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Large-scale microwave background fluctuations: Gauge-invariant formalism
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The explicitly gauge-invariant formula for the large-scale fluctuations of the temperature of the
microwave background radiation is obtained. The formula is applicable to the wide class of cosmo-
logical models Ci.e., multicomponent and nonflat) based on Robertson-%alker metrics. Some specif-
ic cases are briefly discussed and in the case of general flat models the amplitudes of the multipole
moments of the temperature pattern are obtained as functions of the baryonic perturbation quanti-
ties.

I. INTRODUCTION

The observed isotropy of the microwave background ra-
diation (MBR) puts stringent hmits on parameters of
cosmological models. The requirement of reconciliation
of low-level MBR fluctuations with the amplitude of the
density perturbations necessary to produce galaxies today
is a powerful tool for eliminating cosmological scenarios.

In order to calculate the small-scale MBR fluctuations
one has to take the dynamics of the decoupling into ac-
count and the theory of this process is now relatively well
known. ' When dealing with fluctuations on scales larger
than the horizon at the decoupling we can assume that
decoupling occurs instantaneously. The distance that
photons can travel is smaller than the characteristic
length of the perturbation and the details of the decou-
pling process cannot influence the MBR pattern. Howev-
er, there is another problem with the large scales. Because
of the freedom of making gauge transformations (i.e.,
changing the correspondence between the points in the
physical spacetirne and the points in the undisturbed
background) the perturbations of physical quantities are
different in different gauges and can contain the spurious
gauge Il1odes.

The most elegant way of treating cosmological pertur-
bations was proposed by Bardeen and is based on using
the gauge-invariant quantities that within the horizon are
perturbations of well-known physical quantities. Since
the paper by Bardeen some developments of his formalism
were done, e.g., on the case of uncoupled fluids in the fiat
universe and the system of fluid plus collisionless gas
or on the case of matter described by the massive field.
The elements of the formalism were used to find the
large-scale anisotropy of MBR by Abbott and Wise
Efstathiou and Bond. '

In this paper we present the gauge-invariant calculation
leading to formulas for the large-scale anisotropy of the
MBR in the general (nonfiat, multicomponent) cosmologi-
cal model based on the Robertson-Walker metric. The
formulas for scalar, vector, and tensor perturbations are
given and those for scalar ones are analyzed in some
specific models of the Universe. For the general flat
models we decompose the large-scale MBR fluctuations
into multipoles and calculate the amplitude of the 1th

multipole as a function of the baryonic density and veloci-
ty perturbation fields.

In Sec. II we define perturbation quantities used later
and give the equations of evolution of the background and
the equations of motion for the perturbations. In Sec. III
the MBR anisotropies are found. The results for some
specific cases are discussed in Sec. IV. Section V presents
the formalism of the multipole decomposition of the
MBR pattern. Finally, Sec. VI contains concluding re-
marks.

ds =g jdx'dxJ=Si(~)( d7 +ig —&dx dxp),

where i j, . . . =0, 1,2, 3, a,P, . . . =1,2, 3. The derivative
with respect to the conformal time will be denoted by
a dot, the covariant derivative with respect to g;J by a
semicolon, and with respect to g p by a vertical bar.

We assume that the Universe contains N ideal fluids
with the unperturbed energy-momentum tensors:

Tao ~ao~ TcP ~a(PP ~ (2)

where a =1, . . . ,X and E,o and P,o are the background
energy density and pressure of the ideal fluid a. The
more careful approach would be to describe the collision-
less components by the means of a distribution function.

We denote (c~ is the spmd of sound)

P,o i dI', o

and assume that the fluids are coupled only by gravity.
The equations governing the evolution of the back-

ground are
r

=-,'S' g E., rC, — (3a)
a=1

11. DEFINITIONS AND EQUATIONS
OF MOTION

We try to follow the notation of Bardeen's original pa-
per. The background Robertson-Walker metric is
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= ——,'$2 g (E,o+3P,O),6

Ea0+Pa 0

(3b)

(3c)

(7a)

(7b)

The perturbations in the energy-momentum tensor are

where X = —1,0, 1 is the scalar of curvature in open, fiat,
and closed universes, respectively (units c=gm6=1).
We can also incorporate the nonzero cosmological con-
stant in the model: E,0

———Pa0 ——A.
Perturbations can be classified according to their

transformation properties under spatial coordinate
transformations of the background spacetime as scalar,
vector, and tensor perturbations. The time- and spatial-
dependent parts of perturbation quantities can be separat-
ed thanks to the homogeneity and isotropy of the back-
ground. The spatial parts may be decomposed into the
solutions of the generalized Helmholtz equations. For
now, we will restrict our analysis to the case of the pertur-
bations described by the single mode.

