(xx)4T~J i } eT~J'N) } exp y (gl +g2 y, yJ. )DF(x xj')
I gJ

&&exp g (gi'—+g~'y'y'»F(~ ~ )
I (J

&&exp g ( gi —+g2~r', r,', »~(x —~, )
~ ~

&«Tfo(xi) 40(x~)400 i } i)'oU~) &, (2.10)

~ =g) s &=g2

a =k — 1+ k
2'

'2" 1/2

a=k 1+ 2'

in which we should identify

(2.11)

the two models were at the operator level. We must
stress, however, that the identification holds only in a
weaker sense, between the Green's functions of the Thir-
ring model and the corresponding functions of the DC
model. In that sector, the current matrix elements de-
pends only on g1 and g2 and no problem appears —see
our formula (5.2} for an explicit verification of this state-
ment.

Using (2.12), the field equations become

where k is the Thirring-model coupling constant as de-
fined by Klaiber. Note that gi g2 ———k, implying that
one of the g's is imaginary.

%'e are now in a position to write down all the opera-
tors appearing in the equation of motion in terms of P, ,

and Pp. The current, for example, ean be identified
with

1
g, =—(g i~,(() i

—gz~,A)
k

(2.12)

At first sight, from the observation at the end of the
last paragraph, it seems that this current is not Hermitian.
This would be indeed the case if the identification between

Qy(x)= ——lim[g"(x+6)ypijl(x)+y y(x)gi'(x —e)],k .

2 a~0 p

(2.13a)

a'y, = a~~,k

g1

8 P2 —— B~" .
g2

(2.13b)

(2.13c)

Composite operators can also be constructed as local
»mits of products of the basic fields. In particular,
Johnson's limiting procedure furnishes the current' (ex-
amples of other possible regularizations can be found in
Klaiber's paper ')

t 2 —1/2
1 kj"(x)=—1+
4 2m

lim g Z(e}[f(x+e)y"g(x) y"P(x)—g(x —e)],

(2.14)

Z(e) =exp[ —(gi'+g2'»F(e) l

which, as discussed elsewhere, differs from (2.12) by a fac-
tor containing a spurion field, i.e., a field which has no ef-
fect on the fermionic sector. For later reference, we also
write the mass operator as a limiting process

&[PTA](x)=»'~ exp[ —
I
gi' —g~'

I
D~(~) l

Xgr(x +e)Pr(x)

III. MASS PERTURBATION

In Klaiber's operator approach the field solution of the
Thirnng model is %'ntten as

fT exp(iaj +iay j).i.((0——, (3.1)

with the understanding that the y matrix acts immediate-
ly on the left of the $0 field.

=:exp(2igzr A)::PAo (x) (2.15) where j and j are the potentials of the free vector and free
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axial-vector currents, respectively. As j, j, and $0 are not
independent, the study of mass perturbation may become
rather cumbersome. In this respect the representation
(2.9) employing independent fields is clearly superior and

I

will be adopted from now on.
The formal study of the perturbative series can be done

by defining Green's functions via the Gell-Mann —Low
formula

(Tl(( ) . y( )y(y ) q(y ))=
Tgi(xi) ' ' PT(x~ )QT(yi) ' ' ' QT(yjv)exP i I I. 1d x

)
TexP / I I td x

(3.2)

where I.;„,=N[PTPT] is the mass operator and
denotes the solution (3.1) of the Thirring model. The
Feynman amplitudes are obtained by expanding the ex-
ponential and applying %ick's theorem, always keeping in
mind the selection rules (2.8). For that it is useful to use
the identity

:exp(2igz) 0):f0=:exp(—2igzk):4101

+:exp(2igzk):462 . (3.3)

We shall now study the ultraviolet behavior of the in-

tegrals so constructed. To simplify the discussion this
will be done explicitly in the Euclidean region. A generic
amplitude Io consists of a product of propagators of vari-
ous types which, in a graphical representation, are associ-
ated with the lines of a graph G. The vertices of G are as-
sociated either with the interaction Lagrangian or with
external fields. In momentum space the possible propaga-
tors are (1) fermion propagator p/p, (2) exponentiated
fields. These are of various types, depending on the con-
tracted fields o =gz /4ir= —,

'
(p /4ir —1), p=g 1 /4~

= —o/(1+4o ).

c.

h.

