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The problem of imposing symmetry on variational principles for higher-dimensional theories is il-

lustrated by considering spatially homogeneous solutions of Kaluza-Klein theories. Various impli-

cations of the group-theoretical nature of this specific situation are addressed.

I. INTRODUCTION

With the importance of higher-dimensional theories in
the description of the various fundamental forces in a
framework incorporating gravity, people have begun to
consider special solutions in an attempt to understand
some of the implications of these theories. ' These spe-
cial solutions are usually characterized by the existence of
a large symmetry group, However, rvhen variational prin-
ciples are used to discuss symmetry-restricted classes of
solutions of field equations, one must be careful to check
how imposition of the symmetry affects the reduced vari-
ational principle.

It is well known from studying symmetric solutions of
the Einstein equations in the four-dimensional case that
the imposition of symmetry does not necessarily commute
with the derivation of the field equations. This question
first arose in the context of spatially homogeneous cosmo-
logical models ' and extended to the spatially self-similar
models, 'o both of which have a three-dimensional symme-
try group acting simply transitively on spacelike hypersur-
faces, except for the multiply transitive case of the
Kantowski-Sachs models" and their spatially self-similar
generalizations. Under certain circumstances this prob-
lem is even relevant to the most familiar symmetry used
in relativity, namely spherical symmetry. ' No general
criteria exist for deciding when a symmetry-restricted
variational principle yields the correct field equations.

II. SPATIALLY HOMOGENEOUS
KALUZA-KLEIN MODELS

For the sake of an example, consider those solutions of
a Kaluza-IGein theory in %+1 dimensions @which gen-
eralize the simply transitive spatially homogeneous
cosmological models in four spacetime dimensions. These
seem to have been first considered by Behnsky and
Khalatnikov' who were interested in the effect of a scalar
field on the classical initial cosmological singularity. The
spacetime for these models is a product manifold R X 6,
where 6 is an N-dimensional Lie group with Lie algebra

p of left invariant vector fields ha~ing a basis

, )v»d a dual basis wliich may be identified
with left invariant one-forms I toe I satisfying to'(eb )=5'b

fea~ebl=C abec~ dto =
2 C abto ~co (1)

Letting eo ——8IBt and to =dt, where t parametrizes the
family of copies of 6 in the product manifold and is
identified with one of a set of local coordinates
It»'I =—I& 1 ao, l, . . . , t(( adapted to the product manifold,
chosen so that the t lines are orthogonal to the 6 slices,
the metric can be expressed in the form

( )v+) )(t) g p

M(t)—dtedt+g, b(t)to'to

where g=(g,b) is a positive-definite matrix in the case to
be considered. Let g=detg be its determinant. Thus 6
acting on R XG by left translation in the natural way is
an isometry group of ' + "g acting simply transitively on
the family of spacelike hypersurfaces of constant t values.
Fields like the metric which are invariant under this ac-
tion have components in the frame Ie I which depend
only on the time and are called spatially homogeneous.
This frame itself is a global spatially homogeneous frame
on the spacetime with constant structure functions

to ([ep,e„])=C p„—5,C'b, 5—p5' .r

III. FRAME UARIATIONAL DERIUATIUES

The vacuum Einstein equations may be derived from
the usual scalar curvature Lagrangian but it is worth
studying first how symmetry affects the derivation of the
field equations for any Lagrangian functional of
geometric object fields on the spacetime. Let
W(4, 8 4,t) BpW be a Lagrangian density functional of a
geometric object field or collection of such fields denoted
by 4 whose frame indices and field labels are suppressed
but symbolized by the superscript A when aeeded. The
notation 8J"=e+ is used to denote the frame derivative

of a function f and f=Bof for the time derivative. Using

the abbreviation to ' r =to 'h . hco r for the wedge
product of p basis one-forms, the action functional

~01- - ~ X
C

where C is an arbitrary compact region of the spacetime,
is varied with respect to 4 holding @fixed on the bound-
ary BC.

If
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(~1)—ie y 1~ 2 %+1 y J~01 ' ' N

+ [BW/B(B~Bp4'")]B~Bp4'"

=(5&/M ")e'"+t) Z (10)

is an W-form on the spacetime, the well-known identity

der=8 r, &001"'", 8 —=8 —CP p

expresses the divergence &~X of the vector density X.
The divergence operator satisfies the identity

8 (fX )=X 8J'+f8 X

which is used in the frame version of integration by parts,
while Stokes's theorem for the differential form tT states

f d(y J 01 N) f g J 01 . tv
(&)

C Bc

Consider a one-parameter family of fields 4(A, ), where
4(0)=4 and d4/d A,(0)=4' with 4' and its frame com-
ponent derivatives vanishing on BC, and require that the
variation (i.e., A. derivative at A, =O) of the action vanish
for arbitrary values of 4' in the interior of C and arbi-
trary compact regions C,

O=dI/dA, (0)= f D~(+')''1"t0

f (g~/5g A)q iA 01 . tv

z 01 ~ ~ ~ X (9)
where

DW(4) 4'=(BW/84")4'"+[BW/B(B 4")]8 4'"

Z~=
I BW/B(8~4") —Bp[BW/B(BpB 4")]I@"

+[BW/B(B~Bp@")]Bp@'", (11)

while

SW/5C =am/ae —a.[aW/a(a. e)]
+Bp& [BW/B(B Bp@)]

defines the frame components of the Lagrange derivative
or variational derivative of the Lagrangian density W.
The slash is a reminder that it is a frame derivative like
the divergence operator (6). Stokes's theorem has been
used to transform the divergence term in the integral (9)
to an integral over the boundary where Z Jco ' ' '

van-
ishes. Thus the arbitrariness of 4 in the interior of the
region C implies the Lagrangian field equations

5&/54" =0 .