T', 0 ———E,o( 1+5,Q),

T.o = —«.0+P.o»aQ

T, =(E,o+P,o)( u, —8)Q

T,p P,o[——(1+n I,Q)5I+ m r, Q)],
and the entropy perturbation is

(8a)

(8d)

Cg+
2

5, .
Na

(9)

The general gauge transformation of the wave number k
1s

A. Scalar perturbations

Scalar harmonics Q (x") are solutions of the equation

Q'
~

+k Q=O. (4)

For a flat Robertson-Walker universe the Q's are con-
veniently taken to be plane waves.

The vector and traceless tensor quantities are construct-
ed by

7=v+ T(r)Q(x"),
x =x +I.(~)Q (x&) .

(10a)

(10b)

1 1 S 1 " S ~

4q ——A+ —8+——8 — HT+ —HT
k kS k2 S (1 la)

The gauge-invariant perturbation quantities are mr„g„
and

1= ——
Q~k

1 1 3QaP= kgQ~aP+7 gaPQ (5b)

1 S 1 S
eH =a, + 3aT+ ——S— —HT,kS k2S

1+a S
e, =5, +3 —(U, 8), —

(1 lb)

(1 lc)

The metric perturbations are written as

goo ———S (1+2AQ),

go = —S'&Q

(6a)

(6b)

1
Ug =U — HT .

k
(1 ld)

The equations of the evolution of perturbations derived
from the Einstein equations are

g p
——S [(1+2HL Q) g p+2HrQ p] . (6c)

Let u,' be the four-velocity of the rest frame of fiuid a
relative to the coordinate frame (the rest frame is the
frame in which the energy fiux of fiuid a vanishes). We
assume that to zeroth order all u,', a =1, . . . ,X are the
same. The first-order perturbations of the velocity of the
fluid a are

2(k' —3')
4H ——g E,oe, ,S a=1

k X

, (a„+e )= gP.,~,.S a=I
(12b)

And from the conservation equations T,'1 ;=0 we ob-.
tain ( a = 1, . . . , E)

3(E,O+P, o)S
(E,oe, S ) +

k USa+k+H+ 3 k USa

3S '

2 3E—3S —(E,o+P,o)+g —— 1 — P, on r, ——0, (13a)

S k 2 p 3K a
Us, + Us, =k4~ + (cs, e +w rl ) —3 k 1 — n'r

1+isa k 1+l8a
(13b)
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Equation (13a) for the case K =0 was first derived by Ab-

bott and %ise.

8. Vector perturbations

Q(1)aP (g(l)a ) P+Q(1)P) a)
2k

In analogy to the scalar perturbations we have

g~=-S2~("Q('),

g S2(3g +2H(l)g(1) )

S
T (g +P )(

(1) g(1))Q(1)

T,,= —(E„+P„)U,'"g"",
Ta P (pa+ (1)g(1)a

)

(16)

The allowed gauge transformation is x =x a

+L (( )rQ (x)") and the gauge-invariant quantities are
m'T~ and(i)

9=8 ——0, ,
(1)

k

(i) (1) I ' (1) ni
Us =U — T or UC =Us-kh

The equations of motion are

k' —2X 4'= g (E,()+P,())uc, ,
25

~ S 2 k (Ua
Uca + ( 1 —3CSa )Uca = — %raS ' 2 1+m,

(1gb)

C. Tensor perturbations

Now only tensor quantities are perturbed and the tensor
harmonics are solutions of

g(2)aP) y+k2g(2)aP ()

In this mode the quantities being scalars under spatial
coordinate transformations remain unperturbed. The vec-

tor harinonics g'" are solutions of

Q() )a)p+ k 2Q(1)a ()

The tensor quantity is obtained by

III. THE TEMPERATURE OF MBR
IN THE PERTURBED UNIVERSE

Our aim here is to find the MBR pattern T~ (6), ()))) (sub-
script R denotes reception and subscript E denotes emis-
sion) in a cosmological model based on a Robertson-
Walker metric if the solutions of the perturbation equa-
tions for density and velocity fields are known. We as-
sume that the decoupling is instantaneous and that we are
interested in large angular scales only.

