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An observer-dependent Hamiltonian is introduced. The vacuum state is defined by means of
Hamiltonian diagonalization and minimization, which result to be equivalent criteria. This method

encompasses a great number of known vacuum definitions, and works in an arbitrary geometry if
the observer's field satisfies certain properties.

I. INTRODUCTION

Hamiltonian diagonalization is a criterion frequently
used to define the vacuum state, when a field in a curved
background is studied. Many quantities have been used
for this purpose: they are always called "Hamiltonian"
and they have different definitions, ' but with a common
feature: these definitions do not make any reference to
the observers. Nevertheless it is well known that "vacu-
um" is a notion that strongly depends on the observers;
the best studied case is the one of Rindler's observers:
they perceive particles in a quantum state considered as
the vacuum for Minkowski's observers. '

In this paper we introduce a new Hamiltonian„which is
invariant by coordinate transformations (of course, the
vacuum cannot depend on the used geometrical coordi-
nates), but it is dependent on the observers (because each
set of observers has its own vacuum). We show that it is
the most appropriate Hamiltonian to define the vacuum.
Also we show that diagonalization and minimization are
equivalent criteria to define the vacuum state. Our
method works in an arbitrary geometry if the observer's
field is an irrotational one. In Sec. II we review the no-
tion of observers or fiuid of reference. In Sec. III we de-
fine the Hamiltonian. In Sec. IV we study the diagonali-
zation and minimization. In Sec. V we show that our
method encompasses the following definitions.

(1) All vacua that correspond to a Killing vector field
(e.g., Minkowski, Rindler, Boulware, and some de Sitter
vacua, etc.).

(2) All "conformal vacua, " that we shall define below
(e.g., the vacua of papers, ' Kruskal vacuum in a two-
dimensional eternal black hole, etc.).

{3) The Robertson-Walker and Bianchi type-I universe
vacua (e.g. , those of Ref. 7). In this case a local property,
which is necessary in order to render satisfactory these va-

cua, may be unsatisfied {essentially that the renormalized
vacuum expectation value of the energy-momentum ten-

sor turns out to be finite, as is explained in Refs. 7 and 8).
In Sec. VI we draw our main conclusions.
Hamiltonian diagonalization has been criticized in the

literature. We believe some of the criticisms are over-
come in Ref. 7, to which we refer. Aside from this, the
present paper shows that, even if it is not completely satis-
factory, Hamiltonian diagonalization works in a great
number of cases.

II. REFERENCE SYSTEM

What is a reference system (or an observer's system) in

general relativity'? In classical physics a reference system
is formed by a reference rigid body and a clock, and it is
possible to choose different geometrical coordinate sys-
tems or charts (Cartesian, spherical, etc.) for the same
reference system. To build an observer's system in general
relativity it is necessary to replace the rigid body by a
fluid. We shall use an irrotational fluid (see the Appen-
dix). On each matter point of this fluid there is a clock,
which may not be a standard clock (it may not indicate
proper time); it must be only a time measurement device
that measures a continuous increasing arbitrary function
of proper time. We assume that the measurements x of
two neighbor clocks differ infinitesimally. If each matter
point of the fluid is labeled with three numbers x',x,x
(varying continuously), then (x,x ',x,x ) is a particular
geometrical chart.

As soon as a chart has been built, we may determine the
components of the metric tensor in this chart, its curva-
ture scalar, etc., using metric rods and standard clocks. '

Because the fluid is irrotational, it has global spacelike
hypersurfaces that are orthogonal to the universe lines of
the matter points (see the Appendix). This fact introduces
a natural notion of time T. The time T is a quantity that
is constant on each of these hypersurfaces. In other
words, a natural time (with respect to an observers sys-
tem) is the one that is measured by clocks synchronized
on the hypersurfaces orthogonal to the lines of fluid. Of
course, there are several forms from which to choose the
rate of the clocks; this rate will turn out to be irrelevant.
Furthermore, generally it may occur that standard clocks
do not measure T (proper time would not be equal to
natural time).
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Of course we can build other observer systems using
other fluids. Each observer system could be considered as
a different form to foliate the space-time into space and
time. Space is the hypersurface orthogonal to the lines of
fluid. Because the physical instruments of measurement
distinguish these concepts (e.g., one only detects an elec-
tric field while the other one only detects a magnetic
field), the measurements are affected by a change of the
observer system. But of course they are not affected by a
change of geometrical chart (a change of coordinates).

