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Classical extended charge subjected to linear forces and Rayleigh-leans radiation
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%'e study a rigid classical extended charge in the nonrelativistic approximation, first subjected to
a linear force, and second immersed in an electromagnetic radiation with a Rayleigh-Jeans (RJ)
spectrum. A Yukawa distribution is considered for the charge, when necessary, to get explicit re-
sults. A comparison with the Abraham-Lorentz (AL) model is made. Our results show that the AL
model is a good approximation for the extended charge only if the external forces do not contain
high frequencies. However, if we consider RJ radiation big discrepancies appear. %e also find that
the linear system follows the Maxwell-Boltzmann law only for large enough values of the radius.

I. INTRODUCTION

The problem of the dynamics of charged particles, i.e.,
electrons, in the framework of classical electrodynamics,
has never ceased to interest physicists, even after the
development of the theory initiated by Dirac' in 1938,
essentially completed by Haag in 1955, and afterwards by
Rohrlich and Teitelboim. The reason for this lies in the
well-known anomalous effects (runaway solutions, preac-
celeration, infinite mass, etc.) displayed by the Lorentz-
Dirac (LD) equation, and also in some features related to
the derivation of such an equation. Because of all that,
many authors have tried to elaborate alternative theories
for the electron in order to avoid those difficulties. An in-
teresting review and analysis of the several models can be
found in Ref. 5. One of these theories, already developed
by Abraham in the beginning of the century, considers the
electron as an extended charge. Most of the studies devot-
ed to this problem deal with a spherically symmetric rigid
charge in the nonrelativistic approximation. " %hen
the radius of the charge tends to zero, this model con-
verges to the Abraham-Lorentz (AL) one. However, the
validity of this limiting process is not clear because of the
appearance of infinities. The AL equation rather could be
considered as a good approximation for a real extended
charge. But, it is difficult to estimate the magnitude of
the terms neglected in this approximation that contain
derivatives of the acceleration of order larger than one.
One of the aims of this paper is to profoundly analyze this
problem by studying the exact solutions for an extended
charge, first subjected to a linear force, and so;ond im-
mersed in addition in an electromagnetic radiation with
Rayleigh-Jeans (RJ) spectrum. We also study this interac-
tion of a harmonic oscillator with RJ radiation to get
some insight of the problem of the radiative equilibrium
for an extended charge. In order to obtain explicit results
we consider a Yukawa distribution for the charge, al-
though some of them are, as it will be seen, general. The
extension of our results to arbitrary distributions will be
considered in future work.

As concerns the model for the extended charge dif-
ferent approaches have been considered. Soxne of them
make use of the Lorentz self-force in order to account for

the radiation reaction (see, for instance, Refs. 6, 7, and
10}. However„ it turns out that the resulting equation
does not possess Lorentz invariance. This has led some
authors ' to perform covariant derivations in order to ob-
tain a Lorentz-invariant equation of motion. (For a
deeper analysis of this point, see Refs. 11 and 12.}

Nevertheless, the problem is not closed. The reason is
that one of the main problems of the extended-charge
models, namely, the problem of the "cohesive forces, " is
not solved but rather eluded in all mentioned papers. Ob-
viously only a model including these forces can be fully
satisfactory. However, if one assumes that the "cohesive
forces" do not affect some global motions of the charge,
as, for instance, the motion of its "center" (suitably de-
fined), the equation governing those motions and includ-
ing only the electromagnetic forces must be Lorentz in-
variant.

In this context, the model we are going to deal with is
precisely the nonrelativistic limit of the Lorentz-invariant
relativistic model devised in Refs. 8 and 9. Some general
features of this model are studied in this paper An im. -

portant property is the existence of a critical radius r,
such that for radius r, larger than r, the solution is
unique, whereas when r, &r, the solution is not deter-
mined and it can display preacceleration andlor runaway
behavior. Assuming that the extended-charge model with
r, & r, is exact, we study the "validity" of the AL equa-
tion by comparing the solutions obtained from both
theories.

%e show that the AL model is a good approximation
only if the external forces do not contain high frequencies.
On the contrary, if we consider external forces with high
frequencies, i.e., RJ radiation, a strong interaction appears
which leads to appreciable changes in the trajectories at
least as concerns the acceleration and its derivatives. %e
also find that the linear system follows the Maxwell-
Boltzmann law only for values of r, much larger than r,o.

These results could be very important for a future study
of the radiative equilibrium for an extended charge.

II. THE CHARGE MODEL

The equation of motion for a nonrelativistic rigid
charge with spherical symmetry has been derived both in

Q~1986 The American Physical Society



34 CLASSICAL EXTENDED CHARGE SUBJECTED TO LINEAR. . . 453

or alternatively

m, x =F—m, f y(t t'—)x(t')dt', (2.1b)

where y(t) accounts for the retarded effect of the charge
on itself and is given by

y(t) = t f d r'p(r')p(
~

r+r'
~

)
3m)

dtoP (co)cosine)t,
~

r
~

=et,32vr e

(2.2a)

p being the Fourier transform of the distribution:

(2.3)

F in Eqs. (2.1a) and (2.1b) accounts for the effect of the
external force F,„, and is given by the x component of

a fully nonrelativistic way * ' " and from the corre-
sponding relativistic covariant equation. ' As we have
said in the Introduction we follow the second approach.

