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The problems encountered in an earlier attempt to compute the non-Abelian Debye screening
mass are rectified by considering the correlation of the eigenvalues of the untraced Polyakov loop.
This gauge-invariant function is free from color averaging and is shown to yield the singlet potential
of a static quark-antiquark pair at finite temperature. A perturbative computation requires that the
electrostatic potential A4 be endowed with a gauge-symmetry-breaking vacuum expectation value,

the occurrence of which would explain the breakdown of perturbation theory encountered in the ear-

lier calculation. %'hile the symmetry breakdown cannot reliably be seen perturbatively, its effects on

perturbative calculations can be assessed. It is found that most perturbative results, even the sup-

posedly well-established low-order ones, would be affected. This would take the study of the quark-

gluon plasma well out of the reach of perturbation theory and make nonperturbative techniques in-

dispensable even at very high temperatures.

I. INTRODUCTION

In an attempt to define a gauge-invariant Debye screen-

ing mass in high-temperature quantum chrornodynamics
("hot QCD"), we examined in an earlier paper' the color-
averaged static quark-antiquark potential, given by the
Polyakov loop correlation (PLC) function. The computa-
tion revealed two probleins. (1) The color averaging,
which results in PLC being dominated by two-gluon ex-
change, tends to wash out the Debye screening effect,
leaving the mass gap of the magnetostatic (MS) sector as
the dominant decay mass of the correlation. (2) Higher
orders overwhelm the leading order at distances beyond
the Debye screening length, making the PLC calculation
invalid in the deep infrared region and implying an unex-

pectedly early breakdown of perturbation theory in the
electrostatic (ES) sector. In order to obtain an acceptable
definition of the non-Abelian Debye screening mass, these
problems must be dealt with.

The first one could be solved by replacing the PLC
function with a gauge-invariant ES correlation function
dominated by single-gluon exchange, which would pro-
vide a cleaner manifestation of the non-Abelian Debye
screening effect. Such a correlation function indeed ex-
ists: it is the correlation of the gauge-invariant eigen-
values of the Polykov loop operator and yields the poten-
tial energy of a static quark-antiquark pair in the color-
singlet state. A simple approach to the second problem
would be to imagine that the infrared divergences of hot
QCD are so severe that they lead to a nonzero vacuum ex-
pectation value (VEV) for the color ES potential A&. This
would explain the PLC problem in the previous calcula-
tions as being due to an expansion about the wrong vacu-
urn. It might also shed some light on the so-called "in-
frared problem" of hot QCD.

The infrared problem has to do with the inevitable
failure of a perturbative approach to hot QCD due to the
infrared divergences in its MS sector, despite the possibili-
ty that these divergences might cure themselves by gen-

crating a "magnetic screening mass. " The scenario goes
as follows: At distances larger than O(1/g'T) (the "deep
infrared") the ES field of hot QCD, having acquired an

O(gT) Debye mass, ought to decouple, leaving behind a
pure MS sector described by three-dimensional (3D)
Yang-Mills theory (QCD~) (Refs. 2—4). The failure of
perturbation theory at finite temperature arises essentially
from this super-renormalizable three-dimensional MS sec-
tor. It was shown that super-renormalizable theories
cure their infrared divergences by generating nonanalytic
terms (such as g lng) in their g expansion, whether or
not the propagators acquire "magnetic masses. " On the
basis of a toy model, it was subsequently argued that
such masses need not necessarily be generated. On the
other hand, Monte Carlo simulations of finite-
temperature four-dimensional lattice gauge theory showed
that MS fields are indeed screened at high temperatures.
Thus, we may take it that the infrared divergences of per-
turbation theory cure themselves by generating a MS
screening mass. Its leading value could then be obtained
within QCD& alone, and on dimensional grounds would
have to be O(g T) (Ref. 4). This spells doom for pertur-
bation theory, because the effective infrared expansion pa-
rameter is g T/(infrared cutoff). Since the cutoff is the
magnetic mass, the expansion parameter is of order unity
in the coupling constant and all orders of Feynman
graphs could contribute to a given order in perturbation
theory: this is the infrared problem. Whether and how
such a mass manifests itself in terms of a single-gluon
propagator has remained unclear. %e shall see below that
the suggested symmetry breakdown provides a mechanism
to give masses to the MS gluons, and implies that the
decouphng of the ES field may not be as clean as has been
believed.