All of the above formulas are valid for an arbitrary
fixed frame (e ] on an (%+1)-dimensional manifold
with structure functions C p&. For a holonomic frame, or
equivalently a local coordinate frame, the structure func-
tions vanish and these formulas reduce to the usual ones.
For the present case the structure functions are constants
and the variational derivative is explicitly

yW/5+ =au/aC —a.[aW/a(a. e)]+ay.[5W/a(a. a~)]
+Cp.gu/a(a. e)+Cr.,C'peaW/Wa. a,e)—(Cr~a. +Cr.„ap)au/a(a. ape) . (14)

Now suppose one restricts the fields 4 to be spatially
homogeneous, i.e., 4" depend only on t, and the region C
to be a product region [ti, tz]XCG and one considers a
family of spatially homogeneous fields @(A,). The spatial-
ly homogeneous functions 4'", being functions only of t,
cannot be required to vanish on BC without vanishing
identically in the interior, and the symmetry-restricted
variational principle will in general yield incorrect field
equations due to unwanted divergence terms.

The problem is perhaps easiest understood by examin-
ing the effect of imposing the syinmetry on the field equa-
tions. Referring to the imposition of the spatially homo-
geneous symmetry as "spatial homogenization'* and
denoting the operation on functionals by OH, then in
OH, W one may set 8~=5 ~80 when acting on a spatial-
ly homogeneous function. Understanding 4 to be a spa-
tially homogeneous field, the homogenized Lagrangian
density depends only on 4 and its time derivatives

(O„. W)(C, C,C ) =W(e, 50.e,50.50') (15)

and acts as a Lagrangian function on the finite-
dimensional configuration space of variables 4 treated as
functions on the real line. Its Lagrange derivative

WO, W)/5+=a(O„..W)/ae —[(O„,W)/a~]

+[8(OH, W)/84]", (16)

when set equal to zero, produces the Lagrangian equations
of motion for the finite-dimensional Lagrangian system.
However, the homogenized Lagrange derivative is

OH, (SW/54)=NOH, W)/54

+O„, [C'.1, BW/B(~, @)

+C'„C~~BW/B(B,B1,@)] .

Setting it equal to zero produces the correct equations of
motion which do not agree with the Lagrangian equations
of motion for the finite-dimensional system unless the ad-
ditional terms OH, (SW/B4) —5(OH, W)/5@ vanish.
These terms vanish identically when C,~

——0 or possibly
on submanifolds of the configuration space when
Cs,b&0. The same analysis may be applied to the corre-
sponding Hamiltonian formulation.

The condition C,s =0 is the component form of the
relation Trad=0, where ad is the adjoint representation
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of the Lie algebra p, i.e., the adjoint representation of p
must be trace-free and therefore the adjoint representation
Ad of the Lie group 6 must be a unimodular representa-
tion. For such a unimodulm Lie group 6, m' is a bi-
invariant N form and the Lagrangian density OH, W, in
general transforming as a density under inner automor-
phisms of 6, is instead invariant under these transforma-
tions, making Ad(G) a symmetry group of the finite-
dimensional Lagrangian system.

IV. THE EINSTEIN CASE

must be imposed as constraints on the system. The "lapse
function" M must be chosen to fix the choice of parame-
trization of the family of spatially homogeneous hypersur-
faccs, l.c., to fix tllc clloicc of a cosllllc tlnlc.

However, for such a metric the Arnowitt-Deser-Misner
(ADM) approach to the field equations' ' is much more
natural. This assumes a spacehke slicing of the spacetime
leading to at least a local product representation of the
spacetime and considers only local product regions C for
the variation al principle. Conveniently subtracting a
divergence term from the Lagrangian density (which does
not affect the Lagrangian field equations), leads to the La-
grangian

~ADM=(4~) '&' g bgd ~U (21)

@abed 1/2( a(c d)b ab cd)

is the DeWitt metric on the space of E-dimensional
Riemannian metrics, ' U= —g' R is the scalar curva-
ture potential and R is the scalar curvature of the "spatial
metric. " This Lagrangian density has the familiar form
of a kinetic energy minus a potential energy. For the spa-
tially homogeneous metrics, OH, W is just a familiar La-
grangian over the configuration space M of positive-
definite inner products on 8 on which Ig,b I may be in-
terpreted in a generalized sense as local coordinates.

