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We calculate the Compton scattering cross section in a very strong magnetic field (B ~ 10" G),
such as encountered in pulsars, for arbitrary photon and electron energies. We include the effect of
the vacuum polarization in the weak-field limit ( B << m?c?/#e), as well as the plasma polarizability.
We include explicitly radiative transitions between any pair of Landau levels, and include also two-
photon scattering. The latter process, due to the presence of the cyclotron resonance, becomes com-
parable to nonresonant one-photon scattering when excited final states are allowed, and acts as a
source of photons which is more important than bremsstrahlung at low plasma densities. The treat-
ment is based on the relativistic S matrix, and the cross sections are averaged over a relativistic
Maxwellian electron distribution. The results are compared with previous nonrelativistic calcula-
tions, and it is found that even for temperatures as low as 10 keV there are significant effects that

are peculiar to the relativistic treatment.

I. INTRODUCTION

The astrophysics of strongly magnetized neutron stars
has given impetus to a number of calculations involving
the application of quantum electrodynamics to situations
where the external field can no longer be treated as a per-
turbation. The pulsing x-ray binary stellar systems, such
as Hercules X-1, constitute one class of neutron-star
sources where the magnetic field strengths are inferred to
be of the order of 10'?> G. The cyclotron energy levels in
such a field have a typical separation given by
E =11.6(B/10"> G) keV. Furthermore, the observed
luminosity and spectra of such objects imply typical den-
sities of order 10?%cm ™3 and electron energies of order 10
keV or more (for a review of the observations, see Joss and
Rappaport;! theoretical considerations have recently been
reviewed by Mészaros?). For these conditions, a detailed
interpretation of the radiation requires a knowledge of
both emission and scattering mechanisms by fast, strongly
magnetized electrons.

The first studies of radiation processes in a strong field
were carried out in the nonrelativistic limit (Canuto,
Lodenquai, and Ruderman,’ Ventura,* Mészaros and Ven-
tura,’ etc.). From these studies, it was realized that the
charged-particle collisional rates are inadequate to popu-
late excited cyclotron levels; thus, the electron cyclotron
energy-level distribution must be completely determined
by the radiation density at the cyclotron frequency (and
overtones). In such a situation, the absorption and emis-
sion of cyclotron radiation can be treated as a resonance
in the scattering process, since essentially every radiative
excitation is followed by a radiative deexcitation.
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Daugherty and Ventura® carried out a fully relativistic
calculation of the absorption rate for cyclotron photons,
and Herold’ presented the differential scattering rates in
the relativistic case, but with the electron confined to the
magnetic ground level in both the initial and final states.
The inclusion of relativistic effects was necessary to ade-
quately describe line profiles and include the contributions
from higher harmonics and spin-flip transitions in the
sum over intermediate electron states.

In this paper, we present a detailed study of the
photon-electron differential scattering rates in a strong
magnetic field, using the covariant S-matrix formulation.
In Sec. II general formulas for the rates are given for tran-
sitions between any levels for arbitrary photon polariza-
tion. These expressions show a typical general structure,
in that they consist of products of matrix elements, one
between the final and intermediate states and one between
the intermediate and initial states. These products are
then summed over the intermediate state with the in-
clusion of the appropriate energy denominator arising
from the electron propagator. In Sec. III we show the re-
sults of numerical evaluations of the formulas for several
cases likely to apply to the pulsing x-ray binaries. One
particularly important result that comes from relaxing the
assumption that the electron final state be the ground lev-
el is the existence of a resonance in the process analogous
to double Compton scattering. In fact, this process is very
likely the dominant source of photons for the parameters
typical of accreting neutron stars. A preliminary. discus-
sion of the process and its implications has been given
elsewhere (Bussard, Mészaros, and Alexander;® see also
Kirk and Melrose®). Finally, in Sec. IV, we discuss the re-
sults and indicate their usefulness for various applications.
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II. SCATTERING RATES