ContractionPropagator

( 2)—4n —1 :exp(2igzpz): with:exp(2igzpz}: or
:exp( —2igzpz): with:exp( —2igzpz):
:exp( —2igzpz): with:exp(2igzpz):
:exp(2igzpz): with:exp(igzpz): or
:exp( 2igzpz): —with:exp( —igzpz}:
:exp(2igzp21 with:e. xp( —igzpz): or
:exp( —2igzitiz): with:exp(igzpz):
:exp(igz((tz): with:exp(igzpz): or
:exp( —igzpz): with:exp( —igzpz):
:exp( igzpz): with:exp( —igzpz):
:exp(ig i/i): with:exp(igi/, ): or
:exp( —ig 1 pi ): with:exp( —ig; $1):
:exp(ig1$1): with:exp( —ig, $, ):

(p 2)4cr —I

( 2) zn 1——

(p 2)ze —1

( 2)—a —1

(p2)n —1

( 2) —p —1

At this point we could introduce a graphical notation to
represent the above propagators, but this is not essential.
In the figures, all these propagators are generically
represented by wavy lines. The precise meaning of each
of them must be clear from the context. In any case, it is
rapidly seen that a regularization is necessary to avoid in-
frared divergences. To keep changes at a minimum only
propagators associated with the pz field will be modified

(recall that L;„, does not depend on $1). Because of
charge conservation the vertices of a graph G can be
separated into the following two sets. To the first set Vi
belongs the vertices which are connected to the external
vertices of G by fermionic lines. The other set Vz con-
tains the remaining vertices of G. The fermionic lines,
connecting the vertices in Vz, form therefore closed loops.
The regularization that we will employ can now be
described.

(1) If an exponentiated propagator links a vertex of Vi
with a vertex of Vz, we make the replacement

exp[aDF(x —y}]~exp[ah F(x —y, m')], (3.4)

(p')' (p'+m') (3.6)

This regularization is not equivalent to (3A). Indeed, the
Fourier transform of the right-hand side (RHS) of (3.6) is
not an exponential of a massive propagator but the func-
tion

2 +2m K +1(mr)
(

2)a+1 (3.7)
I ( —a) ~+1

where K~+1(mr) is a modified Bessel function. We ob-
serve that the substitution (3.6} gives a better large dis-
tance behavior than (3.4), namely, if r~~ then (3.7)
tends to zero. The forthcoming discussion will clarify the
reasons for adopting two kinds of regulators instead of
only one.

Returning to the study of the ultraviolet behavior of the
regulated Feynman integrands, we recall the definition of
a generalized vertex. This is any subgraph obtained by de-
leting some of the vertices (and all lines meeting at these
vertices) of the original graph. Only proper one-particle-
irreducible generalized vertices can generate counter-
terms. Consider, therefore, a proper generalized vertex y.
We want to calculate the degree of superficial divergence
of p.

Let then p&, p2, I&, and I2 be the number of vertices of
y associated with the fields:exp( —2igzpz):goigoi,

where b,F(x,m } is the free propagator of mass m. The
modification does not change the ultraviolet behavior
~hereas at large distance we have

(~ 2)l/2

exp[ahF(x)] ~ 1 . (3.5)

(2) Otherwise, if both ends of a line are vertices in V,
(or in Vz ) then the momentum-space propagator is
changed as
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where i=i, +l2+li+l2, p =p, +p2, NF is the number
of external fermionic lines,

f=(ii+i2 ii —i—2}'

ii =(2pi —2p2+li+li —12 —lp)

(3.9)

(3.10}

IV. ULTRAVIOLET ANALYSIS

We first consider the diagrams of the unperturbed
theory for which NF ——p =f=h =0. We then have

r

3 4o.
5(y) =2—[ —,

' —(cr+p)]l =2- l.
2 1+4o

(4.1)

From this formula we see that the n point Green's
functions are well defined for

exp(2lg26) |(02402, '.exp(igifl Eg2$2) $01 and
:exp(igiPi+ig2$2):fo2, respectively. Similarly let ii and
I2 indicate the number of vertices associated with
:exp( —ig, gi —igz$2):goi and:exp( —ig i/ i+ig2$2):$02
With this notation, the degree of superficial divergence of
y will be