The initially proposed geometrical chart, with the addi-
tional condition that x =T (i.e., x is constant on a hy-
persurface orthogonal to lines of fluid) will be called the
adapted chart. But of course we can use any other geome-
trical chart if we want to.

In order to characterize the observer system two vectors
could be defined. The natural time T may be used to
parametrize the lines of the fluid fa line is x&=x"(T)].
In this case, the vector v =d/dT—is defined in Ref. 11. Its
components are ui'=dx&ldT, where the derivative is tak-
en along a line of the fluid. Vector v is tangent to the
lines of fluid. Below we shall also use the unitary vector
u tangent to the lines of fluid (u is the four-velocity of the
matter points}.

In an adapted chart the metric tensor is

goo
gpv= 0 lJ

i,j =1,2, 3, . . . , n —1 .
(We shall work in an n-dimensional space-time. )

The vector v reads

u"=(1,0,0,0, . . . )

and the unitary vector u is

u" =(goo '
,0,0,0, . . . ) .

III. THE HAMILTONIAN

We use the convention ( ———) of Ref. 12: i.e.,

g„„=(+——— . ),
=

2 (d yak d igi —+ ' ' ' }

~p =g""~~ ~

We study a neutral scalar field P. The field equation is

(0+m +(R)/=0
and the energy-momentum tensor reads'

(2)

T 2( )
—1/2

PV g p~

=( z
—k)IN;i 0;.I+(4 ~ )gi.g+((0;k 0;i } CIA 0;i.j+—hagi. IN &4)

1
0 ~i. 2gi. —~—m gi. INDI

I

ij
,oo Y Yij,o goo, o

,0
goo 2goo 2goo

ii'Y goo,j
2goo

is the action.
We define the Hamiltonian as"

TIlt~& + = T~~U 9 X, (10}

+(m +JR}/=0, (12)

where d is the I.aplaeian operator:

r' 0)(v—

where X is a hypersurface orthogonal to the fluid.
H~ is invariant under a geometrical coordinate change,

but it is not under an observer system change. The in-
clusion of v is essential because two different reference
fluids may have a common hypersurface X (this happens
with a Minkowski fluid and a Rindler fluid at T =0 in
plane space-tine). On such X only it is possible to distin-
guish which observer belongs to each fluid by means of
the rate of the clocks. This is the role of v.

When v is a Killing vector in the region bounded by
two hypersurfaces X and X', then Hz —Hz (Ref. 13). —
But in general Hz depends on X (i.e., Hx depends on r}.

In the adapted chart the Hamiltonian and the field
equation (7) read

Hz= J, Toogoo '"d&

a~ —— dr goo-'" —,
'

+
2

(4'4'.0+4,A}+&it'8

Y 3 Yik, oYjl, o 3 Yij,ogoo, o
ki ij ij

+—
4goo

X Xii,oo

2

the covariant derivative
~ ~

being built with the metric ten-
sor y,&

induced on g.
Then it is possible to write Hx as
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To obtain this expression we have used the field equation
('7) and Gauss's theorem on X:

fzdX(y'g'oo '
0(( 4'))))=0

(17)
f,dX(y"g~iu '"&')ii =0

assuming that the field goes to zero quickly enough at the
infinite. [It may be seen that p~~; is a vector on X and goo
is a scalar on X (Ref. 13).]

Really, Eq. (14) is not an elegant one but is very advan-
tageous because it only has ordinary time derivatives.

IV. THE VACUUM DEFINITION

Let {uk, uk ) be a basis of solutions of field equation (7).
Then the field is

4(x) = g [akuk(x)+akuk (x)] (18)

and the Hamiltonian turns out to be

Hz f dX goo Xakak 2'ukouk', 0 4 (ukuk', 00+ ukoouk')+ (ukuk', 0+ ukouk )+'Cukuk'—1/2

kk'

+ ~goo kk' 2 ~k, o~k', 0 4 ~k~k +~k,00~k' + ~kwk', 0+~k, o~k' +C~ ~k' +H c—1/2 t 1 e

kk' 'I

(19)

{uk,uk I is a set orthonormalized in the Klein-Gordon
inner product:

i f—(&B„y')dX", (20)