The equation is, for the one-dimensional case,
t

mx =F—m
& f y(t —t')[x(t') —x(t)]dt' (2.1a)

(2.13)

from which one can see that there exists a crucial value
for the radius

2e
P~ =

2
C'T=

3mc
(2.14)

corresponding to e=oc, m] ——0, and m~e=m, and such
that, when r, & (&} r, we have m, ~ (&) 0. As we shall
see this fact is de:isive in the behavior of the solutions.

Obviously the value of the radius cannot be arbitrarily
large. This imposes restrictions on the reasonable values
of e. If we require the radius to be much smaller than the
Bohr radius, that is, r, && 5 X 10 F, we obtain, for e,

e »2)(10 (2.15)

Finally, a remark concerning the point-particle limit
has to be made. If we perform this limit by taking
p(r)=P'3'(r), we recover the AL equation from (2.1a).
However, this is a formal procedure and it is necessary to
analyze the behavior of the solutions in this limit. This
will be made in subsequent sections.

F(r, t) =f d g F,„,(r+g, t)p(g) . (2.4) III. SOME FEATURES OF THE MODEL

As concerns m &, if we denote the mechanical and elec-
tromagnetic masses by mp and m„respectively, we have

m) ——mp —
3 m,

Now, if we call

oo 2ee= dt y(t),
0 3mc

the following relations hold:

(2.5)

(2.6)

m =mo+m, =mt(1+e),

f dt y(t)t =(1+e}~.

(2.7a)

(2.7b)

As we have said in the Introduction, we consider, when
no general results are immediate, a Yukawa-type distribu-
tion:

In order to see whether this model lacks the incon-
venience of the AL one, it is usual to study the existence
of runaway solutions and preacceleration, as is made, for
instance, in Refs. 6—11. However our point of view about
some of these topics differs from the one shown in those
papers. Moreover, a few of the points we are interested in
either do not appear or are incompletely studied in the
mentioned works. Our aim in this section is to study the
problem posed above by showing the exact behavior for
the case of the Yukawa-type charge. We also clarify some
of the results existing in the literature.

First of all we study the possible solutions of the homo-
geneous equation and then consider the behavior under a
time-dependent force.

A. Free particle

p(r) = 1 e

4mr,

—r jre

eo eo.
m~= - 3, E'=

4c 3m )c

c I

Using Eqs. (2.7b) and (2.10) we get

In this case the former expressions read

o 1
p(co) =

(2m) (a +n) }

y( t)=o'ete ' (t & 0),

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Strictly speaking this problem has only been studied in
Ref. 10 for a general distribution. The result appearing in
this work can be slightly generalized in the following way.

If p has a constant sign, 0 & e & 1 and the acceleration is
bounded at t~ —oo, the unique solution of the homo-
geneous equation is the trivial one: x =0.

In Ref. 10 the boundedness of x at t~ —Oo is substi-
tuted by a stronger condition, namely, that x~0 when
f—+ —Do.

The proof of the statement is as follows. The equation
of motion is written

x = —f dt'y(t t')x(t') . — (3.1)

If x is bounded when t~ —ao, there exists to such that
~x(to) j =M, and (x(t) (

&M Vt(to Then we. have,
from Eq. (3.1),



R. BLANCO, L PESQUERA, AND J. L JIMENEZ

motion for t &0 the solution of (3.6) is unique.
To prove this assertion we introduce the new variable

g(t)= f dt'y(t —t')x(t') . (3.8)

+a(cr)harv ee 'sin(o~et), (3.2)

where we have taken into account that according to (2.2a)
y(t) has a definite sign. Now, it is clear that for

I
e

I & 1

only x(t)=0 can be a solution of (3.1). Furthermore,
since for —1&a&0, m &0, the condition

~
e~ &1 reduces

to 0& e& 1 which ends the proof.
As we have indicated this result is valid for a general

distribution. When
~
e~ & I there can exist in general

nontrivial solutions. %e are now going to analyze the sit-
uation for a Yukawa distribution.

If we restrict ourselves to solutions that are bounded at
t~—ce, we can use the Laplace transform of
a(t) =x'( t) to—get, when e y 0,

a( t) =a (0')tr Ee cos(el~Et)

With very simple calculations one can prove that Eq. (3.6)
is equivalent to the following system of ordinary differen-
tial equations:

x' =P(t) —g(t),

(+2of+o g=cr ex',

plus the condit&ons

g(0) =g(0) =o

(3.9a)

(3.9b)

(3.9c)

The uniqueness is now immediate, and we look for the
solution using the Laplace transform.

For e & 0, x(t) =0 if t &0 as was seen in the preceding
section, and the solution of (3.6) results in (see Ref. 11)

which is not bounded at t = oo unless a(o)=a''(cr)=0,
that is x (t) =a( —t) =0.

On the contrary, for e & 0 we obtain

a(t)=a'(o)o ee 'cosh(ov'~ e
~

t)

with

X(t)=crv ee 'sin(oV et),

(3.10)

(3.1 1)

+a(o)o &
~

e
~

e 'sinh(crv'
~

e [ t), (3.3)

which gives the following solution bounded when t ~ ao.

a(t)=constXexp[ cr(v'
~

e—
~

—1)t] . (3.4)

Consequently, for the Yukawa distribution nontrivial
solutions of the homogeneous equation (3.1) appear if and
only if e & 0 (in fact e & —1), and such solutions are of the
form given by

When F(t) is bounded, it is clear from Eqs. (3.10) and
(3.11) that x is also bounded. Consequently, for op 0, nei-
ther runaway nor preacceleration phenomena occur.
Furthermore, if e«1, x=F(t) jm and the integral term
in (3.10) can be considered as perturbative.