First, we describe the expressions used to obtain the scattering rates presented below. We have derived these formulas
in the fully relativistic S-matrix representation, as, for example, in Bjorken and Drell,'° and the calculations are outlined
in the Appendix. The results can be written as
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where wj ;.; (k',€";k,€,p) is the rate, j, s, and p refer to the electron magnetic quantum number, spin, and parallel
momentum, k and € are the photon wave vector and polarization vector, r is the classical electron radius, m is the elec-
tron mass, o is the photon frequency, and E refers to the electron energy. The primes refer to the final state, and units
where #i=c =1 are used throughout. The 8 function clearly expresses conservation of energy. The quantity within the
vertical bars is a summation over intermediate electron states, in which the ¢’s are the azimuthal angles of the photons in

the plane perpendicular to the field, and the a’s, b’s, and A are defined as (see the Appendix)
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where s” is the intermediate-state spin and A" the sign of
the energy. In these equations, the energies are given by

E=(m*+p*+2mo.j)’?, (3)

and similarly for the primed and double primed terms,
where o, is the classical cyclotron frequency. The G vec-
tors arise from the matrix-element integrations and are
discussed in the Appendix, while the energy denominators
come from the electron propagators in the usual way. in
A, the quantity £ is given by %k, 2/(2maw, ).

In the cases to which we wish to apply our calculations,
we expect the densities to be low enough that the col-
lisional excitation rates of magnetic states above the
ground level are quite small compared to the radiative
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deexcitation rates, implying that the electrons spend
essentially all their time in the ground state (Canuto and
Ventura,!! Bussard'?). Thus, in what follows, we consider
only cases where the initial electron has j =0. We note
that Herold” has obtained the rate for the situation where
both electron states are the ground state, and our expres-
sion agrees under that condition. However, we have gen-
eralized the calculation to include cases where the electron
is left in an excited state after the scattering. This effect
has important consequences for the production of radia-
tion in the pulsing x-ray binaries (Bussard, Mészaros, and
Alexander,? Kirk and Melrose?).

We can further simplify the scattering rate if we as-
sume azimuthal symmetry. Integrating Eq. (1) over the
final photon azimuth and averaging over the initial yields
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where, in addition, we have converted from a rate differential in the three-dimensional wave vector to one differential in
frequency and direction cosine p (taken with respect to the field direction). In Eq. (4), the origin of the squares of a and
b is evident, and the term involving the Bessel functions arises from the cross product of the a and b terms with the
form of A taken into account. Finally, we use the 8 function in an integration over the electron parallel momentum dis-
tribution, which is taken to be a relativistic thermal population, or

-1

fp)=|2mK, |— exp (5)

T

where T is the electron temperature parallel to the field and K; denotes the modified Bessel function of the second kind.
In performing this integration, one finds that for a given initial and final photon, there exist two electron momenta that
satisfy conservation of energy and parallel momentum, which we denote p ., given by



442

’

kH—kH 2
T[q +2mae (j' —j)]*

wl
2

pP+=

R. W. BUSSARD, S. B. ALEXANDER, AND P. MESZAROS 34

;“’ (g +2ma (i’ —)P+4q(m>+2ma.j)}' /2, (6)

where g = (k| —k)?— (o' —®)*. The resulting expression for the scattering rate becomes
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For the purposes of this work, we have used the results of
Bussard, Lamb, and Pakey'’ for the normal-mode eigen-
vectors in a thermal plasma. We merely note that the cal-
culation is based on that of Pavlov, Shibanov, and
Yakovlev,'* generalized to the fully relativistic case. It in-
cludes both the effects of the polarizability due to the
plasma electrons and the vacuum polarizability in the lim-
it where B/B..=B#e/m**=B/(4.412xX 10°G) << 1.