1.e.,

t

x ). Besides, by taking a basis {uk, uk ) with the form

uk (x ) = Tk (x )Ek (x '),

Eq. (21) results

(24)

&uk uk )=—4k

&uk»k &=0

& uk ~uk' ) =~kk' ~

(21)

In the adapted chart the inner product reads

&PV &=i f, (A,'0 V'4, 0)g—m '"dX (22)

Each basis of solutions has an associated vacuum state

~

0): the one defined by

~kk'='(TkTk' 0 Tk. T—ko) fzEkEkgoo

O=i(TkTk o Tk'Tk, o)—f EkEk.goo

(25)

(26)

EkEk goo d X =5kk
—1/2

X
(27)

Then, in Eq. (25) a condition for the Wronskian of Tk on
X results:

The set {EkJ is a basis of solutions of the spatial side of
the field equation. It may be orthonormahzed on X:

ak iO)=0, Vk . (23)

Of course, if we change the basis, the operators ak, ak
must change in order that P should remain the same.
Then

~
0) depends on the basis. Therefore to select a vac-

uum is equivalent to selecting the basis {uk,uk I, and a
physical criterion is necessary in order to make this
choice. We shall explore different criteria. In order to
make the calculations easy, we shall apply the criteria in
the cases when the natural time can be separated from the
space variables in the field equation (7), at least in a neigh-
borhood of X.

It is possible to separate variable x in Eq. (7) when (1)
& =&(x ), goo

——goo(x ), y;J =f(x )A,J.(x ) [variable x
is separated multiplying Eq. (24) by f(x ) ]; (2)
R =R(x"), goo ——q(x )h(x'), y;1 ——A;J(xk) [variable x is
separated multiplying Eq. (24) by h (x')]; (3) m =0,
& =0, goo=q(x )h(x'), y;, =f(x )AJ(x") [variable xo is
separated multiplying Eq. (24) by f(x )h(x')]; (4) when

g„„=g„„(x) there are solutions of Eq. (24) with the form

uk =Tk(x )e

Of course, in cases (1)—(3) the condition on R is the
strongest one.

It is easy to see that in all the cases, the coefficients 8
and C in Eq. (14) are constant on X (they only depend on

(TkTk, o —Tk Tk, o) I
x=i . (28)

Then Eq. (27) reads

(29)

Therefore given a value of the separation constant, we
have two different modes for uk .. Tk Ek and
TkEk =TkE k~ 1.e.

T—k —Tk (31)

On the other hand, as the variable x has been separated,
the equation for Tk(x ) reads

Tk, oo+bTk, o+ck Tk =o (32)

where b and ck depend on the geometry and ck also de-
pends on the separation constant.

Then replacing Eq. (24) in (19), having in mind Eqs.
(30) and (31), and Putting Tkoo as a function of Tko and
Tk [using Eq. (32)], Hz turns out to be

We note that, as the coefficients of the field equation are
real, if Ek is a solution, Ek is also (for the same separa-
tion constant). Let us adopt the notation



b Ck
HX g+k+ —k 2 (Tk,o) + 8+ TkTk, o+ c+ Tk

2 ' 2

+ Xuk'ak
I Tk, ol'+ 8+—Re(Tk, oTk)+ &+

I Tk I' +H.c.
2 2 x

(33)

The functions Ek do not play any role in order to select
the vacuum, because they do not appear in Eq. (33) (Ref.
14). They may be chosen taking into account some sym-
metry property of space or boundary conditions, etc.

To select a vacuum is equivalent to selecting a solution
Tk of Eq. (32). But we may select a solution Tk giving
values for Tk and Tko on X. We study two criteria to fix
the data Tk i z aIld Tk 0 i z.

(A) Hamiltonian diagonalization. The data are such
that Hz has the form

Hz= 2 g "k(~krak +&k &k )
1 x xf xf x

k

b
ck ~ 8+— —2C.

2
(35)

In this case both diagonalization and minimization are ac-
complished by the same data on X, which have the ratio

Tk, o

Tk

b b9+——
& 2C+ck —8+—

2 2

'2 1/2

We call
~
0;X) to the resulting vacuum. ak, ak are

the operators associated to the corresponding basis.
(B) Hamiltonian minimization. The data are such that
(0;X ~Hz ~0;X) turns out to be minimized, where

~
0;X ) is the associated vacuum.
In order to obtain the data Tk

~ z and Tk o ~ z that satis-

fy each criterion, we must take into account that they are
not independent, because of the constraint (28). As a re-

sult, either the diagonalization or the minimization may
be performed when

required conditions on X, may not satisfy these conditions
on other hypersurfaces X'. In this case

~
0;X)&

~

0;X')
and there is particle creation.