In the case @&0 there can be nontrivial solutions for
t &0, which are of the form given by (3.S). The solution
for t ~ 0 can be found writting P(t) instead of F(t) lm,
and

x(t) =a( —t) =const X exp[a(&
~
e

~

—1)t], (3.5) T(t)=trv'
~

e
~

8 'slnh(o v'
~

t
~

t ) (3.12)

which clearly shows a runaway behavior. No self-
oscillating solutions occur when a Yukawa distribution is
considered (see Ref. 7).

B. Time-dependent external force

In this section we consider a time-dependent external
force that is connected at t =0. In this case we have
again two different behaviors depending on the sign of e.
However, as we shall see, the only cause for this differ-
ence lies on the features of the homogeneous equation in-
dicated above.

The first important point concerns the uniqueness of
solutions of the equation of motion (2.1b) which can now
be written as

(3.6)

with

(3.7)

Note that we admit x(t)&0 for t & 0. For a Yukawa dis-
tribution it is easy to prove the following: If we know the

instead of X(t), in (3.10). Thus we obtain, for the general
solution,

x'(t) =
A exp[a(v'

~

e
~

—1)t], t &0, (3.13a)

F(t) f 'd, ,—,, F(t')

+~ exp[a«
I
e

I

—1)t] t » (3.13b)

where the constant A is completely arbitrary. Conse-
quently, a nonvanishing acceleration can appear before the
force is switched on. However, this has nothing to do
with the preacceleration phenomenon occurring in the AI.
model that is strictly caused by the force. On the con-
trary, in our model the acceleration may or may not exist
at time I, ~0 whether or not the force is s~itched on.
This is why we do not consider this phenomenon as a
preacceleration. The reason for it is the existence of solu-
tions of the homogeneous equation (in fact an infinity of
solutions). It can be seen that in Ref. 9 the term that is
claimed to violate causality has exactly the form given by
(3.5) with a constant depending on the force. This corre-
sponds to a particular choice of the constant A in (3.13)
but does not give the general solution.
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As can be seen in (3.13) the system shows in general a
runaway behavior. However it is possible in some cases to
eliminate this behavior with a proper choice of A, but this
leads to the existence of preacceleration. This choice cor-
responds to the one used in the AL model. However, in
the extended model all values of A are allowed.

Another strange feature of the model for e (0 must be
pointed out. If we consider that x =0 for t (0, we see in
Eq. (2.1b) that the initial inertia shown by the system is
given by m& which is negative. %"e conclude that the
behavior of the system for e(0 escapes from physical in-
tuition and consequently a deeper study of this situation is
necessary.

To end this section we want to make some comments
concerning previous papers. As we have indicated above,
the equation of motion obtained in some of these
works ' differs from ours in that an amount of —,'m, r
is missing in the expression of the radiation reaction (for
details see Refs. 9 and 11). In these papers the equation of
motion is written like (2, 1b), but with mo instead of mi.
As a consequence the anomalous effects would appear
only for mo(0 which is physically unacceptable. (See
Ref. 6 for a discussion of this point. ) However, in our
case, we see from (2.5) that it is possible to have mp &0
and m i (0 and so anomalous effects can appear.

x (t) =xoXi(t)+ voXo(t),

U(t)=upXi(t) x—peep (1+e)X2(t),

(4.5a)

(4.5b)

Xo(t)= f du X~(u),

Xi(t)=1—too'(1+e) f du Xi(u),

X2(0)=0, X2(0)=1,

X ( )
(s+~)

[p)p (1+e)+s ](s+(r) +s2cr2e

(4.6a)

(4.6b)

(4.6c)

(4.6d}

X;(t)= (A; costot +8;sincot)e

+ (C;cosa& +D;sino&)e (4.7)

co=top[1+0((too/o') )],
1 jr„=too[ —,

'
too~+ 0((too/o )')],

1 o&2

cr„=o —1+— +0((top/tr )'}
2 0

(4.8a)

(4.8b)

(4.8c)

A straightforward but lengthy calculation permits us to
write explicitly the functions X; (t) (e & 0):

IV. STUDY OF A HARMONIC OSCILLATOR

top'(1 —e}
o„=trv e 1 — i +&((too/tr)'}

2o (1+e)
(4.8d)

When the extended charge is submitted to an external
force, it is usually assumed '9" that this force remains
essentially unchanged within the dimensions of the
charge. In this way the force is substituted by its value at
the center of the charge. For a linear force F= —mcop x
that means that

4e(e —1) too
~o=, , &o = I/ioo

(1+e) o
(4.9a)

~e(1+@' —6e) too

(1+e) cri

4e( 1 —e) too

(1+e) o'

and the coefficients are, to the lowest order in top jtr,

hF-meso r, ggI'-meso x2 2 (4.1)

cop/(T (( 1 (4.2)

and then the radius must be small compared with the di-
mensions of the trajectory. In fact, very small trajectories
would require more detailed models for the charge struc-
ture. Now, if we combine (4.1) with the nonrelativistic
approximation, i.e., coox g~c, we get coy; &gc, and using
o=r, jc,

e ~o
A) ——1, 8) ——— = —

2 COoV,
1+@ a

~E(3e 1) too—
(1+e) tJ (1+e)2 cr

26' 1

cr( 1+e)2 too(1+e) '