5(y) =2—p ——,i — + (i —f)+ (i+4p —h),
S2'

2 4m err

(3.8)

FIG. 1. Divergent graphs without external fermion lines.
Solid and wavy lines represent fermion and exponentiated prop-
agators, respectively. The + (or —) sign at the vertices indi-
cates the corresponding sign of the exponentiated field.

larization (3.6), no cancellation of the external lines would
occur. The divergence is partially removed by combining
these graphs with the corresponding (disconnected) dia-
grams coming from the denominator of the Gell-
Mann —Low formula. In Fig. 2 we show a graph which
becomes disconnected when the upper bubble is reduced to
a point. For o g —, the divergence is only logarithmic and
is entirely removed in this combination of graphs. For
—,
' (0.& —,

' the divergence becomes linear but, because of
Lorentz covariance, no counterterm is necessary. For
cr & —, (P & Sir), 5 increases with p and the model becomes
unrenormalizable. So, from now on we will restrict the
analysis to o & —,.

(2) NF 1, 1=1.——Because of chiral symmetry and
charge conservation, f= h =1 and therefore

-v 3+1« ' v 3+1 . (4.2)
5(y) =2—(1—4o )p —[—,

' —(0+p)] ——,
'

cr p— —

= —(1—4o)p &0.
Outside this interval the dimension of fr becomes

greater than one. In the repulsive region, the point

g2 ——m(v 3+ I) is above the point p =Sm where, as we
will see, the model becomes unrenormalizable.

The a priori inexistence of the Green's functions of the
unperturbed model is without physical consequences. The
cause is that the divergent parts are proportional to the
product of 5 functions. The arguments of these 5 func-
tions are the coordinates' differences of the external fields.
Therefore, the divergent parts can be absorbed into a
redefinition of the time ordering. By the same reason, the
divergences of the full interacting theory associated with
graphs with at least two external vertices (i.e., 1&2) can
be eliminated by a mere redefinition of the time ordering.
However these procedures cannot be implemented by the
addition of counterterms to the Lagrangian.

From the above observations, it is clear that we need to
consider only the cases with 1 &2. Within this constraint
we examine each possibility.

(1) NF ——0, 1=0. Some illustrative graphs are depicted
in Fig. 1. Power counting, Eq. (3.8},gives

5(y) =2—(1 4cr)p . —

Thus, for cr & 0, 5 is negative. For 0(o & —,', which corre-
sponds the interval 4n (P &Sir, 5 is less than two. As
XF——0 and also because of chiral symmetry p&

——p2.
Therefore the reduced vertex V(y), obtained by contract-
ing the graph y to a point has no lines. Actually, for this
to happen it is important to have a regularization like
(3.4). Differently, had we uniformly employed the regu-

(3) NF 2. Since in——this case i must be even, we have to
consider only the possibility l=0. There are two subcases.

(a) p is even. We have then f= h =0. Thus

5(y) =1—(1 —4cr)p .

For 0 &0 there is no divergence. For cr&0, 5 is less
than one. However, as p is even the number of internal
fermion lines of y is odd. Therefore the divergence is ab-
sent if symmetric integration is employed.

(b) p is odd. Here f=Obut h=4. Thus

5(y) = —(1—4cr)(p —1)&0 .

(4) NF 3, /= 1. We ha——ve the following.
(a) p is even. Thus f = h =1 so that

5(y) =2—[(1 4cr)p + —, —(—o+p}]+—', +o+p
= —1 —(1—4o)p (0.

FIG. 2. The lines connecting the vertices 3 to 1 and 2 (and 4
to 1 and 2) cancel, when the bubble is contracted to a point.



(b) p is odd. Here, again, there are two subcases to con-
sider.

(i) f=6 =1. Weget5&0.
(ii) f= 1 but 5=9 [i.e., number of (P, +P, )—number of

($2+$2)=3]. From this results

5(y) = —1 —[(1—4cr)p+4o] & —3 .