A. v is a Killing vector in ~q (neighborhood of X)

Then the metric is independent on x in Mz (Ref. 13).
Therefore,

8 =0, C=0, b =0, ck ——mk

—ltd] X0

uk(x)=, Fk(x'),
(2~k )'

(40)

in ~'~, where cok is the separation constant. The Hamil-
tonlan reads

+X 2 y~k(+kuk ++k ak )
1 x xi xi x

k

(41)

Minkowski's observers and Rindler's observers in flat
space-time, comoving observers in Schwarzschild's
metric, ' in the static Einstein metric, ' ' and also the
Killing observers in de Sitter space are particular exam-
ples of this case.

8. Conformal case

Let us consider two different space-times such that in
each of them there is an observer system (both space-times
may eventually be the same). Let us suppose that, when
the adapted charts are used, the components of the metric
tensors of both space-times g&, and g&„satisfy the equa-
tion

V, EXAMPLES

The formalism developed encompasses several well-
known cases

as can easily be proved from Eq. (33).
Because of the normahzation,

~
Tk

~ ~ z is

' 2 —1/2

I
Tk I I

x=
2

„2C+ck —8+
2

I b

L

Therefore
~
0;X) =

~
0;X) and the Hamiltonian Hz

turns out to be

gq„(x) =Q (x)g„„(x) .

Then

dX=Q" 'dX

8=8 + [2(g—, )(n —1)+——,j
2

Qo Goo
0 0,

(42)

Hz= , g 2C+ck —8—+-
k 2

2 1/2

(38)

Of course, the solution Tk(x ) of Eq. (32) satisfying the

~(2—n)/2y

Thus, we obtain

(46)
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&x[0]=Hx[0]+ Pn —1)—

x I dzgoo '" Oo
(0,ok+(t 4,o)—

2
Boo Oo l Oo'2 goo, o

p2

&x[0]=Hx[0'] (48)

Therefore if we know the basis of solutions I uk, uk I that
perform the Hamiltonian diagonalization in metric g„,
then we also know, via Eq. (48), that
[0' "' uk, Q' "'

uk I diagonalizes the Hamiitonian in
metric g&„.

References 5, 6, and 18 are examples of this case. Also
in Ref. 19 we have selected a vacuum for a massless field
in a two-dimensional flat space-time bounded by two
moving mirrors. According to the present paper, that
vacuum is the one perceived by the observer whose lines
of universe are drawn in Fig. 7 of Ref. 19. The Kruskal
vacuum, in a two-dimensional eternal black hole, is anoth-
er example.

C. Geodesic fluid in a Robertson-%'alker universe

where Hx[(('i] is the Hamiltonian built with P in the
metric g„„. When the field is massless and

g=(n 2)/—4(n —1) (conformal coupling) it occurs that, if
(() solves the field equation in metric g, then P solves this
equation in the metric g (Ref. 3). Furthermore, because
of Eq. (47), we get

P

k a
m + )6g (6g —1)

a a a

The data on X are

TI,o a= —6(—
Tk ~ a

2 1/2

—i m + + — 6((1—6g)2 k +6(K
a a

Then the Hamiltonian reads

2

Hx= , g m +—, + — 6((l —6g)
k+6K a

k a a

1/2

X(akak +ak ak )
X X~ X~ X

Here the summation over k has a different character ac-
cording to K =+1, 0, or —1, because the labels of uk

may be discrete or continuous depending on K.

In the adapted chart the line element is

ds =dr a(t)[dX +f—(X)(dO +sin Odg )], (49)

sinX, 0&X &2m. spatially closed (K =+1),
X, 0 &X & ao spatially flat (K =0),
sinhX, 0&X& ao spatially hyperbolic

(K= —1) .