There is already evidence, albeit inconclusive, of a
nonzero VEV for A4. In Ref. 8 the effective potential for
A4 was calculated in SU(2) and found to be minimized at
two loops by a nonvanishing VEV, U =gv T/4n. Be-
cause of the infrared problem, this result might be affect-
ed by higher-order diagrams and therefore explicitly non-
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perturbative evidence is necessary. To this end, an SU(3)
Monte Carlo simulation was performed; though the data
indicate a nonzero VEV, the statistics are somewhat
sparse.

Combining the results of Refs. 8—10, the following
scenario emerges: Infrared divergences in the static sector
of hot QCD cause the ES potential A4 to develop a vacu-
um expectation value U -gv'T, thereby freezing the color
degrees of freedom and breaking SU(N} down to U(1)
the tachyon pole corresponding to this symmetry breaking
cannot be observed in perturbation theory. There are then
N (N —1} "off-diagonal" (broken) massive MS gluons
coupled to the (N —1) "diagonal" (unbroken) massive ES
gluons ("Higgs particles" ). The remaining (N —1) diago-
nal massless MS gluons also acquire masses, ' due to the
magnetic screening caused by the monopole plasma which
results from the broken SU(N) symmetry, thereby elim-
inating any residual infrared divergences. Various esti-
mates of the magnetic screening mass (Monte Carlo, 3D
mass gap, and monopole gas) all give approximately the
same value mM -g T/4. The deconfinement transi-
tion may be viewed as the condensation of the Higgs field
and the liberation of monopoles at the critical temperature
T„' since there is no classical Higgs effect, these mono-
poles are stable only on the quantum level.

Finally, we should also note that the infrared diver-
gences might imply the confinement (in the 3D sense) of
the static modes of the theory into color singlets, a possi-
bility which is fully compatible with and probably related
to the occurrence of magnetic screening. Such "dynami-
cal confinement" has already been suggested" on the basis
of the area-law behavior of spacelike Wilson loops in hot
QCD.

In this paper we shall continue our perturbative ex-
ploration of non-Abelian Debye screening by trying to
compute the singlet potential via the Polyakov loop eigen-
value correlation (PLEC). This will be done in the "uni-
tarity gauge,

"' famihar from the electroweak model; in
perturbation theory, this requires the introduction of a
symmetry-breaking VEV for A4. Thus the separate con-
siderations of the singlet potential and symmetry break-
down are in fact closely connected. Since the latter is re-
lated through the Higgs mechanism to the magnetic
screening mass, which first shows up at two loops and is
perturbatively incalculable, ~ we do not expect to see the
generation of a VEV below two loops, and our calcula-
tions bear this out. Such a VEV is therefore not calcul-
able in standard perturbation theory either. %'e shall
show that the VEV affects even leading orders of the De-
bye mass, and thereby low orders of the thermodynamic
potential, making them also perturbatively incalculable.
In fact, most perturbative results in high-temperature
Yang-Mills theory appear to be seriously affected.

In Sec. II we discuss the relationship between the sing-
let potential and the eigenvalues of the Polyakov loop
operator, with some formal derivations being relegated to
an Appendix. Section III develops the unitarity gauge
formulation of hot QCD (more precisely, of the infrared
effective theory' EQCD3). An explicit computation of
the singlet potential for SU(2) is performed in Sec. IV.
Our conclusions are presented in Sec. V.

II. INVARIANT INTERQIJARK POTENTIALS
AT FINITE TEMPERATURE

At T =0, the only gauge-invariant interquark potential
we can define is through the Wilson loop, ' which de-
scribes a quark and an antiquark interacting via the
color-singlet channel. There is no gauge-invariant correla-
tion function corresponding to a qq pair in the adjoint
channel (nor, for that matter, for two quarks interacting
via the symmetric or antisymmetric channels). At T&0,
there appears to be again only one gauge-invariant corre-
lation function characterizing the interaction of a qq pair,
viz. , PLC, which yields a weighted average of the singlet
(1) and adjoint (adj) potentials [or, for two quarks, of the
symmetric (sym) and antisym metric (ant) potentials].
However, by taking into account the additional gauge-
invariant degrees of freedom created by the periodic boun-
dary conditions at finite temperature, we can get a handle
on the singlet and adjoint potentials separately.