The temperature of the MBR coming from a given
direction is determined by the red-shift that photons ac-
quired from emission until reception. The density and
velocity perturbations of the fiuids filling the Universe
cause the perturbations in the metric that in turn influ-
ence the motion of light, resulting in red-shift differences
of photons coming from different directions. (The in-
teraction of light and matter can also have the direct form
of scattering, if the intergalactic medium was reionized in
the epoch of galaxy or star formation. )

In order to obtain the pattern of the MBR in a per-
turbed universe we should in principle integrate the
Boltzmann equation for a generalized, gauge-invariant
distribution function of photons through the decoupling
phase and further, until today. However, details of the
decoupling are important only for small angular scales,
and in this case the use of gauge-invariant quantities is
not necessary. For large scales the opposite is true. By
large angular scales we mean scales larger than those sub-
tended today by the light rays emitted at decoupling from
two points at separation equal to the size of the observable
Universe at decoupling (i.e., twice the distance to the hor-
izon). For the matter-dominated universe this angular
scale is

where z is the red-shift of the decoupling and Qii is the
density parameter today.

Therefore a suitable approximation is to follow the
movement of the single photon emitted from the last
scattering hypersurface using the gauge-invariant quanti-
ties.

The light moves along the null-like geodesics x'(A, )

where A. is the affine paraineter. The null vector tangent
to the geodesic is

dk'=, k'=(v, P ), k;k'=0.

S2(3g +2H(2)g(2) )

Ta p (pa+ (2)g(2)a )
(20)

The quantities HT ' and m'~,' are automatically gauge in-
variant. The equation of motion is

%e write

v= v(1 —M) P = P +'P (23)

where vM and 'I' are the first-order corrections to com-
ponents of vector k'. The equation of motion is

+I Iik k =0. (24)

The temperature of the MBR now observed is

H z' +2 H T +(k +2K)Hr =S g P Om''T
S a=i

«'&b 4
1+z (k'u(, ; )g

(25)
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where ub; is the four-vector of velocity of observer at rest
relative to baryonic fiuid (observers are made of baryons).
%e take no account of local, gravity-induced motions,
e.g., of the Galaxy, that result in additional dipole term.

It is convenient to introduce a new parameter s (A, ) (the
derivative with respect to s will be denoted by a prime)
such that

S d S d S 8
ds S2dA, S 2 Br

From (22} and (24) we obtain, in the zeroth order

S
S

(26)

(27)

Defining P = —vR where R is the spatial unit vector
(R R =1) in the direction of observation and using the
normalization vR ——1 we obtain the solutions for the
lightlike geodesics to zeroth order:

T='PE+5

x =R (rR rE —s),—
dR 3 p

ds

where

(g ~
&g

dx
ds 81 Bx ds

(28a)

(28b)

(28c)

The coordinates of the emission event are s =0, r =r~,
xE =Rg (rR r@ ) and —of the reception event are

a
S —jg Vgy T Pgp Xg Oe

The equations to first order look differently for scalar,
vector, and tensor perturbations.

A. Scalar perturbations

Using (22) and (24) to first order we obtain

M'=AQ+2kAQ~R +—BQ
k
3

To show that the details of the recombination are not
important in most of the models we derive a simple ap-
proximation for them. In our model of decoupling the
emission of radiation occurs on the hypersurface of the
constant density of free electrons that couple to photons
by Thomson scattering. This density is a function of the
local temperature and density of baryons and thus for
general perturbations the hypersurface of emission is nei-
ther the hypersurface of constant temperature nor that of
constant baryon density. In the presence of perturbations
the emission in a given point in space occurs in the mo-
ment rE +b,r where b,r is a function of perturbations.

Denoting the density of free electrons at the emission by
n,E and the moment of emission in the zeroth order by
the subscript Eo we have on the hypersurface of last
scattering:

n~R
——cons't=ne(1b +67 )=n~o(rE +67 )(1+5,Q), (31}

n, =f (Eb )g(T) . (33)

Using this functional form we can express 5r as a func-
tion of the pe~urbatlons of banons and photons
( Er =&T ). The result is

—br= 5b
S 1

53+D 4(3+a) r

where

(34)

f(dg/dT)T
(df /dEb )gEb

In the simplest model of decoupling we can use the
Saha formula for the fractional ionization' and we obtain
D= ,'+B/kRTE w—here B =13.6 eV and for TE —3500
K, a=47.