The free motion, ignoring the potential U, was
thoroughly studied by De%A'tt' for the case %=3 and is
just geodesic motion with respect to the De%'itt metric
8 =9 dgabdgcd 011 M, I'CquilCC1 to bC llull geodesic
motion by the super-Hamiltonian constraint that the total

For the scalar curvature Lagrangian density
+"8

~

' +"g
~

'/ the field equations are Einstein's
equations

() (s~/gg
~

(N+1)g
~

I/2 (N+l)Gap
eP

For a metric of the form (2) with go, =0, only the equa-
tions of motion for the variables g,b and the super-
Hamiltonian constraint may be obtained from the La-
grangian

() g~/gg ~g 1/2 (N+1)Gab

0=SWZ~=2,~'g'" '"+"G =——~,
while the remaining equations, the supermomentum con-
straints

0 ~ 2~ 1/2 (%+1)60

g.b e' ——g.b, det(g. , )=1, g' '=e" (24)

effectively decomposing M into the product manifold
R XM, where M is the unimodular subspace of M,
equivalent to the space of conformal inner products. The
limit cz~ —co or g =0 defines the "frontier" at which g
is singular. This representation of the variables clearly
shows the Lorentz signature of the DCWitt metric

—,
' 8 =e '[ —X(N —1)dadc+ ,'g "gd—bdgab(g)dg,d]

(25)

since the induced metric on M is Riemannian. Note that
the decomposition of the variables is orthogonal and a is
a timelike variable on M. The Lagrangian is then

'[ &(&— l )~'—+ .' g "g-"g.bf,d ]
(26)

esca y~ U e($ —2)aU

where U is the scale invariant part of the potential, a
function on M. The choice of lapse M=2M(N —1)g'/,
or equivalently W =2K(X —1), makes the coefficient of
—a just —,. This generalizes Misner s supertime time
gauge' which, neglecting the factor of 2N(N —1), dates
back to Taub and was used extensively by Beljnsky,
I( halatnikov, and Lifshitz, ' in their qualitative analysis
of %=3 spatially homogeneous dynamics. The time
function in this gauge is an affine parameter for the geo-
desics of the conformally invariant rescaled DeWitt
metric 3'=g ' 9' in the free motion case.

To obtain the Hamiltonian formulation one must intro-
duce the momentum m canonically conjugate to g,b in
the standard way. Apart from a conformal factor this
corresponds to "lowering the index" of the "velocity" gab
with the DeWitt metric (note that "covariant indices" on
M are symmetric pairs of contravariant tensor indices, so
lowering actually raises the index pair position):

=BW/c)g, =(2 f )'9' ' .g,

gab +'++ abed~

'.b d =g'"[g.(.gd)b (& 1) 'g—.bg,dI—
are the components of the "contravariant" De&itt metric
on M satisfying

energy vanish. The potential function U is a quadratic
function of the structure constant tensor components
C'~.

U g(/2gab(( c Cd +I c I d
)

I bc =CO (V' 8 ) = T~C bc +C(b

where I'b, are the spatial components of the spacetimc
metric connection, which in this case coincide with the
components of the spatial metric connection.

It is very useful to make a conformal splitting of the
metric variables
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yabfg~ —I 5a 5b

Thus the Hamiltonian is

&=&'g.b ~~DM

=M'9 ',b,dm ir' +.3 U=.

(29)

(30)

O ~ 2 p. 1/2 (cv+ l)60
0 0

2—~.b'= —2~b, 5.'b,

~a b=cab ~ac bd ~

(40)

(41)

(g I/2g y g I/2Gabg ~ +(gabadg ~ (31)

However, neither the Lagrangian nor Hamiltonian equa-

tions obtained from the spatially homogeneous Lagrang-
ian or Hamiltonian are correct unless the problematic
terms in the variational derivatives vanish. These terms
involve spatial derivatives so the kinetic energy offers no
problems; only the spatial curvature potential may lead to
trouble.

For a general nonspatially homogeneous spatial metric
one has the well-known variational identity (denoting the
spatial metric covariant derivative by a semicolon)

defines a set of trace-free matrices 5, =(5,'b).
Formulas for spatial divergences follow from standard

results using the spatial connection components I'b,
given above. The divergence of a spatially homogeneous
vector or vector density is

g}aXa= —Cf,fX', (42)

while (40) gives the formula for any spatially homogene-
ous symmetric second-rank tensor or tensor density. It
immediately follows that the double divergence which de-
fines Q is

which implies froin the definition of the variational
derivative that

~ab 1/2g (ab)Cdc
C (43)

5( U) f5g g
I /2G ab (32)

Restricting (31) to spatially homogeneous metrics (for
which g", is a constant) yields

(g I/2g )~ g I/2Gabg ~ Qabg ~

where

Q' gab= —(&ab g abed

I/2(g ~, ab
g ~a;b)

1/2 g „ab
Cab'

(33)

(34)

This implies the following exterior derivative relation on
the finite-dimensional space M

g'"G'"—4.b = dU+ Q'—"~g.b

or the variational result

(35)

0=OH. (b~/5g. b) =5(0„. W)/'5g. b
—~.Q',

or from the Hamiltonian point of view

g,b
——(g,b,HI, ir'b=Iir b,HI+ PQ'b.