The curvature scalar is

D. For geodesic fluid in a Bianchi type-I
universe (see Ref. 7)

In the last two cases the Hamiltonian diagonalization
and minimization, even if they define univocally a quan-
tum ground state, do not always yield a satisfactory vacu-
um endowed with the usual properties of the fiat space-
time vacuum. This phenomenon happens because a local
condition is not satisfied for all the values of g and m, as
it can be seen in Refs. 7 and 8. Essentially this condition,
which we do not study in this papel', is to ask that the
vacuum expectation value of the renormalized energy-
momentum tensor turn out to be finite.

R = (aa+a +K)
a

and coefficients 8, C, b, ck are

8 =6(g——, )—,C = —3(—,a a
a a

b =3—,ck ——m + + (aa+a +K),a 2 k 6 .. . 2

a
' " a2 a2

(51)

where k is the separation constant. Condition (35) re-
sults

VI. CONCLUSION

%e have reexamined the notion of a reference system
and we have concluded that the role of an observer system
is to establish what the time is and what the space is.
This fact is important because a detector perceives the
difference between time and space. Equal detectors in dif-
ferent reference systems do not obtain the same Ineasure-
ments at the same point because they do not agree on their
definitions of time and space. Then it is a natural result
that the notion of vacuum depends on the observer.

%'e have defined a Hamiltonian invariant by coordinate
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changes but observer dependent. In fact the integral in

Eq. (10) is evaluated on a hypersurface X orthogonal to
the lines of the reference fluid (the "space") and vector v
appears in this integral, which is essential in order to dis-
tinguish observer systems on a given X. The aim of this
dependence is to obtain quantum vacua dependent on the
observer, as is commonly accepted in the literature.
But there is other evidence that support our definition for
Hz. For example, if we would use

T~~u X

in an adapted chart P x would be

~z fz T00g00

Then a factor g00
' appears at the place of the factor

g00
' in Eq. (11). But the factor g00

'~ was essential
for the diagonalization and minimization of Hz [see Eqs.
(25)—(33)]. Furthermore, the presence of the factor

goo
' is also compelling in order that H~ would coin-

cide with Hz in the conformal case. Therefore Mz and

any other Hamiltonian must be discarded.
The separation of variables is not an essential condition

for the Hamiltonian diagonalization. It only makes the
calculations easier. For example, there are conformal
cases where variables do not separate, but diagonalization
still works. On the contrary the use of an irrotational
fluid is certainly essential, because it makes possible the
notion of time.

The above results do not depend on the natural time
used. If we use T'=T'(T) then vector v'=(dT/dT')v
appears in the definition of the Hamiltonian and we ob-
tain Hz=(dTldT')Hz, which means that energy and
time are conjugated variables. This physical property
may be a good motivation in order to induce defiiution
(10).

To conclude we wish to point out that a good vacuum
must satisfy other requirements which were not studied in

this paper: the vacuum must render the theory renormal-
izable. Thus the conjugation of a global condition (diago-
nalization and minimization of the Hamiltonian) and a lo-
cal condition (renormahzability) is necessary in order to
have a good vacuum.

tangent to the lines of fluid; then, we define the curvature
vector

Killing tensor

Kp„=Vpu +V„uq,

In addition, we define

Then u„u" and —y„"are projeetors. Let us define

Then, it is easy to see that

Kp„——K~„+u~C„+u„Cp,

Q~„——A~„+u~C„—u„C~ .

When C„=O the fluid is a geodesic one.
When 0&„——0 the fluid is said to be irrotational or curl

free. It can be proved that Q„„=O is a necessary and suf-
ficient condition for the existence of global hypersurfaces
orthogonal to the fluid lines.

When Q~„——0 the fluid is geodesic and irrotational.
When 3'&„——0 the fluid is said to be rigid (according to

Born ).
When K„„=Othe fiuid is geodesic and rigid. Besides u

is a Killing vector field.
%'hen Q„„=o an adapted chart system exists where

x'=const (i =1,2, 3}, on each line of fiuid and g0; ——0.
Then in this system

Soo
g&„——0, u"=(g00,0,0,0),—1/2

XlJ

u„=(g00'~', 0,0,0), C„=(0, —,
'

(1ng00), ),
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APPENDIX
Kj = —too

—t/2

Boo, i

0—1/2
~IM, Y 2 800

Coo, i

—
COO, I

coo,

Vij, o

%e shall enumerate the tensorial quantities that charac-
terize the behavior of a fluid. I.et u be the unitary vector

Therefore, when K„„=O the distance between matter
points of fiuid do not change.
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