The imaginary-time propagation of a quark in the
finite-temperature formalism is described' by the un-
traced Polyakov loop operator

13

Q(x) —=P exp ig dr—A&(x, r)
0

while for an antiquark, the corresponding operator is
the matrix transpose of Q'. Since Q transforms adjointly,
it can be written in the form

Q(x) =m(x)Q(x)co (x),
where Q is the diagonal matrix of the gauge-invariant
eigenvalues of Q; under a gauge transformation U(x, ~),
only the co's transform:

U(x, v)

co(x) ~ U(x, 0}co(x) .

Since TrQ =TrQ, the n-point functions of TrQ are a sub-
set of those of Q, and the fact that Q contains more infor-
mation than TrQ will be made use of below.

In the Appendix, we have derived expressions for
SU(N) interquark potentials in the zero-temperature Min-
kowski theory, in terms of the Wilson path-ordered ex-
ponential operators which describe the propagation of
static quarks. Since the SU(N) algebra is independent of
temperature, all we need do here is to replace the Wilson
operators by their finite-temperature Euclidean counter-
parts. A naive substitution of the operators Q in place of
the Wilson ones would lead to PLC as being the only
gauge-invariant correlation available. Substitution of the
diagonal form 0, on the other hand, leads to the follow-
ing expressions for the SU(N} interquark potentials at fi-
nite T:

exp( —P V,„)= ( TrQ(R }TrQ(0))%+1

(TrQ(R)Q(0) ),%+1

exp( —PV,„,) = (TrQ(R}TrQ(0) )A' —1

(TrQ(R)Q(0) ),X—1
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exp( —PV,d, )= z
(TrQ (R)TrQ(0))

(TrQ '(R)Q(0) &,X —1

exp( —PVi ) = (TrQ {R)Q(0)) =—CpLE(R } .

Note that the last two equations imply for PLC the well-
known result

CpL(R)=—(TrQ (R)TrQ(0))

1 X —1
exp[ —PVi(R)]+ exp[ —PV,~;(R)] .

Our formalism thus contains what is already known
and goes beyond it to give separate expressions for the po-
tentials in the individual channels. Since the Polyakov
loop eigenvalue correlation (PLEC) gives us all the extra
gauge-invariant information there is, it is uniquely the
correlation function we were seeking, in the following
sense: Any other gauge-invariant ES corrdation function
dominated by single-gluon exchange would have to be a
linear combination of PLEC and PLC.

We end this section by noting that the diagonal form of
the Polyakov loop operator 0 is gauge invariant only up
to permutations of its eigenvalues and therefore the above
expressions are valid only in the continuum theory. On
the lattice, additional measures would be necessary to take
care of the possibility of being able to perform indepen-
dent permutations at each site.

III. EQCDi IN DIAGONAL GAUGE

The infrared dynamics of the MS and ES potentials

A;,P in hot QCD is governed by the effective theory'~
EQCD&, described by the three-dimensional Euclidean La-
grang1an density

~EqcD = i TrFJ (A)+Tr{B;P+iG[A;,P]) +ma Trg

where G=T'~ g(T) and

Plo =Pig +5%i

NG T/3+ 2NG—Jd q/(—2n) q

The electrostatic field P is an NXN traceless Hermi-
tian matrix which gauge transforms as an adjoint scalar
field, and may therefore be diagonalized by a suitably
chosen gauge transformation. Let P be the N XN trace-
less diagonal matrix whose entries are the X eigenvalues
of P (of which only N —1 are independent). Write

4=f4f'=f~'T'f'
where T' are the (N —1) diagonal generators of SU(N).
The physics is contained in the (N —1} gauge-invariant
eigenvalues A,