This has a simple interpretation. The finite-
dimensional Einstein driving force (35) is not conserva-
tive, but has a nonpotential component Q which is a one-
form on M; the dynamics is described by a Lagrangian or
Hamiltonian system with a nonpotential driving force Q,
unless Q vanishes. This system is subject to the super-
Hamiltonian constraint that the total energy vanish

0=0 or A =0
and the supermomentum constraint

5(OH, ( AU)}I5g,b ———.. 4—g'/ 6'b —.5"Q'b . (36)

Thus the Lagrange derivative of the finite-dimensional
potential term produces not only the desired spatial Ein-
stein tensor driving force but an unwanted term as well;
the correct field equations are

This vanishes for all unimodular groups as shown above.
For the nonunimodular groups, Q is in general nonvanish-

ing, although it may be zero when restricted to some sub-
manifold of the configuration space consistent with the
equations of motion.

Special conditions may be imposed on the spatial metric
only if the submanifold of M to which they correspond is
associated with additional discrete or continuous space-
time symmetries of ' + "g. These additional sym-
metries ' ' are in general related to automorphisms of the
Lie algebra p of the isometry group G. The diagonal sub-
manifold MD of M is such a submanifold only if certain
refiections of the basis vectors Ie, I of p are automor-
phisms. This requires not only the existence of certain
discrete automorphisms for the Lie algebra p but that the
basis be chosen so that these discrete automorphisms take
the form of reflections; i.e., some thought should be given
to the choice of a standard form for the structure constant
tensor components C'b, . In the case %=3 the nonunimo-
dular Lie groups do not allow diagonal metrics except in
special cases when additional constraints are necessary;
the situation is probably similar for higher dimensions.

In those cases where diagonal solutions are possible, one
can choose a basis I ez I z I bI I of the space of
trace-free diagonal matrices satisfying Tr(e„eg )
=N(N —1}5qii, where the normalization factor is
N(N —1)=(Trl) —Trl, and set g=e ~ where P=P"ez.
A useful choice of such a basis which generalizes the basis
Iv 3diag(1, —1,0},diag(1, 1,—2) J originally introduced by
Misner' for N =3 and recently used by Halpern for
%=4 is

1/2
N(N —1)

diag(1, . . . , 1, —A, O, . . . , 0), (44)
/1 3+1

where the first A diagonal components are unity and
A =1, . . . , X—1. This choice is adapted to the relative
anisotropy of the (A + 1)th spatial frame vector relative to
the first A vectors. It is also convenient to introduce
another notation for the trace-free diagonal matrix P:
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( )
8=exp(sA) .

Notice that this incorrectly transforms the canonical
momentum which should transform as a density; even
though the correct transformation is a symmetry of the
equations of motion, it is not a canonical symmetry of the
Hamiltonian system except when A is trace-free and its
exponential therefore unimodular. This problem arises
because the original Lagrangian, treated as a scalar func-
tion on the vdocity phase space, is a scalar density on
spacetime and the transformation properties of the two in-
terpretations are in conflict. The isometry group of the
DeWitt metric is in fact SL(N, A) which is the symmetry
group of the kinetic energy, but the potential U breaks the
symmetry down to the matrix representation SAut, (p) of
the special automorphism group of the Lie algebra, name-
ly, the subgroup of SL(N, R} which leaves invariant the
structure tensor constant components C'b, .

The supermomentum constraints

O=A, =P(5~) (48)

P diag(P) ) ) P(tv))

abc p(a) p(b) p(c)

In the Misner supertime time gauge the Lagrangian (26)
and Hamiltonian (30) then become

x
+ 2+ g (j A)2 2N (N 1 )&2(N —1)aU

3=1
(46)

N

H= —,
' —p + g p„+2N(N —1)e ' " U,

3=1

where U depends only on the conformal variables P".
Neglecting this potential (the Abelian case), the solutions
are just geodesics of the conformally invariant rescaled
DeWitt metric [2N(N —1}g'~

J
'9' with respect to

which Ia,P") are orthonormal coordinates on the fiat
Lorentz subspace M~. The super-Hamilionian constraint
in the absence of the potential requires the geodesic to be
null. (The same statements hold for the full nonflat space
M itself, where the geodesics are also known explicitly. '

)

Considering the potential U as a time-dependent function
on the Euclidean space Mt) of the variables IP"] due to
the conformal dependence on the "time function" a gives
a useful way of visualizing the dynamics in terms of the
familiar classical mechanical system where a plays the
role of the time. Note that tz is not the time function on
the spacetime in this gauge.