III. RESULTS
A. Differential scattering cross sections

The scattering rate derived in Sec. II was used to calcu-
late differential cross sections for various incident photon
frequencies and angles. In all cases, we used conditions
believed to be typical of the free-fall atmosphere of an ac-
creting x-ray pulsar: cyclotron energy fiw,=38
keV; electron temperature kT=10 keV; plasma density
p=1.67x1072 g/cm’, e.g., Ref. 2. The summations over
final electron magnetic quantum number ;' in Eq. (7) were
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included up to j'=3 while the summations over inter-
mediate states extended to j'=4. Thus the cross sections
should be considered accurate up to and including the
second harmonic. In order to see the differences that
would arise if one neglected relativistic effects, we have
also performed comparison calculations in the nonrela-
tivistic limit, including only lowest-order Doppler and
recoil effects, as described by Mészaros and Nagel.!®

The differential cross sections, normalized to the
Thomson cross section and plotted as functions of the fi-
nal photon energy, are shown in Figs. 1—10. Each figure
contains four plots, labeled 4, B, C, and D, correspond-
ing to scattering from ordinary to ordinary polarization,
ordinary to extraordinary, and extraordinary to ordinary,
and extraordinary to extraordinary, respectively. The
convention used becomes the usual one in the low-
frequency limit, where vacuum effects are negligible,
namely, transverse ordinary (extraordinary) photons have
electric field along (across) the external magnetic field, or
longitudinally propagating ordinary (extraordinary) pho-
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FIG. 1. Relativistic differential scattering cross section ( R), incident photon energy 26 keV, and incident angle 15°. The cyclotron
energy is 38 keV, the electron longitudinal temperature is 10 keV, and the plasma density is 1.67 X 10~2 gcm ™. Panels 4, B, C, and
D represent O to O, O to X, X to O, X to X, where O and X are ordinary and extraordinary polarization. The square, circle, trian-
gle, and cross symbols on the curves denote final photon angles of 20°, 60°, 120°, and 160°, respectively.
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FIG. 2. Same as Fig. 1, incident energy 26 keV, incident angle 45°.

tons have an electric field rotating in the opposite (same)
sense as the gyration of an electron in the magnetic field.
For a particular incoming photon angle (measured with
respect to the magnetic field), the outgoing photon angle
is labeled next to the corresponding curve.

Figures 1—3 are the differential cross sections for an in-
cident photon energy of 26 keV and three incident angles:
15°, 45°, and 75°. The plots clearly show the fundamental
cyclotron resonance, Doppler shifted according to the fi-

nal angle, as well as the usual thermal redistribution about
the incident frequency. Further, as can be seen by com-
paring the relativistic case (R) of Fig. 1 with the corre-
sponding nonrelativistic (NR) calculation of Fig. 4, we
find a new feature at low energy that corresponds to the
production of low-energy photons (o <<w,.). This effect
is caused by a small fraction of the scatterings leaving the
electron in an excited state while emitting a low-energy
photon. Later the electron radiatively deexcites emitting a
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FIG. 3. Same as Fig. 1, incident energy 26 keV, incident angle 75°.



FIG. 4. Same as Fig. 1, but in the nonrelativistic approximation (NR), incident energy 26 keV, incident angle 15°.

resonance photon. The net result is the production of a
low-energy or soft photon. In terms of Feynman dia-
grams, this is analogous to double Compton scattering,
which consists of three vertices and two propagators, but
in the presence of a strong magnetic field, the second
propagator can become a real (on-mass-shell) excited-state
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electron. A related effect is that of two-photon deexcita-
tion following the absorption of a cyclotron photon. Al-
though we have not included this rate in our calculations,
its contribution is nearly equal to that shown at low fre-

The cross sections for an incident photon energy of 50

FIG. 5. Relativistic scattering cross section (R), for an incident photon energy of 50 keV, incident angle 15°. Other symbols are

the same as in Fig. 1.
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FIG. 6. Same as Fig. 5, incident energy 50 keV, incident angle 45°.

keV are shown in Figs. 5—7. In the relativistic case, we
see a large probability for the production of low-energy
photons especially at low incident angles. As in the
lower-energy case, a nonrelativistic calculation (Fig. 8)
contains only the fundamental cyclotron harmonic;
whereas the corresponding relativistic one (Fig. 5, as well
as Figs. 6 and 7) reveals higher harmonics. This is be-
cause an incident photon of 50 keV is sufficient to excite a

small fraction of the electrons into the j =2 magnetic lev-
el. Thus, for example, in Fig. 5, we see not only lines for
a j=1 to O transition but the additional lines correspond-
ingtoj=2to1landj=2to0.