' while the "off-diagonal" component f is a
gauge artifact and may be eliminated by a gauge transfor-
mation U=f . This leaves the form of the EQCDi La-
grangian unchanged, except that the P field may now be
regarded as diagonal, and there is also a ghost term in the
effective action corresponding to the change in the mea-

sure for the P field.
One usually encounters the unitarity gauge in theories

with broken gauge symmetries. In the present case, there
is no a priori reason to consider symmetry breaking, and
there is certainly no Higgs effect at the classical level.
Nevertheless, we suspect on the grounds of our previous
attempts to compute the Debye screening mass that such
symmetry breaking may indeed be the result of radiative
corrections. We shall therefore introduce a symmetry
breaking parameter U, which ~ould serve to "hold down"
the fields in the above Lagrangian to their diagonal
values, and write the eigenvalues of P as

'T'=.u+ e"T',
where u is the vacuum expectation value of P and e is the
perturbation away from the vacuum. We have thereby
broken our gauge group 6=SU(N) down to the little
group H generated by the X—1 diagonal generators T'.
In our formalism, u is a parameter to be determined self-
consistently.

With the above parametrization, we have

Tr(DQ ) =Tr{Be ) GTr—[A, u +e]

and we see that u gives mass to the off-diagonal gauge bo-
sons A =—A A' T'. We a—lso notice the absence of a cou-
pling of two ES and one MS fields. It is precisely such a
coupling that is responsible for the O(g ) term in the
naive Debye mass we see that such a term is in fact a
gauge artifact.

In terms of P, the diagonal Polyakov loop operator is
given by

Q =exp( igv Pk'T—')

=exp( ig~P—u)exp( ig~Pe T') —.
The singlet potential is thea given by

exp[ —PV, (R)]= (Tr expI igv PT'[e'(R) —e'(0)] I ) .

At high temperature, the exponentials may be expanded to
give

Vi(R)= — ([e'(R)e (0)—e'(0)']) .
2N

In the next section, we shall calculate Vi(R) for SU(2).

IV. THE SU(2)-SINGLET POTENTIAL

We shall now specialize to SU(2) for simplicity. The
generalization to SU(N) is straightforward if in places a
bit tedious. The Polyakov loop operator in static gauge is
given by

Q(x) =exp[ iGPP(x)] . —

Let us parametrize P as

cos8 sin8e

sin8e '~ —cos8

A, =2Trg =P'P' (i =1,2, 3) .
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The gauge-invariant eigenvalues of tI) are +A, /2, while

those of 8 are +1. Let the corresponding eigenvectors be
denoted

~

+). We easily find

V ff(X}

i+)=
sin —e'~

2

p T'T AT
G G

Ve~f (")

X
RENT

G

(b)

8
sin —e

2

|9—cos
2

The matrix which diagonalizes 8 is then

8 . 8
cos— sin —e

2 2
f=(i+&i —&)= g g

sin —e'~ —cos—
2 2

with

(T ~)

FIG. 1. One-loop effective potential (schematic) for A4 in

SU(2) diagonal gauge: (a) above the deconfinement transition
and (b) in the thermodynamic limit at very high temperatures.

A~f A ——8 f 8~fcr f,

and

fft=f =diag(1, 1)

frJ'f'=f~'f =8 .

whereby the f's disappear and we are left with

L qEcD= iTrF (A)+ i(BA) + iso A,

62g2[(A 1)2+(A 2)2]

Thus,

0= 2f~'f

In terms of A, , the Polyakov loop operator is given by

TrQ(x) =cos A,(x) =cos A,(x)6 gvp
2T 2

If we let

A, ~X+2mT/6=A, +2m/gv p,

In anticipation of the possible generation of a vacuum ex-
pectation value for A, , let us now write

A(x) =U+@(x),

where the VEV U is to be determined dynamically; note
that the off-diagonal MS gluons will acquire screening
masses p=GU, and thus a nonzero VEV softens the in-
frared divergences of hot QCD.

We still have the freedom to make gauge transforma-
tions generated by o, which leave [(A ') +(A ) ] invari-
ant but change A . We must therefore add a gauge-fixing
term for A . We choose the covariant gauge

b,Lsd = — (8;A )' .

TrQ(x)~ —TrQ(x) .