At the moment of emission

b,r = — 5,Q,
&eo

where 5, is a perturbation of density of electrons and in
general

+HL Q + (HT kB)Q~pR R ~—

and from (25)

(29)

Sg ——S 1+—5gS
~o (36}

(Ub —kA ——B}Q R

SF TE

to obtain

Now we can rewrite (30) in gauge-invariant quantities.
We define

5T TR TRD

TRo (37)
R Ro

HT)Q ZR RI' ds, (30)

where the integral is along the zeroth-order lightlike geo-
desic.

The above formula is gauge invariant because S
transforms under (10a) as S(7)=S(r)[1+(S/S)TQ] and
then we should be able to express it using only the gauge-
invariant variables.

1 S@0 Usb Qk S

Usb

k
+@H—@~ Ql R

Ql~pR R~ ds (38)
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3+D 4(3+D)

1S B
k S3+D (Usr —Use )Q, (39)

and we used ws =0, w„= —,
' and the fact that any part of

Ts independent of the direction of observation can be in-

corporated into the definition of T~,. This is the explicit-

ly gauge-invariant form of the temperature fluctuations in
the general case.

In the most popular (and suggested by many theories of
the very early Universe) case of adiabatic perturbations we
have 5& ———', 5b and the initial fluctuations of temperature
reduce to —,

'
esQ at the emission. We will analyze further

this case only, and, as we will see this term can be
dropped. However, we should emphasize that in nonadia-.

batic models the initial fluctuations given by the formula
(39) can be important —for example, the term -er is re-

sponsible for the increase of the large-scale angular fluc-
tuations in the model of isocurvature axion perturbations
analyzed by Efstathiou and Bond.

We can put cd ——0 if we are interested in scales larger
than the baryon Jeans mass. This is the case because for
A, & (ct)E this Jeans mass is much less than the mass in a
sphere of diameter -A, . The equations of motion (13) for
the baryonic perturbations are then

2 'I

S S6'b+3
S S

The first term represents the influence of the density
perturbations at the emission and can be dropped because
in our case it is much smaller than the integral term (see
Sec. IV). The integral term describes how the motion of
light is influenced by the geometry perturbations generat-
ed by all density and anisotropic pressure perturbations
present in the model [see (12)] and described by the
baryonic quantities [ ~(klS)usb

~

is the magnitude of
shear of the baryonic velocity field]. Some specific cases
of (41) are described in the next section.

R

R= f (ucbQ' R +kgb'Q pR R~)ds . (42)

We find
- (23

C. Tensor perturbations

0"'Q"'R R~ds .
F.

T aP (43)

The vector and tensor casm will not b analyz~ fur
ther.

IV. SPECIFIC CASES OF THE SCALAR
PERTURBATION S

B. Vector perturbations

An analysis similar to the one performai before gives
us the result

(1)

S
USb + USb k +AS (40b)

+ Qi~pR R~ ds . (41)

We can use these equations to rewrite (38) in the form
T

5T R
=(TebQ)s+ 3 (es+kusb)Q

Although the general formula describing the MBR pat-
tern in the presence of scalar perturbations (41) is very
simple the troubles arise with its use because of the com-
plicated form of the equations of motion in the general
case (12), (13). However we can simplify them in some
specific models.

First of all we expect that the anisotropic stress and en-
tropy perturbations in any component of the Universe
operate only at very early stages of the evolution. Thus
we can omit them in our analysis. Now the equations of
motion are (a = 1, . . . , N)

3(E,O+P, o)S
( Ee,oS )+ +k4„+—,

' k' . +3S'—(E„+P„)@„=0S (44a)

S kg~, 2

Ug, +—
Uq, ———kC»+

j. +Mg

S2 N

2(k' —3E), (44c)

The next simplification is obtained if we are interested in the models dominated by nonrelativistic components with
&,0——0 [e.g., cold-dark-matter (CDM) models] since decoupling. If we omit the radiation and relativistic neutrinos in the
equations of motion, we have (a =1, . . . , X)



34 LARGE-SCALE MICROWAVE BACKGROUND FLUCTUATIONS: . . .

2(k —3K)S k 2k S,
come normal and Q is taken to be a plane wave with the
wave vector k: Q =exp(ik x ) .From (49) we obtain

+ z g V, e, =0, (45a)
2(k —3K)S,

=( , e—i,Q)z+ f eb(k R ) Qds . (50)

5
USa + VS

C+0

l $ Ve, .
3K
k

(45b)