(5) Now consider the case with XF &4 arbitrary and
1=0. We then have f=O and, depending on y, pi —pz
can be equal to 0,1,2, . . . , EF/2. If p, =pz then the &F
external fields will consist of equal numbers of go„go2,

and ir'Oz. In the other extreme case, i.e., when

pi —pz EF—/—2, all the external fields will have the same
index. Remember now that, because of charge conserva-
tion, the ferinion hnes can end or begin only at the ver-
tices associated to the external fields. Let us treat a gener-
ic case in which the fermion lines link the external fields
in the following way: xi paths connect xigoi external

fields to xiii external fields, x2 connect x2$02 to x2$02,
ai connect a&Poi to a&go2, and a2 connect a2$02 to
az'~('oi. Clearly, x, +xi+a i+a2 ——Xz/2. If this graph is
divergent, a typical counterterm will be formed of a cer-
tain number of derivatives acting on a field monomial
composed of the same Po's as the external fields. The
counterterm can be simplified using Bo~b~=Bi/2 (and
Botgi ———Bi/i). Indeed, ibid=O since el cuts a fermion line
leaving a result which contains exp[ah, F(0)] as a factor.
This is zero if a convenient ultraviolet regularization (di-
mensional, for example) is employed. Because of this and
Fermi statistics, there is a minimum number of deriva-
tives which should be applied in order to get a nonzero re-
sult. For example,

5,1(„a,it„a,q„a,y„-(a,q„)'(ag„)2=0 .

It is not difficult to see that the minimum number of
derivatives allowed is

D = —,
' [(xi+a i )(x i +a i

—1)+(x2+ap)(x2+a2 —1)+(x i +aq)(x i +a2 —1)

+(x2+ai)(x2+ai —1)]&xi +x2 NF/2 . —

ls
On the other hand, the degree of superficial divergence

5(y) =2—(1 4cr)p—XF/2 4—cr(xi ——x2)

{TP(x)g(xi) g(x~)f(yi) . . P(y~))

with 0 equal either to gP or to gy g have a special vertex
V~ associated with W. However since this vertex has the
same structure as those coming from the interaction La-
grangian, the power counting will still be the same as be-

For cr) 0, 5 is negative. Also if —(v 3 —1)—„' &cr &0,
then D g 5 and the divergence will be canceled. The case
with XF arbitrary and I= 1 can be analyzed analogously
giving the same result.

This concludes our discussion of the ultraviolet
behavior of the Green's functions. Summing up, we have
shown that for 4m(2 —v3)&P &8m the only possible
divergences are volume divergences which, nonetheless,
cancel in the Gell-Mann —Low formula.

Now it is time to justify the use of the two regulators
(3.4) and (3.6). The form of the regulator (3.4) enforces
the cancellation of "vacuum bubble*' diagrams, as ex-
plained [case (1)]. Since we want to keep $0 massless, due
to (3.5), then we also need the regulator (3.6) to hold in-
frared divergences away.

A similar discussion can be done for the construction of
normal products of the bilinears, t7$ and Py P, which are
very important for the boson formulation of the model.
The graphs contributing to

~ [0y'0] =:fy'0: (4.4)

are well-defined operators for p &8m [we stress that the

{:~:)in (4.3) is necessary only for 4m & P & 8rr where it
is divergent] ~ This agrees with Swieca's conjecture on
composite operators of the sine-Gordon model.

V. CURRENT CONSERVATION AND EQUATIONS
OF MOTION

For the massive model we can still define a current
analogous to (2.12)

g"= —
(g i &4i+gz~ "42) .

k
(5.1)

Indeed, this current is obviously conserved and satisfies
[ZT=&T(xz) . . VT(x~)PT(vi) PT(&~)]

fore. Therefore, for 4m(2 —v'3) &P &8n the only new
divergences correspond to subgraphs which contain V&,
have pi ——p2, and have no external fermion lines. They
are of the type (1), discussed previously. From the re-
marks there, it is clear that the divergent parts, which ap-
pear only for 4m &P & 8m. , can be identified with contri-
butions to the vacuum expectation value of 8'. Now, be-
cause of charge conjugation (or parity) this vacuum expec-
tation value is zero if 8=Py P. So we get the results
that

(4.3)
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( Tg"(x')I(7(x)Z7L;„g(zt) ' L;„,(z ))= g
2