Thus A, may be taken to range from 2m. T/6 to 2n.T/—G.
Above the deconfinement transition, the one-loop effec-

tive potential for A, reflects the broken Zz symmetry of
the theory see Fig. 1(a). For finite volumes, the system
tunnels between the degenerate Z2 vacua. For infinite
volume, the Z2 symmetry is spontaneously broken and
the system sits in one of the zeros of the effective poten-
tial. We shall measure A, from whichever zero the system
happens to have chosen. Since we are interested here in
perturbative computations at high temperature, we may
take ir/g~p~oo and the one-loop effective potential
then looks as shown in Fig. 1(b).

We transform to diagonal (unitarity) gauge via the re-
placements

The P measure for SU(2) is of the form

f [A, dk. ][dO(8 g)]
Since we have eliminated 8(0,$) from the action, we can
drop the factor f [d8]. The measure for A, can be con-

verted into a ghost term in the effective action in unitarity
gauge; in terms of the parameter U, it is given by

2~Lghost, A,

U
, e (*) fd, k

[d ik d'k/=(2n)] . .
The resultant effective Lagrangian density for EQCDq in

unitarity gauge is then (after subtracting an irrelevant
constant Tmo U )

2 2
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+ 2 [(Be) +m@ e ]+ mo u ——Jdik e+ Jdik —46 I2 2 d3k

(g 1)2+(+2)2 P (g i)2+(g 2)Z

from which the Feynman rules may be read off.

One-loop calculations

We now calculate the one-loop self-energy of e, the
relevant graphs for which are shown in Fig. 2(a). These
lead to the following result for the one-loop ES vacuum
polarization tensor in the presence of a nonzero VEV:

II~———mx + + k+O(k/6 u ).26 U 116
12m 0

We determine v self-consistently by setting tadpole
graphs to zero. At the one-loop level we have, from Fig.
2(b),

(tadpole) =iu —mE
63U

which vanishes for u =0,2m T/36. The second solution is
an artifact of the Z2-transformed vacuum well in the ef-
fective potential for A, , and may be discarded here. Thus
at one loop we find, as expected, that v =0, which is con-
sistent with the well-known fact that no magnetic screen-
ing mass arises at the one-loop level.

To obtain a nonvanishing u, we must clearly go to two
loops and beyond. The unitarity gauge we are using is un-
suitable for calculations beyond the one-loop level. More
importantly, at two loops the infrared problem would be-
gin to make its presence felt, regardless of what gauge we
might choose. However, as mentioned in Sec. I, there is
some evidence for a nonvanishing VEV. On dimensional
grounds it is safe to say that, to leading order,

where e is a nonperturbatively determined dimensionless
constant.

In terms of c, we obtain, for II44,

1""OI""= ~ ~ ~ ~ ~ I + ~ 0 0 0 ~ + ~ 0 ~ ~ 0 ~

(l)o 0~4

~ ~ ~ 0 ) 00 ~ + ee ~

~ (todpole)
(b)

FIG. 2. One-loop perturbation-theory diagrams in SU(2) di-
agonal gauge: (a) self-energy of e and (b) tadpole graphs. The
dotted lines represent ES propagators, the double lines off-
diagonal MS gluons, and the (3|'s are counterterms.

II~———mE+ g T+ k+O(k/cG ).
12m@

The long-distance behavior of the e propagator is then

(ee)—
1 z z 2cg T1— k+ mg—

127TC 7T

1 1

1 — kz+
ms' 2cg 4T'/—n.

12mc +
1 11/12m.c

Since c is a number of order unity, we see quite clearly
that the Debye screening mass mD is not calculable in
perturbation theory.

The singlet potential for SU(2) at high temperature,
which is essentially the Fourier transform of the e propa-
gator, is then given by

Vi(R) =—
4 1 —11/12mc 4nR

where m~ is the nonperturbative Debye mass occurring in
the denominator of the e propagator. Although Vi does
have the expected exponential decay, it is not perturba-
tively calculable either.

V. CQNCI. USION

Our previous attempts at computing the non-Abelian
Debye screening mass had suggested that it be defined in
terms of a gauge-invariant electrostatic correlation func-
tion dominated by single-gluon exchange. We showed in
this paper that the only viable candidate is the Polyakov
loop eigenvalue correlation, which yields the color-singlet
potential energy of a quark-antiquark pair at finite tem-
perature. In order to compute the singlet potential pertur-
batively, we used diagonal (unitarity) gauge, in which A4
is endowed with a gauge-symmetry-breaking vacuum ex-
pectation value u, to be determined self-consistently, order
by order. Through the Higgs mechanism, U is converted
into masses for the off-diagonal magnetostatic gluons,
thereby providing some infrared softening.