However, diagonalization is intimately connected with
the spatial gauge freedom and the supermomentum
constraints. The variables (g,&,m ) are canonical coordi-
nates on the momentum phase space (cotangent space)
T'M with Poisson brackets I g,b, n'

I =5'~, 5 t, ). For
each matrix A EGL(N, R } the moment function
P(A)= —2Tr(nA), m =(n t, ), generates a canonical ac-
tion on the phase space corresponding to the natural ac-
tion on M by the one-parameter metric group generated
by A which corresponds to transforming the basis Ie, I of

require that the canonical generators or moment functions
associated with the trace-free vector space span I5, I van-
ish. In general there are iV independent such generators.
Consider first the unimodular case where the matrices 5,
reduce to the adjoint matrices k, =(C',b)Cad, p which
generate the matrix representation of the adjoint Lie alge-
bra with respect to the given basis. The generators are in-

dependent as long as the center of the Lie algebra is trivial
so that the adjoint representation is faithful. The Hamil-
tonian system may then be reduced by N degrees of
freedom by exploiting its invariance under the adjoint
group Ad, (p) generated by these matrices, using a well-
known procedure. This still leaves N(N+1)/2 N-
=N(N —1)/2 degrees of freedom, which is greater than
the number of diagonal variables N by N(N —3)/2.
Thus diagonal metrics are not general if N ~ 3, but off-
diagonal degrees of freedom are necessary. If the auto-
morphism group is larger than the adjoint group, one may
reduce the system further but those additional degrees of
freedom will have nonzero moment functions. The
nonunimodular case is slightly more complicated.

The minimum number of variables necessary to
describe the potential U is associated with the orbit space
M/Aut, (p), which is the finite-dimensional part of su-

perspace associated with the particular spatially homo-
geneous symmetry. One needs to find a slice for the ac-
tion of the automorphism group on M, which will then
parametrize the orbit space. Assuming that G is simply
connected, this action on .W arises from those diffeomor-
phisms of the group manifold which preserve the symme-

try, namely, the automorphisms and translations of the
group into itself; i.e., the action reflects the spatial dif-
feomorphism freedom.

The super-Hamiltonian constraint also leads to a reduc-
tion by one of the number of degrees of freedom. The ob-
vious way of accomplishing this is to assume Misner s 0-
time time gauge' where the time function of M, ct, or
equivalently 0:——o, , is taken as the spacetime time vari-
able by choosing the lapse A =+2N(N —1)p . This
eliminates the need to consider an equation of motion for
c and eliminates the super-Hamiltonian constraint which
may be used to define p and hence the lapse. The lapse
enables one to find the proper time function r defined by
dr= 4 dt, usually chosen so that r=0 corresponds to
Q~ ao when an initial singularity exists.

All of the above ideas extend in a natural way from the
case N =3 if properly understood. The N =3 class A and
class 8 categories of symmetry types divide the groups
into the unimodular and nonunimodular groups, respec-
tively, which generalize to all values of N "Essentially.
closed" equipotential surfaces of the potential function
U, which are a prerequisite of the Behnsky-Khalatnikov-
Lifshitz (BKL) "oscillatory approach to the initial singu-
larity, "' should occur for symmetry groups 6 which are
semisimple, while the nonsemisimple groups have non-
trivial continuous outer automorphisms which open up
the potential in certain directions (an open set of direc-
tions as opposed to a set of measure zero since the latter
always exist and require the modifier "essentially" above).
For X =3 the semisimple Bianchi types VIII and IX have
such essentially closed contours on the two-dimensional
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a~b~e, b &e

+g[-' '"+N(N —1)-'C '] -»"

where y,b and y,'t are the components of the Killing
inner product and the "trace-free" Killing inner product
defined by (A10), while C, =Cb,b is just the trace covec-
tor. This expression has terms of two types, each of

2pubc
which depends on P through the exponential factor e +
where b&c For. the first type (a,b,c) are distinct, while
for the second type either a =b or a =c so that it reduces

2&c) g a(b)
to the factor e " or e " . The terms to the first type
have been called "dangerous terms"' ' for reasons soon
to become clear. For a compact semisimple group, C, =0
and one can choose the basis I e, ] so that y,b

——9t 5,b.,
it is then easy to see that (49) is negative only in an almost
compact region about the point P=O (this point corre-
sponds to the bi-invariant metrics).

In the Misner supertime time gauge, a term of the
second type leads to a term in U which is a constant
times exp[2(N —1)a—2P"'] which for a =N is
exp[2(N —1)(a+P )], so a fixed equipotential hyperplane
of this potential in P space moves with unit 0 speed in
the positive P direction, i.e., has a null velocity from the
perspective of the total space MD. Since the potential in-
creases in this direction for fixed 0, it is moving outward
from the region allowed to the system point by the super-
Hamiltonian constraint as 0 increases towards the singu-
larity.

On the other hand a potential term of the first type, say
with the exponential factor exp(2P ' ' ), leads to a
term in U whose equipotential hyperplanes move with 0
speed:

d13~„;~,/d0=(N —1)'~ /(3N —1)'~

E[—,', 3 '
) N)3 (50)

which for N=3 has the familiar value —,. This potential
also moves in the direction in which it increases for fixed
Q and therefore away from the instantaneous location of
the system point as 0 increases. Potential terms of this
type are the so-called dangerous terms' ' which scatter
an initially approximate free state known as the Kasner
state. Since the free state is a null line in MD correspond-
ing to unit 0 speed, the system point can always "over-
take" such a potential as long as the perpendicular com-
ponent of its 0 velocity relative to the potential is greater
than the 0 speed of the potential. However, the free state
has at best zero relative 0 speed in the direction of a po-
tential term of the second kind and so cannot overtake it.

space of variables IP+, P I introduced by Misner. ' For
N =4, for example, there are no semisimple Lie groups,
so there are no essentially closed potentials.