—2e v e(e—1)
D2 ——

cr(1+e) o (1+e)

(4.9b)

(4.9c)

cp i
=— tip p = ( 1 +E )cop

P?I 2

Pl )
(4.4)

In the same way as for (3.6) it is easy to show that the ini-
tial conditions xo, up determine the solution of (4.3). Us-
ing the Laplace transform we obtain the expressions

In the following we shall assume that (4.2) is always satis-
fied. Under these approximations we study in this section
an extended charge subjected to a linear force that sets in
at t =0. Taking into account the results obtained in Sec.
III, we consider r, &r, , that is, e&0 (m»0). Then, we
have x(t) =0 for t (0, and from (2.1b)

x(t)= —
cubi x(t}—f dt'y(t t')x(r'), t &0, (4.3)—

where [so: (2.7a}]

—3EQ)o

1+e (1+e)'cr
(4.9d)

C3 —— D3 ——
1+@ 1+a
—4Ecoo —Q)o

2

A4 —— , 84 ——

(1+e) 0 1+&

46QPo
C4 —— , Dq —ov e. ——

(1+e) o

(4.9e)

We also consider the expressions for 72 and 72 that will be
useful later. Obviously they have the same form as X;
with other coefficients. Using the subscripts 3 and 4,
respectively, for X2 and X2, we get
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From (4.7)—(4.9) it is easy to analyze the behavior of the
solutions. The two first terms oscillate with a frequency
very close to coo, and they decay rather slowly. (In a
period its value remains essentially unchanged since
cour/2(cpu/o «1.) On the contrary, the two last terms
are highly oscillating with a frequency av e, which will
most generally be much larger than too. [If we consider
that e&10 (see Se:. II), we have, up to frequencies
tuu 10' sec ', (coo/a) & 10 «e.] These terms decay
very quickly with a characteristic time given by o ' ((T.

It is clear from the above expressions that the magni-
tude of the highly oscillating terms with frequency cr„ in-
crease when differentiating. But they decay very quickly,
and then they are not important at large times. However,
as we shall see later, in the presence of RJ radiation this
situation changes and these terms become very important.

Once we have obtained the solutions for the extended
charge oscillator, we compare them with the ones corre-
sponding to the uncharged oscillator and to the AL equa-
tion. In this way we show the perturbative character of
the damping, and we analyze to what extent the AL
model is an approximation to the extended one.

A. Comparison with the uncharged oscillator

It is easy to conclude from (4.9a)—(4.9c) that, neglect-
ing terms of order cuu/a, the trajectories in phase space
for the uncharged oscillator and our model [see (4.5)]
coincide during many periods before the decay of the
charge to the origin, x =U =0, becomes appreciable. This
damping effect is important at times of order ~, && T. We
can say that, in this sense, the damping is perturbative.
However, because of the highly oscillating terms, the ac-
celeration is very different when e is not small. But, this
only happens for very short times not greater that
cr ' &(T, and then we can still consider perturbative the
effect of the "damping. " However, as we shall see later
this kind of effect will be important for a charge im-
mersed in a RJ radiation.

—cmobs/2 6 . Uo
x (t) =e xo costuut +—sincoot + s—incout

2 Q)o

(4.12a)
—ctloEf /2

u(t) =e [uocostuut —(xotou+uu5/2)sincout) .

(4.12b)

%e observe that highly oscillating terms do not appear in
(4.12). As concerns the other two terms appearing in X;
(i =0, 1,2) the frequency and the decay time coincide with
the ones of the extended charge model up to order tuu/o

[see (4.8) and (4.11)]. This result holds for any model,
since (2.7b) is verified for any p. [Note that the poles of
(4.6d) can be obtained developing y(z) around z =0.] As
concerns the coefficients, they coincide only at zero order
in cuu/cr, as it can be seen from (4.9) and (4.12). We con-
clude then that the AL equation approximates the extend-
ed charge model if we do not consider the runaway solu-
tions.

It is also straightforward to show that the damping in-
tegral term of Eq. (2.1a) can be approached, for the exact
solution (4.5), by mrx, corresponding to Eq. (4.10), when-
ever we do not consider too short times. This is obvious,
since if the force sets in instantaneously at t =0, the ac-
celeration changes suddenly at this time. Then, it is not
possible to develop in a Taylor series until a time t y~o.
elapses, since then the behavior at times t &0 has been
forgotten. Finally, we note that many derivations, in clas-
sical' and quantum '"' frameworks, of the equation of
motion for the extended charge are based on a develop-
ment of the integral damping using a Taylor series of the
acceleration. It is then interesting to analyze the conver-
gence of this damping expansion. It is shown in the Ap-
pendix that the development is absolutely convergent for
the oscillator. Ho~ever, as we shall see in the next sec-
tion, it is not always so.