We found u =0 at the tree level, since there is no classi-
cal symmetry breaking, and also at one loop, consistent
with absence of magnetic screening up to that order. One
would expect a nonvanishing VEV to first show up in a
two-loop computation, which is beyond the scope of per-
turbative diagonal gauge and in any case would be mean-
ingless in view of the infrared problem. Nevertheless, we
were able to assess the effects a nonzero u would have on
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perturbative results. We found that drastic changes would

be induced.
The properly defined Debye screening mass would

characterize only the diagonal electrostatic gluons of the
theory and the coefficients in its g expansion,

m =(Ag +Bg +. . . )T

would be incalculable in perturbation theory; an interest-
ing side result is the absence of any O(g ) term. The
decoupling of the massive ES field in the deep infrared
would not be as straightforward as before, but would in-
stead freeze it to its background value v. The leading
magnetostatic screening mass, related to the VEV of A4,
would remain incalculable as before. Most importantly,
the perturbative expansion of the thermodynamic poten-
tial would be affected beyond the g term; we have (for
references see Ref. 3)

(N —1)yr T (N l)Ng—T
45

where the O(g ) term, coming as it does from resumming
the O(g ) Debye mass, would become perturbatively in-
calculable.

Much of the early excitement about the quark-gluon
plasma was due to its supposed perturbative nature, aris-
ing from the smallness of the QCD coupling constant at
high temperature and/or density. The discovery of the in-
frared problem, however, soon dispelled this enthusiasm,
by showing that perturbation theory had only limited ap-
plicability. Symmetry breakdown only worsens the situa-
tion, by making most perturbative results invalid at any
temperature.

Despite its negative implications for perturbative calcu-
lations at finite temperature, the occurrence of symmetry
breaking in hot QCD is an attractive idea, since it pro-
vides elegant explanations for the early breakdown of per-
turbation theory in the ES sector and the way in which
the infrared divergences of hot QCD cure themselves. We
find the resulting scenario, as outlined in Refs. 8—10, very
plausible: The condensation of the Higgs field stabilizes
color-magnetic monopoles, which form a plasma and
screen magnetic charge, thereby providing the MS gluons
with O(g T) masses. All infrared divergences are then
eliminated, though of course the infrared problem still
remains. The monopole plasila and magnetic screening
are compatible with the three-dimensional confinement
expected of the static modes and in fact the magnetic
screening mass and the string tension of spacelike Wilson
loops are probably related. "

While we have not presented any concrete or direct evi-
dence for symmetry breaking in this paper, there seems to
be every indication of it from the works mentioned above
and from the PI,C calculation. The question can only be
decided by a fully nonperturbative computation. We feel
that at this point a Monte Carlo simulation with im-
proved statistics is needed to conclusively settle this im-
portant issue.
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APPENDIX: SU(X}PROJECTION OPERATORS
AND INTERQUARK POTENTIALS

We shall develop expressions for SU(N) interquark po-
tentials by applying the appropriate projection operators
to static quark correlation functions. Specifically, we
shall derive the adjoint (adj) and singlet (1) potentials for a
quark-antiquark pair; for completeness, we shall also in-
clude the symmetric (sym) and antisymmetric (ant) poten-
tials between two quarks. We shall consider the zero-
temperature Minkowski theory here; the generalization to
the finite-temperature Euclidean theory is given in Sec. II.

The operator describing the propagation of a static ("in-
finitely heavy") quark at position x between the real times
—T/2 and T/2 is given by'

T/2
W(x)=Pexp ig dt Ao(x, t), T~nt) ',—T/2

for antiquarks, the corresponding operator is

T/2
W(x) =P exp ig dt A()(x, t) = W (x),—T/2

where the tilde denotes transpose, and the generators of
the complex-conjugate represenation are taken to be
T'= —T. Note that these operators describe static
"quarks" of arbitrary spin in the fundamental representa-
tion of color SU(N); the expressions we shall obtain there-
fore yield spin averaged p-otentials.

qq potentials

Two SU(N) quarks can interact via the symmetric or
the antisymmetric channels, according to the decomposi-
tion

N@N = , N (N + 1)e —,N—(N—1) .