As a final example, relativistic calculations were made
for the case of an incident photon energy of 100 keV.
Here, only two final angles were considered. Figures 9
and 10 show the cross sections for incident angles of 15°
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FIG. 7. Same as Fig. 5, incident energy 50 keV, incident angle 75°.
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FIG. 8. Same as Fig. 5, but nonrelativistic approximation (NR), incident energy 50 keV, incident angle 15°.

and 75°. Again, the lower final angle shows the probabili-
ty for the production of soft photons. Also apparent in
these figures are the resonances associated with an elec-
tron excited to the j =3 level.

B. Total scattering cross sections

Total scattering cross sections were computed numeri-
cally by integrating the differential cross sections over fi-

nal photon frequency and solid angle and summing over
final polarization. The integration over frequency must
be done with special care to ensure that enough frequency
points lie close to a resonance. The location of the various
resonances is easily calculated from kinematics, and a grid
of frequencies is set up that is densest near the resonances
and more uniform in the continuum. The total cross sec-
tions for ordinary and extraordinary photons, plotted as
functions of incident photon frequency for four incident
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FIG. 9. Relativistic scattering cross section (R) for an incident photon energy of 100 keV, incident angle 15°. Other details are as

in Fig. 1.
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angles, 15°, 45°, 60°, and 87°, are shown in Figs. 11 and 12
for nonrelativistic and relativistic calculations, respective-
ly. In each case, the cross sections are normalized to the
Thomson cross section. At low incident photon energy,
the nonrelativistic and relativistic cross sections are virtu-
ally identical, including the polarization crossover at the
first vacuum frequency,

fiwy =3(p/0.0167 gcm~3)/(B /0.1B,,) " 'keV ,

as discussed in Ref. 15; this crossover is due to the choice
of polarization modes as being given by the medium nor-
mal modes, which become degenerate at some particular
frequencies, such as at wy. At higher energies, the relativ-
istic calculations also show the first and second cyclotron
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FIG. 11. Nonrelativistic (NR) scattering cross section integrated over final angles and frequencies as a function of the incident en-
ergy. The four panels (A4, B, C, and D) show incident angles of 15°, 45°, 60°, and 87°, respectively. The symbols O and X on the

curves denote ordinary and extraordinary polarizations.
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FIG. 12. Same as Fig. 11, relativistic calculation (R).

harmonics at approximately 20, and 3w.. However, even
at the fundamental, there are important differences: In
the relativistic case, the peak of the line profile occurs at a
lower frequency, and the blue wing falls off more rapidly
than in the nonrelativistic calculation.

IV. DISCUSSION

The fully relativistic scattering cross sections for a
thermal electron plasma in a strong magnetic field differ
noticeably from the values calculated in the nonrelativistic
approximation, even for temperatures as low as =5 the
electron rest mass, as seen in the preceding section. In the
relativistic calculations, the cyclotron resonance peak ap-
pears at a lower energy than in the nonrelativistic case,
especially for large scattering angles. This is not surpris-
ing, since the term describing the anharmonicity of the
levels (neglected in the NR case) is actually of similar or-
der of magnitude as the first-order recoil term, which to-
gether with the first-order Doppler shift are the only
corrections in the NR resonant denominator. The
higher-order terms due to recoil also have an effect (cf.
Herold, Ruder, and Wunner'%), while for photon propaga-
tion angles close to perpendicular to the field, or u <v/c,
the second-order Doppler shift dominates the first. At
electron or photon energies above - the electron rest
mass, the relativistic expressions become absolutely neces-
sary to avoid significant errors. Even at the modest tem-
peratures of 10 keV as found in many accreting magnetic
neutron stars, the frequency half-width over which the
scattering redistributes the photons is increased or reduced
by about 10—15 % in the NR approximation, for photon
energies which are 30% below or above the laboratory-
frame cyclotron energy. While the relative change is not
too important in the case of a single scattering, for pho-

