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Equivalence between the Thirring model and a derivative-coupling model
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We analyze the equivalence between the Thirring model and the fermionic sector of the theory of
a Dirac field interacting via derivative coupling with two boson fields. For a certain choice of the
parameters the two models have the same fermionic Green's functions.

In a recent work' we analyzed some properties of mass
perturbation in the Thirring model as an example of a
perturbative scheme in which the unperturbed system is
not a free-field model but already incorporates some in-
teraction. For practical reasons, instead of working
directly with the Thirring model, it was convenient to use
an equivalent theory, the derivative-coupling (DC) model.
This theory describes an interaction of a Dirac field P
with two fields, one scalar, ri, and the other pseudoscalar,

For specific values of the couplings, the fermionic
Green's functions of the DC model turn out to be equal to
those of the Thirring model as given, for example, by
Klaiber. This equivalence saved us a lot of technical
complications making it possible, with relative ease to
derive our results. However, in spite of this success, a
basic question concerning the aforementioned equivalence
still persists. Essentially, the problem is the following.
The Thirring model has one degree of freedom, in the
sense that the basic field can be written explicitly in terms
of just one free scalar field. The DC model, on the other
hand, has, in principle, three degrees of freedom, which
can be taken to be ri, P, and the potential, c, of the free
vector current. So, the numbers of degrees of freedom of
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i Bf(x)= kyI'N(j „—p)(x),

j„(x)=N (fy„P)(x),
Ig (x),gp(0)IET iZ5 g(—x—'), (3)

where Z is a wave-function renormalization constant and
the symbol N indicates a normal product prescription to
be defined shortly. Both Klaiber's and Johnson's solu-
tions can be written as

the two models do not match. It is our purpose to clarify
this situation and establish the precise way in which the
equivalence of the two models should be understood. An-
ticipating our results, we are going to prove that in the
fermionic sector a certain combination of the fields ri, P,
and c is a spurion, or better it commutes with all the ele-
ments of the algebra generated by the fermionic com-
ponents of the DC model. Besides that, to produce the
same Green's functions as in the Thirring model we are
forced to use another special combination of these fields.
These two constraints effectively reduce the number of de-
grees of freedom from three to one.

The massless Thirring model is defined by the equa-
tions
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with the constants a, a, a, and a given by
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where p is the usual parameter of the sine-Gordon~ model that is related to k by
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The fields $0, j, and j are massless free fields. They are not independent fields. Indeed, as can be verified, they satisfy
the commutation relations

X —X —E'

[j (x) j+(0)]=D (x)= — ln
4~ x'+x' —~e

[j (x),yo(0)]= i~—lT[D (x)+y D (x)]1/{)(0),

[j (x),1((0(0)]= —iv m[D (x)+y D (x)]$0(0),

where D (x)= —( I/4m)in' [x —(x —ie) ] is the two-point function of the scalar fields j and j. The 2n-point Green's
function
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can then be computed, making intensive use of the above
commutations relations and of the identities

exp( A)exp(8) =exp(8)exp(A)exp([A, B])

C exp(D) =exp(d)exp(D)C

and its quantum version corresponds to the equations

i({)g = ky"X (g„f—),
C3v] =g d)'j„,
Cl(I) = —g{)"ju,

(1 la)

(1 lb)

(1 lc)

which hold if [A,B]=c number and [C,D]=dD with
d =e number, respectively.

For future reference we also observe that the mass
operator can be defined by
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Let us now focus our attention on the DC model. Clas-
sically, the model is described by the Lagrangian

w =y) ay+ ,' a„ya„y+—,
' a„~a„~+—(ga„~ ga„y)(yy—„q).

(10)

where, as in the Thirring model, the Z s renormalization
constants as well as the normal-product prescription, indi-
cated by the symbol N, are specified together in the pro-
cess of solving the model. Just for convenience, the cou-
pling constant k was factorized on the right-hand side of
(1 la). Actually, the model is solved by the ansatz

g(x) =:exp[igg(x)+igy {I)(x)]:$0(x),
r
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The normalization factor for the current in (13a) was chosen to simplify the equations relating the DC and Thirring



3918 BRIEF REPORTS 34

models. Moreover, it follows also from (13a), (lib), and (llc) that both ri and P are free fields. We can always redefine
them, changing at the same time the couplings g and g so that Zi ——Zi =1. The case in which one of the Z's is nega-

tive, corresponding to a negative metric field, will be useful in our forthcoming discussion of the equivalence to the Thir-
ring model.

Using the above results„one may derive the following expression for the 2n-point function of the fermion field:

(T4(xi) . 4(x. )4(zi). . . i)'0. ))= exp g [ (g—'+g'y, 'y k'»F(x, xk—)l
j(k
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We may also define a mass operator

N(|TP)(x) =exp[ (g —g—)D (e)]g(x +e)g(x)

=:Poexp[&2gy 4]4o:(x)

.P 5-. . 2m.
prh(x) =~exp i —yj—(x)+i dx' j(x'):X,

JLrl, (x)= 8J, (20)

which should be compared to the analogous expression for
the Thirring model, Eq. (9).

It is now time to dissect the equivalence between the
two models. Their fermionic Green's functions turn out
to be equal after the following identification.

(1) For k )0 (P & 4m ),

a =g, [P(x),P(0)]=D(x),
a = —g', [i)(x),ri(0)] = —D(x) .

N(gp)Th(x) =~:cos[pj(x)]:. (21)

tpDc=~f:exp iy (v m—c —g{())

For the DC model we use a boson representation sirni-
lar to (18) employing a new independent field c (remember
that in the DC model fo, ri, and P are independent). In-
troducing a field ri related to ri in the same way as j is re-
lated toj in (17), we get

(2) For k & 0 (P ~ 4m ),

a = —g, [P(x),P(0)]= —D (x),
a =g2, [ri(x),ri(0)] =D(x) .

(16) 2 -2
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—1/2

(22)

We have kept g and g real at the expense of introducing
an additional source of indefinite metric for the scalar
fields.

The above Greens-functions identification does not
hold at the operator level. To understand why this is so,
it is convenient to employ a Mandelstam-type representa-
tion for the free Dirac field. As mentioned earlier, in the
case of the Thirring model the fields po, j, and j are not
independent. So, in order to be compatible with (6), we
shall use the following boson representation:

x'
J(X)= —f dX J(X,X )i BP =OP

T

x'
po(x) =M xpo ei~..ny j (x)+i ~m —f dx' 'j (x')

(17)

(18)

where ~0 is a normalization constant and 7 a column
matrix satisfying XX= 1.

Using the almve expressions, the fields grh jrh, and
N(~)~ can be written entirely in terms of the potential

J~
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Defining the fields
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we can rewrite (22)—(25) as

PDc=M:exp —i —y J+i ~x' J(x')P ~ 2ir x'

2 00

k X

Xexp —i y o+ dx' o:X,4n. OO

The model's equivalence in the situation specified by
(15) and (16) follows from the similar roles played by J
and j in (19)—(27) and in (28)—(31). The extra field o,
relevant outside the fermionic sector of the DC model, is
a spurion in the fermionic sector having no role there.
Really, it is easily verified that

(28)

(29)

[J(x),J(0)]=D(x),

[J(x),cr(0)]=0, (32)

(30) [a(x),cr(0)]=0 .

k
N(~)Dc ——~:cos pJ+ o (31) This work was partially supported by CNPq (Conselho
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