Therefore the quark-quark correlation function

Gzq(R) = (W(R) 8 (0) ) ——(qq ~

e'
~ qq )

is of the form

iTV,„(R)~ i TV t(it )

W sym +e ant

Here Psy~pP+zf are projection operators of the form

PNiv AIS)I+BT'S T'=(A5'J5"t——+BT"JT' ))

and possessing the properties

2=
sym, ant ) sym, ant ~ aym Pant

P,y +P,„,=lI .

Using the multiplication law for SU(N) generators,
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Z aTb + t (dabc+tf abc)Tc
2X

is of the form

iTVt(R) iTV~ (R)

we readily obtain

P,„= Ie'+ T'e T',N+1
2N

P,„,= IgI —T'g T'.N —1

2N

We have identified the symmetric and antisymmetric
solutions by the coefficients of the II terms; we also
verify, using the Fierz identities

i k 1 i k
J N J

Tai Tak ~ Tai Takj 1 ~exch= I j

Here P&,P,&„ are projection operators of the form

P =—AI(8)I+BT'e T'=(A o j5" +BT';JT'"i)

and possessing the properties

(Pl, adj) Pl, adj i PlPadj 0
& Pl + adj II. 2

P, = I@I——T'e T',1 2 —,

N —1 2 —,Ig I+—T'g T,P,g)
——

Using the multiplication law for SU(N) generators given
earlier, we readily obtain

that

Psym I exch=+Psym ~ Pant I exch= Pant

We have identified the singlet and adjoint solutions by the
coefficients of the I(8)I terms. Unlike the qq case, they do
not satisfy any simple exchange relations; however, we
note that

Defining

TrP =P';P"k,

we also note that

jt))'(j))i +1) N (I(i —1)
TrPsym =

2
'

2
, TrP,„,=

%e now calculate

exp(iTVsym) =Tr(PsymGqq )/TrPsym

( Tr W(R)Tr W(0) )X+1

( Tr W(R) W(0) ),%+1
exp(i TV „t ) =Tr(P „,Gqq)/TrP „,

( Tr W(R)Tr W(0) )
N —1

(TrW(R) W(0) ),
N —1

where we have used the SU(Ã) identity

2N Tr(T'X)Tr(T'F) =Tr(XY) (TrX)(TrF), —

for any I(i XN matrices X, F.

qq potentials

An SU(Ã) quark-antiquark pair can interact via the
singlet or the adjoint channels, according to the decompo-
sition

Re%= le(X' —1) .

Therefore the quark-antiquark correlation function

6- (8)—= ( W'(R)W(0)) —(qq i

e'
i qq)

TrP~ ——1, TrP, d&
——N —1 .

%e now calculate

exp(i TV l ) =Tr(Pl 6 )/TrP l
——-( Tr W (R) W(0) ),

exp(i TV,d, ) =Tr(P,d;6 )/TrP, d,

N (Tr Wt(R)Tr W(0) )
N —1

(TrWt(R) W(0) ),
N —1

where we have again used the identity mentioned earlier.

Static %'ilson loop

Except in Ao ——0 gauge, which is singular, the gauge
fields at t=+ cc become pure gauge. Thus we can
transform to a gauge where the fields vanish at t=+ ct).
In that gauge, exp(iTVl ) is the same as the static Wilson
loop. ' But since the latter is gauge invariant, we can de-
fine a gauge-invariant singlet static potential via the equa-
tion

exp[ iTVl(R)] = (TrW (R) W(0) ) (in special gauge)

= TrP exp ig dx"A„x

(in any gauge),

where the rectangular contour 5 has spatial extent 8 and
temporal extent T~ co. We thus recover the usual for-
mula for the singlet quark-antiquark potential at zero
temperature.

There seems to be no way of extracting gauge-invariant
adjoint, symmetric, or antisymmetric potentials without
compactifying the time direction.
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