tons undergoing multiple scatterings in an optically deep
atmosphere this can represent a significant difference in
the photon escape time or the resulting line profile.

A new feature introduced in the relativistic calculations
presented here is the two-photon scattering, which pro-
duces a marked photon production probability at energies
below the resonance, for input photons of energy not too
different from the resonance energy (e.g., as in these cal-
culations, within about 30% from the resonance). This is
in fact the most copious source of photons in accreting x-
ray pulsars, easily dominating bremsstrahlung production.
Such soft photons, when scattered up in energy by the
hotter electrons, can explain the characteristic power-law
continuum spectrum detected in these sources (cf. Ref. 8).

The calculations presented here are applicable for calcu-
lating the transport of radiation in steady pulsating
neutron-star sources, emitting in the x-ray range, and for
models of celestial y-ray burst sources that are based on a
neutron-star origin. A relativistic treatment is necessary
because of the possible importance of higher harmonics in
the high-energy portion of the spectrum, and because of
the photon and electron energies in the MeV range for the
latter class of objects. Such investigations are underway
and will be presented elsewhere. Other areas of applica-
tion are, e.g., in magnetic fusion and geophysics, where
our results can be used in the limit of temperatures com-
parable to or below the cyclotron ground energy, in the
range of frequencies above the electron plasma frequency
and above the ion cyclotron frequency.
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APPENDIX

The derivation of the formulas for the scattering rates consists of calculating the S-matrix element for a given transi-
tion and then carrying out the appropriate sums over final states of its square. Labeling the final state f and the initial i,

the S-matrix element is

Sfiz%/z(ww'

where V is the normalization volume, W represents the
electron wave function, k and k' are the four-dimensional
wave vectors for the initial and final photon, respectively,
o and o' are their frequencies, € and € are the polariza-
tion vectors, the components of ¥ are the Dirac matrices,
and S(x,x’) is the electron propagator. The wave func-
tions we use are given by

W(x)=e " Etf, . (x)
Ve (A2)

Sng(Xx))e 2y,

172
E+m
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Yngsp(X) E+

where L is a normalization length along the field, the
quantum number n is the Landau level (or gyroradius
number), s is the spin component along the field, g labels
the annulus of the guiding center of the electron orbit, and
the continuous variable p is the momentum parallel to the
field. The operator 7 is the canonical momentum, or

1r=%V+eA s (A3)

where A is the vector potential of the external field. The
spinor u is either (1,0,0,0) or (0,1,0,0) for spin parallel or
antiparallel to the field, respectively, and the energy E is
given by

2
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where o, is the classical cyclotron frequency. The func-
tions f,, can be constructed by ladder operators as in Ref.
12. The propagator can be constructed from the spatial
parts of the wave functions and an energy denominator,
or
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where a represents the set of quantum numbers described
above and I', denotes the inverse lifetime of the state.
The sign of the energy in the solution of the Dirac equa-
tion is labeled by A, and the corresponding negative-
energy wave functions are given as in Egs. (A2) but with
basis spinors u replaced by v=(0,0,1,0) or (0,0,0,1). The
lifetimes used in this work are determined solely by radia-
tive deexcitations.