V. STUDY OF AN EXTENDED CHARGE
IN A RAYLEIGH-JEANS RADIATION

B. Comparison with the Abraham-Lorentz solution

The AI. equation
~ ~ 2 ~ ~ 0

x = —QPo x +7'x (4.10)

o ~o
5=CO01 = ( (& 1,1+6 0 o

(4.11)

where we have used (2.13) and (4.2). The solution is given
up to order 5 by

has three independent solutions, one of which goes as e' '.
If we impose the additional condition

x'~ 0„
fico

we keep the other two solutions, since they decay for
t moo. The general solution—is a combination of exponen-
tials whose coefficients can be obtained in powers of the
parameter 5=eau~ that satisfies

The interest of studying this problem lies on the
fluctuation-dissipation property verified by our extended
charge model in a RJ radiation. This fact leads us to con-
jecture that the extended charge enclosed in a box attains
equilibrium with the RJ radiation. Then, the classical re-
sults for the blackbody would be reproduced. Neverthe-
less, it is obvious that nonlinear systems must be studied
to get a definite answer for this conjecture. For the time
being we just analyze some revealing aspects of the ex-
tended charge RJ radiation interaction.

%e divide this section into three parts. %e define first
the model we shall use in the following for the radiation
field. Afterwards we study the interaction of this field
with the free charge, and finally with a harmonic oscilla-
tor. Once we obtain the general solution for both cases,
we shall devote the rest of' the sections to analyze two dif-
ferent aspects of the model.

On the one hand, it is usually claimed that the effect of
the RJ radiation and the damping is a perturbation upon
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the motion due to the conservative force. In order to clar-
ify this point we shall study two effects in the case of the
oscillator; namely, (a) the perturbation of the radiation
over the phase-space variables, x and U, and (b) the effect
over the acceleration, in connection with the interchange
of energy between the charge and the radiation. In fact
we shall prove that (a) the perturbation in phase-space is
important at times of the order of the period unless e && 1,
and (b) the acceleration is predominantly given by the cor-
responding to the radiation field, and consequently the
charge and the radiation interchange a great amount of
energy.

On the other hand, we want to clarify to what extent
the AL model gives a good approximation to our model.
We shall prove concretely that in the presence of RJ radi-
ation the integral damping of Eq. (2.1a) cannot be approx-
imated by the damping of the AL equation, mrx', which
makes the latter clearly invalid. We also show that a
Taylor-series expansion of the acceleration in the in-
tegrand of the damping, which is sometimes claimed to
justify the AL equation, is not valid.

NS' (co) =const&(
(~2+~2)2

(5.3)

that is integrable. This is a characteristic feature of the
extended charge. The reason for the cutoff in S' (ar) is
that the components of the radiation field with very short
wavelength are not "seen" by the charge. The force act-
ing on the charge has, unlike the pointlike case, a well-
defined correlation function. This allows a rigorous treat-
ment of the problem.

We end this section by noting that the following rela-
tion holds for the RJ radiation:

B(t)= (F,"i(ti+i)F;"(t, ) j
=kiiTmiy(

~

t
~

) (5.4)

[see (2.2) and (5.2)]. This is a fluctuation-dissipation prop-
erty. ' Note that the integral term of Eq. (2.lb) can be
written by integrating by parts as

tf dk'y(r —t')x'(r') = y(t)x, —+ f dt'y(r r')x(r'—),
(5.5)

A. The model for the radiation field
where we have assumed that a (r) =0 for t ~0.

If the radiation is produced by many charges, the only
way to treat it is as a stochastic process. The model we
shall use is based on the "natural radiation, " an idea that
was introduced by Planck' in his research on the black-
body radiation. He considered the field as a linear com-
bination of plane waves with phases and amplitudes ran-
domly distributed. Taking into account that the field is
produced by a huge number of charges, and imposing
homogeneity and isotropy, the radiation is modeled by
considering the coefficients of the plane waves as indepen-
dent Gaussian random variables with zero mean value. '

The radiation field turns out to be a Gaussian process
with zero mean and its spectrum (the Fourier transform
of the correlation function) is related to the energy density
of the field, u (co), in the form'

4n 4n a)S(co)= u(co)= 8' (a)) .
3c

(5.1)

S'rr(co)=e S(co)8m p (co) . (5.2)

For the Yukawa distribution and the RJ radiation we get
from (2.9) and (5.2), the effective spectral density

The quantity 9' (co) characterizes the radiation field. For
the RJ radiation it is constant: 9' =kii Tle .

Now, we analyze the interaction of the radiation field
with the extended charge. In the nonrelativistic approxi-
mation we can neglect the magnetic fiel. Then, the force
F" on the charge due to the field is given by (2.4), where
I,„, is replaced by eE. In this case we cannot approach
this expression by its value at the center of the charge, be-
cause the radiation contains indefinitely high frequencies
co with an intensity proportional to co, and then the field
changes appreciably within the dimensions of the charge.
Therefore, the force F" is a Gaussian random process
with zero mean, and its spectrum is given in the dipole
approxlmatlon by

U(t)=UO+ f dt'p(t t')F"(t')—,
m]

where

p(t)= [1+e '(ecoscrv et+i/esinoVet)] .1

1+a

(5.6)

(5.7)

Because of the properties of F" and the linearity of the
equation of motion, U(t) is a Gaussian process with zero
mean. Its mean quadratic velocity can be obtained from
(5.4), (5.6), and (5.7). A little algebra yields

&U (r)&=UO + [1—
q (r)] .

kgT
Pl )

(5.8)

The probability distribution for U is then given by

P(u, t) =const Xexp( (U —Uo —j /I2kiiTm, '[1—y (t)]]).
(5.9)

In the limit t~00 we get

P„(U)=constXexp[ —(U Uo) /(pk~Tmi '—)],
where

@=1 —p (00)=
2

.+26
(1+e')

(5.10)

(5.11)

Note that these results are valid for any charge distribu-
tion.