In the diagonal case in the Misner supertime time

gauge, one may calculate the velocities of the equipoten-
tial surfaces of individual terms in the potential. ' '

Evaluating the potential U at MD yields the result

U,„=-,' g (C'„e+ )'+ g( ,'y-..+C.2)e 2-"
a, b, e a

O=g ' +"8'i,—— 1 —g p, diag(pi, . . . ,pz),
c=1

N

() g l/2~ g p
2

c=l

(52)

lead to the famous Kasner conditions

c=] c=]
{53)

on the Kasner exponents (p, , . . . ,ptv) which parametrize
the canonical momentum of the solution. For such an ap-
proximate solution in the non-Abelian case, the exponen-
tial factor which appears in the diagonal potential has the

2P b' 2~(o)value e + = e ~ ', which decreases to zero as ~~0
aS 1Ong aS abe =P, —Pb —P g 0. ThiS COnditiOn iS
equivalent to the requirement that the orthogonal com-
ponent of the 0 velocity of the system point relative to
this potential be negative so that the effect of the potential
becomes more and more negligible as the singularity is ap-
proached. As long as this condition is satisfied for each
such dangerous term potential, an initial approximate free
state will remain in an asymptotically free state as the
singularity is approached. That this is possible on an
open region of the space of allowed Kasner exponent
values for N) 10 for all a,b, is the observation of
Demaret, Henneaux, and Spindel. This Ineans asymp-
totically free states are allowed for an open set of direc-
tions for N ) 10 independent of the group G.

Of course all of the semisimple groups admit special
solutions which asymptotically approach Kasner states.
These solutions correspond to motion along a set of direc-
tions in MD of measure zero at which the equipotential
surfaces corresponding to nonpositive values extend out to

Consider, for example, the case ' ' where the unimo-

dular group G is R )&SO{3,R), which is the direct
product of the Abelian group R' with the three-
dimensional rotation group, the latter of which is known
to lead to an oscillatory approach to the initial singularity
in the case X =3. The potential equipotential hypersur-
faces are cylindrical and hence the motion in the Abehan
directions (along the cylinder) reduces the magnitude of
the non-Abelian component of its free 0 velocity to a
value less than unity. In this particular case a unit 0
speed is the maximum speed the system point can have in
the non-Abelian direction so that its relative 0 velocity
with one exponential potential of the dangerous type is
zero and yet the system point does not run into another
such potential. Thus when the non-Abelian 0 velocity
component is nonzero, certain "vertex directions" are pos-
sible in which the system point will chase one such poten-
tial with a negative relative 0 velocity and hence will

remain in an asymptotically free state as one approaches
the singularity. The explanation is simple.

The diagonal Abelian solution (the "free state")

) (0)d' (
I N) (51)

where ~ is the proper time (M= 1 time gauge) is known as
the Kasner solution, ' and the nonzero Einstein equations
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infinity (infinite values of P). In the N =3 case these spe-
cial solutions are the locally rotationally symmetric solu-

tions first discovered by Taub for the compact case of
Bianchi type IX; these solutions extend by the Weyl uni-

tary trick to the noncompact semisimple Bianchi type
VIII and by Lie-algebra contraction to certain other uni-

modular nonsemisimple group types. It is interesting to
note that the cosmological singularity g =0 in these spe-
cial solutions is only a Killing horizon across which the
spaeetime may be continued. Analogs of these locally ro-

tationally symmetric exact solutions exist in higher dimen-
sions.

The Q velocities of the potentials or dangerous term
calculations are simply related to the transformation
properties of functions on the space MD under the action
of the scale group Diag' '(N, R ) =exp[diag(N, R )]
( GL(N, R ) generated by the Abelian Lie algebra
diag(N, R) of diagonal matrices. Any function f on MD
which itself scales under the natural action of the scale
group defines two weights q and s:

9P =3901+& "eg, 5"~ngns 1, s &0,——

e~ f(g)=f(e' g)=e' " f(g) .
(54)

dP jdQ= g (dl3"IdQ)

=1 4N(N —l)p e—' " UK[0, 1], (55)

The first dimension q is just the ordinary dimension
of f under uniform scale transformations. To interpret s
note that the parametrization g=exp[2(al+P"ez)] en-
ables one to identify MD with the scale group which in
turn may be identified with its matrix Lie algebra by
the exponential map. The rescaled DeWitt metric
2N(N —l)g '~ 9' corresponds to the Lorentz metric on
diag(N, R) for which Ia, P"] are orthonormal coordi-
nates. IP" ) are Cartesian coordinates on the Euclidean
subspace a=0 corresponding to MD and the induced
metric itself corresponds to the usual trace inner product
on gl(N, R) restricted to the trace-free diagonal subspace
sdiag(N, R). The second dimension s is just the "length"
of the covector snq which determines the anisotropic scal-
ing properties of the function f. One might call s the an-
isotropy dimension. The Q speed associated with such a
function f is then just

~ q ~

s
When the potential U is non-negative, the Q speed of

the system point is necessarily less than or equal to 1,

Rgb =R~b Cf C(~ —
b) (N —1)—C, C g~b, (57)

where R,b is the curvature due to the trace-free part
alone. In the semisimple case one would choose the basis
so that the Killing inner product matrix is diagonal; this
seems to allow a diagonal case for these groups and their
contractions, all examples of unimodular groups. For the
nonunimodular groups whose structure constant tensor
has a nontrivial trace-free part, one expects additional
constraints on the diagonal metric matrix to kill the off-
diagonal components of the spatial Ricei tensor, con-
straints which may not have a solution.