8' DF(x' x—}+g DF(x' x;—) g—DF(x' y—;)
l =2 i=1

2 N
t)" y 'EF(x' —x)+ g y„'BF(x' x, )—+ g y» b,»(x' y;)—

I =2 i=1

2
282 -~+ 8" y, h»(x' —z; ) ( Tgr(x)ZTL;„, (zi ) L;„,(z~ ) ),

i=1
(5.2)

which shows explicitly the absence of further divergences. However, if we want to define the product g (x)g(x), we
should let x ~x. In this situation additional divergences can appear. To see that in detail we have to consider two pos-
sibilities. (1) If x and x are linked by just one line (propagator) we get graphs of the type shown in Fig. 3(a). These
divergences are not dangerous since they can be eliminated by Wick ordering. (2} If any path hnking x to x' consists of
more than one propagator, we obtain graphs as that in Fig. 3(b). Because of (5.2), the graph will contain a line associated
with 8"DF(x —to) or 8'b,z(x —to). This factor can be imagined as coming from the differentiation of an exponentiated
propagator. In any case, the graph will be more singular, because of the additional momenta factor. Instead of giving an
unmotivated definition for its finite part, we first examine the field equations where such a product occurs. We have

i Q ( Tf(x)Z )=k ( T:y~i'g(x)Z ) +M I exp[2g2 5» (0)] ) tt ( Tg(x)Z )

+i g ( —1)'+ 5(x —y;)(exp[gi D»(0)+g2 bF(0)]Inst(TZ», ), (5.3)

where Z is equal to ZT with PT replaced by g, and Z„ is

the same as Z with g(y; }omitted. The index R is to indi-
cate that the quantity in curly brackets is infrared regulat-
ed as in (3.5) [or (3.4)]. Note that, because of the factor
exp[2gz i)tp(0)], the second term in on the RHS of (5.3}is
absent if o &0. Moreover, for t» & 0 this term is divergent
and should be used to compensate a corresponding diver-
gence in the first term. At o =0 (5.3) becomes the Dirac
equation for a free massive spinor field P.

The derivation of (5.3) is standard: In momentum
space the graphs contributing to the left-hand side of (5.3)

have the structure shown in Fig. 4. Writing p =p+It —iz

we get two terms In th. e first of these two terms the
p+k factor is used to cancel a fermion propagator. This
produces the second (if the canceled propagator linked x
to an interaction vertex} and the third (if the canceled
propagator linked x to an external vertex} terms in the
right-hand side of (5.3). The remaining term, on the other
hand, is easily recognized as a contribution to
( T:yp"P:(x}Z).

It is now clear that a useful definition of the finite part
of the product of the current with the field is

( TN [y&g„g](x)Z ) = ( T:y~"P:(x)Z) + I exp[2gt EF(0)]—1 I a ( Tg(x)Z )
M
k

N

+
k y ( —1}'+"Iexp[g1'DF(0}+g2'~F(0}]—I ) 8 & TZ»,. &

i=1

With this definition, the field equation takes the usual form

(5.4)

(is) M)(, TQ(x—)Z) =k(, TN[y~"g](x)Z)+i g ( —1)'+ 5(x —y;)(TZ» ) . (5.5)

FIG. 3. Graphs contributing to hm„g"(x)g(x'). (a) corre-
sponds to the situation where x and x' were linked just by the
indicated wavy line. Any other possibility produces graphs like
(b)- FIG. 4. Graphical structure of the LHS of (5.3).
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FIG. 5. The only divergent graph 111 tile regloll 41K (P & gal,

after the resummation (5.6). The vertex with the cross corre-
sponds to the additional interaction:Pot/o. coming from the
resummation (5.6).

it-
X„

VI. CONCLUDING REMARKS

In this study of mass perturbation in the Thirring
model we have verified that the Green's functions are well
defined for 4a(2 —v 3) & p & Sn In t.his interval the only
divergences are those associated with vacuum bubbles
which cancel in the Gell-Mann —Low formula. For
P & Sn the theory is not renormalizable: The degree of
superficial divergence increases without bound with the
order of perturbation, and our methods are no longer
applicable. Besides that, at P =Sm the propagator associ-
ated with a line linking two interaction vertices develops a
nonintegrab1e singularity.