We get then steady state for U; on the contrary the posi-

B. Free charge immersed in a RJ radiation field

In the following we assume that e& 0, and the fields set
in at t =0. The equation of motion is (3.6), where P(t)
must be replaced by F"(r), the stochastic process defined
above. The solution is given by (3.10) and (3.11). From
(3.10) we obtain the velocity
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tion increases indefinitely. Other propertjes of the free
particle are essentially equivalent to the ones obtained for
the oscillator, which is analyzed in the next section.

C. Osrillator in a RJ radiation field

F"(t)x'= —coi x — dt'y(t t')—x(t')+
0

(5.12)

It can be shown, by using g given by (3.8), that the solu-
tion of (5.12) is again determined by the initial conditions
xo, vo. Using the Laplace transform and the functions X;
(i =0, 1,2) [see (4.6d) and (4.5)], we get

x (t) —xoX i(t) +vQXQ(t)

g Fst(t )+f dt'X, (t t')—
0 Pl

&

v (t)= voXi(t) xotoo (—I +e)X2(t)
g Fsi(t )+ f dt'X, (t t')—

0 Pl ]

(5.13a)

{5.13b)

The position and velocity are then Gaussian processes
whose mean values are given by the solutions without
field (4.5). The covariance matrix is obtained' from
(5.13):

C (t) = (x'(t) ) —(x (t) )'
kaT 1 —Xi (t) —X2'(t)
Pl ) 4gj

(5.14a)

SEQtl01fQ~ sfQE8

Using the notation of Sec. IV, keeping the condition
(4.2) and e) 0, the equation of motion is now

make some comments on (5.1S). We first note that it is
only valid for e)0. If e&0 the mean values of x and v

diverge, due to the runaway solutions, and. there is no sta-
tionary state. Second, when e) 0 the result {5.15) is valid
for any charge distribution, because only general proper-
ties of X; (i =0, 1,2) have been used.

We finally note that if e«1, then mi-m, and (5.15)
coincides with the Maxwell-Boltzmann (MB) law. There-
fore RJ and MB are compatible only if e «1, which is a
reasonable value (see Sec. II). This is crucial as concerns
statistical mechanics and the study of the blackdody radi-
ation law. We find then that for some models there are
discrepancies with the usual result of classical physics. (It
must be kept in mind that the implication RJ==-MB is
based on the AL or LD equations. ) It remains an open
problem to obtain the spectrum compatible with MB law.
However, since the universal character of {5.1S) is due to
the fluctuation-dissipation property (5A), it seems that
with another spectrum the result will depend on the
charge distribution. Consequently, in order to get the MB
law, the spectrum should also be charge distribution
dependent.

&(x -x, )'& &(v -'v, )'&

2 2X~
(5.17)

2. Analysis of the interaction with the JtJ radiation field

a. Study of the phase space traj-ectories perturbation. In
order to analyze to what extent the damping and radiation
terms of Eq. (5.12) can be considered as perturbations, we
first compare the trajectories given by (5.13) with the ones
corresponding to the uncharged oscillator for times larger
than the period but shorter than r, [see (4.8b)]. To do this
we calculate the quantities

C„„(t):(v (t) ) ——( v (t) )
k~T 2 2 2[1—coi X2 (t) —X2 (t)],

C„„(t)=&x(t)v(t)&
—(x(t) &&v(t)&

kgT
X2(t)[Xi(t)—X2(t)] .

(5.14b)

(5.14c)

where x„v, are the solutions for the uncharged oscillator,
and xst ( vent ) the maximum value of x ( v).

According to the discussion in Sec. IVA, x, and U,

coincide, for the times we are considering, and neglecting
terms of order too/cr, with (4.5), i.e., with the mean values
of x and v. Since we may estimate xst and vent by
tooxst -v~-(28'o/m)'~', we get

and the mean energy takes the value

( 8')sT= ke T 1+—
2

(5.16)

Note that for the nonrelativistic approximation to be
valid, we must have (8')sT«mc . Then, for r, close to
its minimum value, r, {e))1), (5.16) leads to very restric-
tive values of the temperature of the system T. We now

In the steady state t~ao, the mean values (4.5), and
Xi,X2,Xz, decay to zero. Therefore, the stationary proba-
bility density is

PsT(x, v)=constXexp[ —( —,miv + , mtoo x )/(kti—T)],

(5.15)

m COO Cuu

2$'O ' " 25'0
(5.18)

where 8'0 is the initial energy and C and C„„are given
by (5.14a) and (5.14b). Expressions (5.18) give an estima-
tion of the mean deviation of the trajectory with respect
to the "neutral" (uncharged) one for times t «r, . It is
obvious that if 8'o is very small these two trajectories are
very different, even for short times. On the contrary,
when 8'o is big enough there will never be appreciable de-
viation for t &&~,. Anyhow, what is important is the
behavior of the trajectories with initial energies 8'o similar
to the mean energy (5.16) that give the most important
contribution to the stationary state. Taking then
8'o-(8')sT, and using Eqs. (4.9b)—(4.9d) we get, for
times t &&v„
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2 coo

(1+e)(2+e) cr
(5.19a)

4e 32K,
Po(sT) =ka Tcr

2 e+ +0(& )
(4+e) 4+e (5.25)

e +2e e—sin coot+A(t} +0(1+e)(2+e) 0'
(5.19b)