In the nonunimodular case one must also worry about
the potential force. If the basis te, ] is chosen so that
C, =Cb 5 „ then restricting (A 12) to MD yields
the following result for the scale-invariant quantity

g
—()v —2)ag.

T

g e2(v —1)P g C C(0)a e a dPA+2N(C )2dPiv

a

imum symmetry possible and represent the intersection of
the three submanifolds of locally rotationally symmetric
metrics. Discrete symmetries of the potential U are relat-
ed to discrete symmetries of the spatial metric, which in
turn are usually related to discrete subgroups of the auto-
morphism group. Additional symmetries of the space-
time metric are also associated with discrete symmetries
of the potential. Independent of additional symmetries,
some special solutions occur when directions exist in A'D

where the total potential U scales under the action of the
unimodular scale group, as occurs for the generalized
Taub solutions and the solutions which generalize the
n', =0 solutions of the case N =3, the latter of which are
characterized by additional discrete symmetry. The
N =3 family of diagonal solutions of this type2 includes
both the Ellis-MacCallum type VI solution ' and its Lie-
algebra contraction, the Joseph type V solution. A11
these ideas are relatively well known in the case N =3 and
invite investigation for higher-dimensional cases.

The existence of a diagonal case requires that the spa-
tial Ricci tensor be diagonal for gCMD. Naturally this
depends on the choice of basis Ie, I. The spatial Ricci
tensor is explicitly

Rob = Cf C(a b) rub 4 (2C a Cfgb Ca Cbfg )

Using the decomposition (A3) of the structure constant
tensor into trace-free and pure trace parts, this expression
may. itself be decomposed to yield

due to the super-Hamiltonian constraint. This means that
the motion is timelike in MD Negative .values of U asso-
ciated with positive spatial curvature allow spacelike
motion and hence recollapse. (These ideas extend in a
natural way to M itself. ) In the case N =3 only the com-
pact semisimple case of Bianchi type IX permits positive
curvature and only in a region of MD which is a finite
distance from the projection of the bi-invariant metrics
(proportional to the metric of S ) into MD in all direc-
tions except along the three directions corresponding to
the Taub metrics. The bi-invariant metrics have the max-

The role of the second term is merely to eliminate the C,
term of the potential (49) from the equations of motion
for the momentum conjugate to p:

[N(N 1)
—)C 2 2()){—1)P'~]+g(gyp') ()

gp)v

(59)

The pure trace part of the structure constant tensor alone
makes an isotropic contribution to the spatial curvature as
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(57) shows, and hence cannot directly affix:t the equations
of motion for the anisotropy variables P. In 0-time time
gauge where one does not need an equation of motion for
a, one may subtract this term from the potential to yield
an effective potential, thus eliminating the pure trace part
of the nonpotential force. The first term in the diagonal
value of the nonpotential force is allowed to be nonzero
only for N & 3.

The spatially homogeneous discussion is also relevant to
the question of an asymptotic "general solution" to the
field equations as one approaches the classical initial
singularity. ' In this case there is no spacetirne symme-
try but there is a close relationship to the spatially homo-
geneous dynamics. One assumes an inhomogeneous
metric of the form (2) with Y= 1, t =r, and

g=diag(r ', . . . , r "), where p, and the structure func-
tions C'b, of the time-independent spatial frame are arbi-
trary functions of the spatial coordinates. One can exam-
ines what conditions must be imposed on these functions
in order that one obtain a solution of the Einstein equa-
tions to leading order as r~0. The curvature formulas
for the spatially homogeneous case change only by the ad-
dition of the term

~I'b =(~'p. ,b+&'a b,. Kbp. ,
—as")»&

to the spatial connection coefficients, a term very similar
to the one contributed by C, . Ignoring the spatial curva-
ture, the spatial Einstein equations and the super-
Hamiltonian constraint exactly coincide with (52), which
impose the Kasner constraints on the inhomogeneous
Kasner exponents. The canonical momentum matrix for
this metric is

frame" is just an orthogonal spatial frame of eigenvmtors
of the extrinsic curvature tensor. For the inhomogeneous
Kasner metric above, the extrinsic curvature components
are

(64)

showing that I e, ) are eigenvectors with eigenvalues

t
—r 'p, I. The dynamical effect of spatial curvature

through the Einstein equations is to make the extrinsic
curvature eigenvectors change with time. In the approxi-
mation of a scattering off a single dangerous term in the
spatial curvature, one then has a linear transformation re-
lating the initial and final extrinsic curvature eigenvectors
which has been referred to as a "rotation of the Kasner
axes." Of course it is the normalized eigenvectors which
undergo a rotation.