After inserting these quantities into the expression for
the S matrix, one obtains

Sp= |2 | 0w~ BE +o—E'~a')
e TR—UIR(—K]Te) [ IR - (—k))* e
Xz [ a ]{[xa . ] ]+[ ai ]{[af' ] ] (A6)
** Ete—2 Ea——;—Fa E—o'—A Ea—él“a
Here, the J’s represent Fourier transforms of the transition currents, or!?
£ . 172
IM(— k)— L 2—+l_§m 2;”" 8(p +k,—p"i’ —J'(—1)9-9 il —i- q+q>¢p (§)Gm(—kl), (A7)
where j =n +s + 3 is the total magnetic quantum number and ¢ is the photon azimuth in the plane perpendicular to the

field. The F functions are given by

172
L2,

!
<_gln—n|
3

>

(A8)

where n, and n_ are the greater and smaller of n and n’, rcspectlvely, L represents the associated Laguerre polynomial,
and the argument £ is k? 1(2mw,). The G functions are given on a spin by spin basis as
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[GLE(—k)]_=iV2e™™F; ; (E) O uy +6_; _gul +6_;luj—u)],
[GLE(—k)) = —iV2e™F; _| (€O out +6_g _gu, +6; _oluy—uj],
[Got/(—k)1,=F; _1 j _1(ENOsuy +uf)+6; _gul +6_;ou,l

+Fj &0, _suy +uy)—O; _gu; —0_goui],
[Gﬁ,})(—kl)]_=i\/26“"‘*Fj,j'_](g)[e_s,si(1+u||u{‘ ) =0, _guu| —0;u u+6_g _guuil], (A9)
[Gla!(—k )], =—iV2eF; | (EN0; (1 4ujui)—0_gouiul —0 uyul +6_g _cuuj],
[Gla(—k ), =Fj 1 (051 —uyui)—60_ _juyul —0; _guyu) —60_g uujl

—F; 7 (EN0_ _y(1—uyuj)—Oou u) +65 _gu u +60_oujui].

In these expressions,

G.=—(G, +iG,) ,

V2
1 ifa>0,b>0,
ba5= o otherwise , (A10)
(mecj)l/Z
ML= E+m ’ u”——E+m ’

and similarly for the primed quantities. With these definitions, the S-matrix element now becomes

172

, . ,
_ Q2" 8(E +0—E'—a"8(p+ky—p'—kjil (171

S = e E+mE +m
3%

20E 20'E'’

i(j"—q"N¢' —), —i(j'—q" )¢ ,i(j—q) N
X 2[9” 9 NG =) —i(j' —g" ) 5 il "¢aj~Fq'q~(§ )F gy (€)
iq"

+e —i(j"—q")(¢'—¢)ei(j —q)¢'e —l'(j'—q')¢bj”qu"(§r)th'q”(g)] , (Al l)

where the a’s and b’s are as defined in the text.

The rate for a given transition is obtained in the usual way by squaring the magnitude of the S-matrix element and
multiplying by the appropriate phase-space factors in the final state. The result of this operation can then be averaged
over initial guiding center numbers and summed over the final. Without loss of generality, we choose the coordinate sys-

tem so that the guiding center number of the initial state is zero. To carry out the sum in the final state, we use the rela-
tion

S e Mo (E)F g (E)=i9(q") VAV ET—VE Texp | — %5 +VEEe" ] ; (A12)
q"'=0
for arbitrary 7. The square of the § functions is handled in the usual way:
’ ’ L 1 ’
|8(p +ky—p'—k|) | *=-=8(p+k —p'—k]),
2T
(A13)

|S(E+0—E'—o")| 2=-2-€—T—8(E +o—E'—0'),

where T is a normalization time. Further, the final parallel momentum can be integrated immediately by use of the
momentum 8 function, yielding

e* E4m E'+m

wjr,s;j,s (K’ €5k, €, p) = wo' 2E  2E’

2
S(E +w—E —o') Z(Gj“eu”(tt’—‘t)+621Ab]_”e—tj”(¢'—~¢))
Iz

.. (A14)
A=%<¢'—¢)+<§§')V2sin<¢'—¢> ,

which is identical to Eq. (1) in the text.
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