Note that the limit A, ~0 corresponds to the free-particle
case. From (5.25) we see that after a time

where N(t) contains terms coming from Xz, that decay—n f
as e ' . Then, they are important only when
t (cr„'« T. It is clear from (5.19) that these quantities
are small only if e«1. When e is not small, the trajec-
tories are very different from the neutral ones, and the ra-
diation field cannot be considered as a perturbation.

b. Study of the acceleration perturbation. It is also in-

teresting to study the deviation for the acceleration:

(4+e) ( 1+e/2)
+a— 2

0 =Qo
4e

(5.26)

the absorbed energy turns out to be of the same order as
the mean energy (5.16). 0 has a mimmum for e=6.5
given by 0 („=2.8. Then for many systems r, is of the
same order as cr ':r, /c. —This strong interaction is due
to the high frequencies of order o. The contribution of
low frequencies to the absorbed power (5.23) is given by

((~ —(u ) )')
2 2 2oxo +~o Uo

(5.20) L 26
Pa -ksT cuo1+g

Q)o QPo+0 (5.27)

From (5.13b}, we obtain after a straightforward calcula-
tion

*

The energy exchange in a period, P, 2n. /coo, is then a frac-
tion of order (coo/cr) «1 of the mean energy. Therefore,
as concerns low frequencies the interaction is weak.

3. Comparison with Al. model

(5.21)

Using Eqs. (4.9d) and (4.9C), we get, for times
1)21r/cup))cT hilt t «r aIld 80 (8 )sT,

(5.22)
2+& coo

that is never small, since cr e/co01 «1 would require an
enormous radius for the electron. For instance, if
coo/cr 10 and cr e/coo &10 ', we need e&10 that
corresponds to r, bigger than the radius of the first Bohr
orbit (see Sec. II).

c. Analysis of the interchange of energy. The results ob-
tained in the foregoing sections lead us to think that the
emission of energy by the charge, clearly related to a, is
very intense, and then the interaction between the charge
and the radiation is very strong. To see this, we calculate
the emitted and absorbed power in the stationary state.
Since the mean energy is conserved in the stationary state,
we have P, (sT)+P, (sT)——0, and it is enough to obtain
P, (sT), that is given from (5.13b) by

P, (sT) ——lim ( u ( t)F"( 1) )

To end the analysis of the oscillator case we shall show
that the damping cannot be approached by the AL expres-

sion, mrx To d'o. this, we calculate mr(x(r)u(t))sT and
compare it with the emitted power, P, (sT) P, (sT)

—[cf—.
(5.24)]. From (5.21) we get

( mrx u &sT ——- —mr((1 &sT —— 2ks Toe—(e+A). .(5.28)

—m, (u(r)ii (1))—I dr'y(r t')(1 —t')' . —
o

(5.29)

%e use the relation

It is clear that (5.28) never coincides with P, (sT) obtained
from (5.24) (P, (sT) —P, (sT)). ——

The emitted power given by the AL equation, (mrx'u ),
can be considered as the first term of an expansion, ob-
tained by using a Taylor series of the acceleration of the
integral term. %e have shown that this term does not ap-
proach the emitted power. As concerns the other terms of
this expansion, it can be shown that the odd ones are
divergent. Therefore, unlike the case without radiation
field (see Sec. IVB and the Appendix), the expansion of
the integral term does not make sense. To show those
divergences we consider here the third term of this expan-
s1on:

dQ+2 67 8 QP

m]

Using (2.10) and (5.4), we obtain

P, (sT) ksTcr e s X2(s——)
2 ~ 2

9$

4e(e+8A, )

(4+e) [1+4k /(4+e)]

(5.23)

(5.24}

1 d4
(u(1)a (1))=— (u'(r)) —2 (c('(1))+(ci '(t)),

& dt4 dt2

(5.30)

where the two fjrst terms are bounded and go to zero
when t~ao [see (5.13b), (5.14b), (5.21), and (4.7)]. Dif-
ferentiating (5.13b), we see that (ci ) contains a divergent
term given by [see (5.1)—(5.3)]

32 2(F"(t})/m(' —— ksT J dcocu p'(cu)= ~ .
0

where g=(coo/cr)(1+e) . Tllc cxpicss1011 (5.24) 1s exact
Since coo/cr « 1, we develop P, (sT) in powers of A,: (5.31)
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VI. CONCLUSIONS AND DISCUSSION

We have shown that the extended charge model we
have studied lacks the inconsistencies of the punctual
model, but not for all the values of the radius r, . This
last point allows us to understand why runaway solutions
and preacceleration appear in the AI. equation. %hen
r, g r, the solutions become divergent and moreover there
is no uniqueness. The first feature is obviously respon-
sible for the runaway solutions of the AL equations,
whereas the second one leads to a correct understanding
of the phenomenon called "preacceieration. " If we consid-
er a given force F, the initial position and velocity do not
determine the solution, and another condition is needed.
Depending on this extra condition the solution can or can-
not display this phenomenon. This indetermination, that
leads to the existence of "preacceleration, " and the runa-
way solutions clearly make unsatisfactory a model with
r, ~ r, . %e note that this analysis can be also applied to
the LD equation, if we do not consider the additional con-
dition, a&~0 when t~(e.