%e have also sho~n that the mass operator can be
made finite in the interval 4m(2 —W3) &P & Sm by sub-
tracting its vacuum expectation value besides the usual
%'ick ordering. Up to third order, a similar result has
been obtained in Ref. 8.

To avoid infrared divergences, it was necessary to intro-
duce auxiliary mass regulators. The elimination of these
regulators requires in principle an infinite resummation of
the perturbative series. A possible way to accomplish that
could be by writing the interaction as

FIG. 6. All vertices of the above graph have exponentiated
fields (for simplicity, exponentiated propagators are not explicit-
ly shown), The generalized subgraph made with the vertices on
the fermionic loop has a degree of divergence increasing with N,
if cr (0.

Amazingly, the same procedure does not work for
P &4n It .happens that, in this region o is negative,
which favors the appearance of new divergent graphs.
This is illustrated by the graph of Fig. 6 which contains a
subgraph divergent for o & —1/2N (the associated coun-
terterm will be a cosine of a higher harmonic of 2g2$2).
We could say that, in this region, the net effect of the
resummation is to replace infrared by ultraviolet diver-
gences. A different resummation procedure, evading this
situation would be highly desirable.
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&[Crt/ l =:[exp(2tg2y'0z) —I]::ko0o:+:Pot/'o: (6.1) APPENDIX

and then transferring the last term to the unperturbed La-
grangian. This would provide a mass to the free fermion
propagator and possibly would eliminate the infrared
divergences. But more graphs will have to be examined
and they could generate additional ultraviolet divergences.
The outcome of this analysis depends on the particular
value of P . For 4m &P &Sm the result is satisfactory
since there is only one divergent graph, shown in Fig. 5.
Such divergence can be compensated by adding a counter-
term const Xcos(2g2$2) to the Lagrangian. The arbitrari-
ness in the finite part can be fixed by imposing a definite
value for the mass of the $2 field.

For the reader's convenience, we collect here some re-
sults on the Thirring model. Unless by the following
minor technical simplifications, the notation is the same
as in Klaiber's paper

(a) We restrict the (Lorentz) spin to be —,
' .

(b) We use the current operator in the particular form
given by Johnson. '

(c) Instead of a non-Lorentz-covariant regularization of
the two-point function of the scalar and pseudoscalar
fields, we use the regularization (2.7) and (2.8) which
guarantee positivity in the fermionic sector.

The model is defined by the set of equations

ii)t/(x }= — y"lim[j„(x +e)g—(x)+p(xj)„(x—e)],k
(A 1)

j"(x)= , 2-, &z lim g exp[ —(a —a)D (e)][/(x +e)y"g(x) y"t/(x)P(x —e)]—

(A2)

v/i(x) =expIi [aj +(x)+ayj +(x)] In/io(x)expIi [aj (x)+ayj (x}]I,
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where

D (x)= — inp ( —x +iOx ),
4m

2 1/2 '

k1+
2m

(A4)

(A4a)

(A4b)

(A5b)

j(x), j(x), and $0(x) are massless, free, scalar, pseudoscalar, and Dirac fields, respectively. These are not independent
fields. In fact, they are assumed to satisfy the commutation relations

[j (x),j (y)]=D (x —y)= — ln (A5a)
4tr x' —y'+(x' —y') —t O

'

[j (x)*40(y)]=—i~~[D (x —y)+7'D (x —y)]40(y»

[j (x).40(y)]= —i~~[D (x y)+—r D (x —y)]40(y) .

By extensively using the commutations relations, the 2N-point functions can be calculated. The results are

(A5c)

( Tg(x&) p(xN)f(y, ) tttt(yN)) =exp —g (a+ay„.y„)DF(x —xk) exp g (a+ay», y» )DF(yj —y~)
j&k jgk

Xexp —g( —a+ay„'.y»'„)DF(x, —yk)
j,k

+ ( Ttj('0(x I ) 40(xN )40(y» 00(yN ) & (A6)

where

k
g =k — 1+2' 2m

'2 1/2

(A7a)

ka=k + 1+2'

' 2 1/2
k

(A7b)
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