V. CONCLUSIONS

An extensive literature exists treating not only the
dynamics of highly symmetric cosmological models but
also dealing with the problems of commuting symmetry
imposition with derivation of field equations in variation-
al approaches to the dynamics. All of these ideas extend
naturally to higher dimensions without the necessity of re-
peating all of the trials and mistakes of the case N =3.
This article has tried to point out how one can take ad-
vantage of already known results and ideas without going
into too many unnecessary details, simply by understand-
ing "the big picture. "

ir = ( 5 b ) =diag(p i, ~ ~ ~,ppg ) —1 (61) APPENDIX

so the supermomentum constraint (40) becomes

0=%,= 28bm, —2Tr(5, n—)+4Inr Tr(nB, m) . (62)

In analogy with the case N =3, one may introduce the
natural dual of the antisymmetric pair of structure con-
stant indices

diag(Bid, , . . . , a„pb ) = —Ti(g.g) (63)

The final term Tr(irB, n) is just —,'B,Trvr which vanishes
due to the Kasner constraints, leaving the result

Caa3 ' ' ' ag ] ~a=&C~6

C b~ =[(N —2)!] 'C ' eb, 3. . . ,~ .
(A 1)

which are just N constraints on the choice of spatial
frame.

One must then examine the effect of the spatial curva-
ture on the situation. This is essentially the same analysis
as in the spatially homogeneous case. The additional
terms contributed by the gradients of the Kasner ex-
ponents are not dangerous'* in the same sense as the
terms associated with the trace C,~, and hence the in-
teraction with the spatial curvature is the same as in the
spatially homogeneous case. Either the approximate free
state remains in an asymptotically free state or rebounds
off a dangerous curvature term potential, after which it
finds itself in a new Kasner state with a new spatial
frame. Beyond this point the discussion itself becomes
dangerous, in the sense that certain assumptions are made
which are no longer trivial. '

Notationally, this discussion in the literature has been a
bit cumbersome simply because of reluctance to use the
machinery of noncoordinate frames. A so-called "Kasner

2 N) (~ 1)—1C 2 ~N

which suggests splitting off the trace part

C'b =C""b +(&—1) 'CfC
C(0) C(0)b O

C(o~[a2, a~ l
a ab 0

(A3)

At first this might seem like an unprofitable move for
N & 4 due to the increase in the number of indices, but the

a a ~ a&totally contravariant density C ' ' " over p enables
one to decompose the structure constant tensor into its ir-
reducible parts under the action of the general linear
group. The totally antisymmetric part is equivalent to the
trace covector C,

C, =C",b ——[(N —2)!] 'C ' e„.. . ,
(X —1) 'Cf Sb,

' =[(X—2)!] 'C ' "eb„.. . ,
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For N =3 the trace-free part O' ' = C" ':—n' is au-

tornatically symmetric and the decomposition is complete,
but for N )3 one must decompose the tensor product rep-
resentation of GL(N, R) on the space R A (R ),
where the second factor in the tensor product is the
(N —2)-fold wedge product of R with itself.

The Jacobi identity and its trace

for the trace-free part alone to satisfy the Jacobi identity.
For X =3, C' " is symmetric and this is a consequence
of the trace of the Jacobi identity.

This is not just a curious fact. One can ask whether or
not the divergence matrices [5, ] generate a Lie algebra,
in which case the supermomentum constraint functions
are the moment functions for a canonical group action on
the momentum phase space. A calculation gives the re-
sult

are equivalent to

Ca C~4 N

(A5)

[5„5b]=(C;b+ Cf5,b )5, D,—b,
D,b g

——C,bCg+C ~C, +C g, Cbf f f f

=[(N —3)!] 'C, C ' ' e,b, . . . ,

(A9)

and the last equality is equivalent to either of the follow-
ing:

f 3 x 0 C C(0)f (A6)

and hence a further condition must be met

The pure trace part of the structure constant tensor
trivially satisfies the Jacobi identity by itself and therefore
corresponds to a Lie-algebra structure of its own; this Lie
algebra generalizes the N =3 Bianchi type V I.ie algebra.
A natural question to ask is whether or not the trace-free
part C' 'b, satisfies the Jacobi identity by itself and hence
also corresponds to a Lie-algebra structure of its own,
which will therefore be unimodular. If so, one can then
arbitrarily scale the trace and trace-free parts indepen-
dently and obtain a family of Lie-algebra deformations of
the original Lie algebra. A calculation shows that

C"" C'

y,b Tr(k, k—b) =C C'
b

=y',b'+ (N —1) 'C, Cb,
y(0) C(0) (0)d (0)c

(A10)

One may do the same thing for the divergence matrices

5, =k,' '+[(N —1) '(C,5.—N5 aCe)] (Al 1)

which enter into the nonpotential force

Q =g'i O'Tr(5, g 'dg)

The extra term D,b vanishes only if the same condition
(AS) is satisfied. When this is so, the new structure con-
stant tensor differs from C'b, by the transformation
(C' "b„C,) +(C' 'b—„NC, ). When this condition is not
satisfied it appears that the Poisson brackets of the super-
momentum constraints do not close.

One may also decompose the Killing inner product into
parts associated with the trace and trace-free parts of the
structure constant tensor

(0)afa~ * agf =g'~2C'Tr(5, g 'dg) . (A12)
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