V, =E,OS' are constants closely related to the present
density parameters Qa, (Ha is the Hubble constant mea-
sured today}:

eb A——2+Br (51)

For the growing mode es ——ei@(v/wE) the integral in (50)
can be integrated by parts:

5T ~~bE=
3 &sEQE+, , [&it(R Q,a)ii

8 k ~E

In this case the equation for density perturbations has the
solution

Ea OR

2 S
g V, —3K'
c=1

(46)
&s(R —Q, )E+Qz —Qz]

3y+ g Q, e', =0,
2k 5,

C+0

(47a)

In the case K =0 suggested by the inflationary
scenarios we have Q, =const=Qit, and we denote the
sum of all V, by V:

3Q V 3y
2k S 2k2S

(52)

The comoving coordinate distance to the horizon at ~E
is equal rz Then. the criterion for the comoving scale k
to be larger than the horizon at rE is k~E g& 1. In this re-
gime we can drop the first term because it is much small-
er than the integral term. (In fact when the first term is
important, on scales krE & 1, it does not look so simple. )

We can incorporate the term -Qz into the definition of
TR This gives

y
Us + S Usl =—

2kS g Qc&e .
@=i

(47b)
5T 2~6E

, [vg(R Q )a ~s(R Q )F. QE] . —
it

Greatly simplified equations of motion are obtained
from (45a} and (45b) if E =1 or all e, c = I, . . . , N are
qual. For baryons

This is the well-known result of Sachs and Wolfe.

(53)

3K+ &
— koss =0 (48a)

V. MULTIPOLE DECOMPOSITION

This is the case in most of the dark-matter scenarios-
on scales larger than the Jeans mass, the baryons sink in
the potential wells of the dark component. In a few ex-
pansion times all the e, 's become equal. Then the second
equation of motion is

S
USS+ USb =—

S

Now we can write formula (41) under the assumption
of equal e, 's:

5T I l

k —3E
=( —,esQ)E—

X f es (KQ+ Q i ~pR R ~)ds .

(49}

In the flat universe K =0, the covariant derivatives be-

The anisotropies of the MBR calculated in the cosmo-
logical models can be compared with the limits from ob-
servations to restrict the parameters of these models. For
the large-scale anisotropies the convenient quantities are
the amplitudes of the multipoles in the decomposition of
the function (5T/T)a(8, $). In further analysis we will
restrict ourselves to the case of the flat universe.

We usually assume that the field of the density pertur-
bations of all components consists of the sum of plane
waves with random wave vectors and phases. The ampli-
tude of the wave with the wave vector k is assumed to be
the function of the modulus of the wave vector only, usu-
ally the power law at the prescribed moment.

The power-law behavior is understandable on scales
smaller than the horizon but its continuation on scales
larger than the horizon is not obvious. This is because
there is no unique choice of gauge-invariant quantity for
density perturbations. However, we argue that we can as-
sume the continuation of the functional behavior for the
quantity e used here (this is e in Bardeen s notation), be-
cause it is uniform on scales smaller and larger than the
horizon (Bardeen's eg is not) and because it directly cou-
ples to the potential NH [see (12a)].

Some spectra that are power laws at the time of horizon
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crossing at a given scale deviate later from a pure power
law as a result of the dynamical evolution of perturbations
in a radiation-dominated universe after horizon crossing
(e.g., CDM spectra). Therefore we will assume the gen-
eral functional dependence of the amplitude of density
perturbations at a given scale at the emission. The single
plane wave is then replaced by the sum:

g e, (k)e'"'" .
k~O

ai ——4@i g Ai(k)Fi* (Qk),
k+0

A, (k) = f ,
'

[e—b(k)+kusb(k)]ji(kx)

kusb(k)+ 2I+1 [dijI 2(kx) cd—i(kx)

(61)

Our initial conditions are the density perturbations at
decoupling. We assume that the equations of motion were
solved and we can write the appropriate form of eb(k) and
usb(k) for all ~E &r&rii. Now the formula (41) for the
fiat universe can be written in the form

[ ,
'

eb(k—)+kusb(k)( —,
' —gk )]e'"'"ds,

k~o

where gk is the cosine of the angle between the wave vec-
tor lt and the direction of observation R.