The punctual model can approach in some cases the ex-
tended model with r, g r, . In this context we have shown
that, at least for forces without very high frequencies, this
is correct as concerns all the relevant quantities (coeffi-
cients, frequencies, relaxation times, etc.) for the phase-
space coordinates. However, if we consider forces includ-
ing high frequencies there are big discrepancies between
the extended and punctual models. This is due to the or-
der, r, '=a, of the characteristic frequency of the ex-
tended charge that leads to highly oscillating terms which
can be excited by a force with high enough frequency.
Then, an extended charged oscillator immersed in a RJ ra-
diation field has a very strong interaction with the radia-
tion, due to the high frequencies of order o. This strong
interaction with high frequencies is also basically respon-
sible for the expansion in Taylor series of the acceleration
inside the integral term to be incorrect. This expansion is
again only valid for forces without high frequencies.
Therefore, it is not possible to ground any theoretical
model on this kind of development. An important result
of our study of an extended charge in a RJ radiation is
that if the electromagnetic mass of the charge is compar-
able to the mass m, i.e., e&1, neither the effect of the
field on the phase-space trajectory can be considered as a
perturbation, nor does the stationary distribution follow
the MB law. These two facts, which seem to be related
could be important in the study of the radiative equilibri-
urn between radiation and matter.

We finally want to remark that most of the results we
have obtained in this paper have not to be considered as
intrinsic features of the nonrelativistic rigid spherically
symmetric extended charge. In fact our results differ in
some respects from the ones obtained in Refs. 6, 7, and
10, where another starting point has been considered for
the derivation of the equation of motion. Both models are
not fully satisfactory, and a theory including "cohesive
forces" appears to be necessary. But even within the
scheme of our model, it is obvious that different charge
distributions will give different behaviors. A study of our
model for a wide class of charge distributions is the aim
of a different paper.
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APPENDIX

In this appendix we show, by using the exact solution
for the oscillator, that the "damping" term of Eq. (2.1a)
can be developed by means of a Taylor series of the ac-
celeration:

F~= —m, I dt'y(t —t')[a(t') —a(t)]
D" a'"'(t)

=m) g, ( —)"+'y„,
7l .

where [cf. (2.10)]

dQQQQ

gn+1 g

2e( )n + i duen+I p

=o eA„+i(cr, t) . (A2)

A„can be written

, P„(crt)—en+1 ~n +1 (A3)

where (ot =x)

Q5
P (x) ( )nxa+lex

Bx"
(A4)

Using the following recurrence relation for P„(x}

P„+i(x)=(n +1)P„(x)+xP„(x) xP„'(x), —

we get, by induction with I'o ——1 and P1 —l+~,
n k

P„(x}=n!g
o k!

(A5)

(A6)

Then, (Al) is given by

F = e g a'"'(t) 1 —e
n

n=1 O k=o

., " a'"'(t)(n+1) " (~t)"= fPl 1Ee k!n=l 0 k=a+2

In order to show that this series is absolutely convergent,
we consider two parts in a(t), which is given from (4.5b)
and (4.6b) by
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a (t) = —too'( I+e)[xoX2(t)+UoX2(t)] . (A8)

The first part a, (t) includes the terms with frequency to

close to (oo [see (4.8a)], and the second one, a2(t), the

highly oscillating terms. a, (t) can be written

[cf. (4.9c) and (4.9d)l. Using 0)+ill) =
I &( I

e " and
'+(to=

~
A)

~
e ', we get, from (A9),

a I"'(t)=(—)"+)roo2
/
0, f /

A,
/

"e

a)(t) = —too (g)cos(ot+ri)sintot)e (A9) X Re[exp( i—cot +i q&) +in 8) )] .

where r„ ls given by Eq. (4.8b) and g(~~o, 7/)~Uo/too Substituting (A10) in (A7) we get

;(q, —
) (n +1) A(

~

"(—)"+';„e, (ot)k
n

e k!a=1 0' k=n+2
(Al 1)

a& (~t )k
(exp(at),

k=n+2

I

~
A(

~

"(—)"+'e '(n +1)
0' k=n+2

A)
(n+1)e '. (A12)

But
N

I
A)

I
=('rr +oT } =too 1+ 2 2(7 ( I +e)

[see (4.2), (4.8a), and (4.8b)], and therefore the series in (Al 1 } is absolutely convergent.
We consider now a&(t). In the same way as for a ) ( t) we have

2
—a t

a q(t) = too (g—qcoso p + rt2simrp)e (A13)

where o,=(T, (T„=o'We [cf. (4.8c) and (4.8d)], and k2=xoe~ 't}2~os e [cf. (4.9c) and (4.9d)]. Using (2+i
i82

and (7„+io„=
~

A2
~
e, we have

a2"'(t) =(—}"+'o
I
II2

I I
A2 I

"(t"e ' Re[exp( —'(Tp+'p2+&'n~2}] (A14)

Substituting (A14) in (A7) we get

(X)

F~~=m(ee 'too'~0, ~e 'Re e ' g( —)"+'~A,
~

"e '(n+1)
n=1 k n+2= (A15}

Using the property

(m +n)! &1
mf.nI

-' (A16)

we have

oo k oo m n+2 +n+2 oo Xm

2 k! o (m +n +2)! (n +2)! o m!X,=X,&,X
n+2

eX
(n +2)! (A17)

and then

~
Aq

~

"e '(n+1} g & e '((Tt)~.
in 82

k=. +2 k'-
(A18)

Therefore the series in (A1S} is absolutely convergent.
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