Our aim is to find the coefficients of the decomposition

= gaPFP(Q), a/= f 1'(' dQ, (56)

where Q=(8,$). We use the following mathematical for-
mulas:

e'"'"= g i'(2l +1j)i(kx)Pi(gk),
l=o

kk ~l(kk)
1 1

[~I~I+2(4k)+el~I(Sk)+dl~1 —2(rk)]2 = 1

21 +1

(57)

(58)

~,(g„)=, , g r," (Q„)r, (Q), (59)

where

(1+1)(l +2) (I + 1) 1

21+3 ' 2l+3 2/ —1

1 (1 —1)
21 —1

(60)

and Qk ——(8k, pk) are the angular coordinates of the vector
k.

In (56) we decompose the plane waves into a series of
Legendre polynomials, which in turn are represented by
the spherical harmonics. %e then integrate over dQ.
The result is

+b&jI+2(kx)] ds . (62)

+ bij ~+2(kx)]ds . (66)

For the growing mode of the density perturbations
eb ebE(~/rE ) ——the integral can be calculated (or
equivalently we can integrate the Sachs-Wolfe formula).
The result is (s„=~ii vb)—

This result can be generalized on the case of nonadiabatic
models by simply adding to ai the contribution from the
decomposition of initial fluctuations (39).

The quantity used to compare with observations is

(63)

(in fact, for a given 1, all ai are statistically independent
with the same expectation values). We use the assumption
that the phases of eb(k) and usb(k) are random and
change the sum over k into the integral

g~fkdk dQk
(64)

k~o 4m

to obtain

max
(aI ) =4~ f k'

~
&i(k)

~

'dk (65)

The cutoff k,„reflects the limits of our simplified
model. They can be related to the horizon size and the
scale of the Silk damping of baryonic perturbations, but
another requirement for the small scales is not to be
smaller than the scales that are nonlinear today. Anyway
we should expect the results to be practically cutoff in-
dependent for small 1 (if k,„ is large enough) because
small scale perturbations averaged over large scales give
the result -0.

The formula (62) is simplified in the case of the
universe dominated by the nonrelativistic matter such that
all e„c= I, . . . , N are equal (or %=1) because then
Eb +kusb =0 alid

R
'4i(k) = — f 'b(k)[di j I 2(kx) cIjI(kx)— —

21 +1

(a, )'= f k 'I e,E(k)
~

'I (-21+1)J;(ksR )+krE[lj, , (ks„) (1+1j),+,(ks„)] —8„k~, j'dk—
(21+1) ~E

(67)

and the integral term —k~E is dominated by the others.
The results of observations on medium angular scales

are represented in the form of the angular correlation
function of fluctuations,

(Q2)
R R

X 5D(cos8i2 —cos8), (68)

W(8)= ' f f dQ, dQ, (Q, )
8 T
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which can be expressed using the multipole coefficients as

00

g (g}= g (21+1)(ai)2'(cos8) .
4m I

VI. CONCLUSIONS

The gauge-invariant approach solves many ambiguities

about the behavior of the large-scale perturbations. Its

application to the large-scale fluctuations of the MBR
temperature is presented in this paper. The explicitly

gauge-invariant formula for these fluctuations (38) is ob-

tained for the wide class of cosmological models based on

the Robertson-%alker metrics. The only assumptions
used in its derivation are that all constituents of the
Universe can be described as perfect fluids and that the

decoupling of matter and radiation occurs instantaneously

on the hypersurface of the last scattering. However, re-

laxing these assumptions will not substantially change the
results.

For the most popular model of the flat universe we ob-
tain the inultipole coefficients of the decomposition of the
MBR pattern into spherical harmonics (65). They can be
explicitly calculated if the equations of motion for
baryonic perturbations were solved.

The multipole coefficients and the angular correlation
function of fluctuations found in a model can be com-

pared with the results of observations to provide valuable
constraints on parameters of the model. The higher mul-

tipole moments have not been observed yet and we know
only the upper limits of the two first moments.

Unfortunately the dipole moment (I =1) is influenced
by the nonlinear, gravity induced motions of our Galaxy
that cannot be reliably subtracted. However, the observa-
tions"' indicate that the intrinsic dipole moment of
MBR can be a i & 10 (Ref. 12). The recent observation-
al limits on the quadrupole (1=2}moment complied by
Efstathiou and Bond give the value az & 10

Any comparison of IV(8) calculated in the model with
the observations requires additional information about the
characteristic of the antenna used (see Ref. 8 for exam-
ples). The dipole momentum is usually excluded.

The reheating of intergalactic medium during star or
galaxy formation could influence the pattern of the MBR
and this effect will be addressed in another paper.
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