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We use the effective action describing long-range QCD, which predicts that QCD behaves as a
dual superconductor, to derive the interaction energy between two heavy quarks as a function of
separation. The dual-superconductor field equations are solved in an approximation in which the
boundary between the superconducting vacuum and the region of normal vacuum surrounding the
quarks is sharp. Further, non-Abelian effects are neglected. The resulting heavy-quark potential is
linear in separation at large separation, and Coulomb-like at small separation. Overall it agrees very
well with phenomenologically determined potentials.

I. INTRODUCTION

The dual-superconductor description of long-range
QCD is necessarily expressed in terms of the dual vector
potential C& rather than the conventional vector potential
A&, as a result of the singularities in A„. In this language
the introduction of color-electric sources is awkward, be-
cause the use of dual potentials makes Gauss's law and
Ampere's law into kinematic identities without sources.
The problem is superficially similar to that encountered in
the attempt to describe magnetic monopoles with the ordi-
nary vector potential in electromagnetism. There, mono-
poles can be introduced at the price of attaching Dirac
strings to them, and the strings can be shown to have no
observable physical effect if Dirac s quantization condi-
tion eg =2m. is obeyed.

Electric point charges, however, have no strings. The
field of an electric point charge is just a Coulomb field; it
is not a dual Dirac monopole with a string. It is not true
that V E=O. Therefore, one must add to the relation be-
tween the electric field and the potential a string electric
field, which is arranged to precisely cancel the string com-
ing from the dual potential. This string field has a diver-
gence, and its presence therefore allows Gauss's law, with
sources, to be satisfied even when the dual potential is
used.

Our purpose here is to introduce heavy-quark sources
into the dual-superconductor effective action describing
long-range QCD, and to calculate the static quark poten-
tial as a function of quark separation. The vehicle for do-
ing this will be the "string fields" mentioned above. The
details of how they are used are given in Sec. II.

We make use of a simplifying approximation in carry-
ing out the calculation, in which the regions of supercon-
ducting vacuum and normal vacuum are sharply separat-
ed. This approximation is described in Secs. III and IV.
It leads to a set of equations with features similar to, but

not identical with, the conventional MIT bag model.
Consequently one can view this as a derivation of (a modi-
fied) bag model from the dual superconductor. The appli-
cation of the approximation to the quark potential is
made in Secs. V, VI, and VII at the Abelian level. The
approximate field equations are solved analytically in the
limit of large quark separation, where the region of nor-
mal vacuum becomes a cylinder, and numerically via a
variational calculation for arbitrary separation. For small
separations, the potential becomes Coulomb-like, so that
the dual superconductor effective action interpolates
smoothly all the way to the short-range regime. It may
therefore be used as an approximate effective action for
QCD at all ranges. We recall that the magnetic permea-
bility giving rise to the effective action is, ' in momentum
space, p=M /q +1/f . At short range, therefore, i.e.,
as q ~ au, the action (1.1) of I becomes simply

I.—+ G„G„.1
(1.1)uv uv

In this limit we may identify G„„with —,e„„i Fi in
terms of the ordinary field tensor Fi, so that L coincides
with the usual QCD Lagrangian provided that f=1.
Smooth interpolation to the correct short-range limit, thus
requires that the mass parameters M and M& of I are re-
lated by M~ ——M.

In principle, classical colored sources make no sense,
since by a gauge transformation one can change sources
with, for example, parallel color to sources with anti-
parallel color. It is in general necessary to quantize the ef-
fective action to deal properly with sources. At the Abeli-
an level, however, quantization is not required.

In the Abelian, or small-g, limit, the quark sources
must be in a color-singlet configuration to have a finite
energy. To higher orders in g, other configurations are
possible since explicit quantum gluons can combine with
the quarks so that the entire system forms a singlet. That
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Here

2 G„„G„„W(F—) . (1.2)
4f2 8» P»

is, the gluons can screen the color of the quarks. Evident-

ly, incorporating these effects requires quantizing the
gluon field.

Dual —i.e., color-magnetic —gluons do not, however, in-

dividually screen color-electric —i.e., quark —sources.
Therefore to properly incorporate the physics of screening
in the dual language requires going to all orders in g; one
or two additional orders of g are not enough. This is not
surprising; the electric and magnetic gauge groups are not
identical. A single electric gluon together with two
quarks in a color octet can make up an overall color sing-
let, so that screening can occur in order e . But e-1/g;
thus all orders in g are involved. %e shall not address
higher orders in g further in this paper.

The dual superconductor effective action is'

2

S= f d x N Tr ,' Gq F„—,+ „F„, —
i Fq„

into kinematic relations automatically satisfied in virtue
of the definition of the fields in terms of the potential:
D= —VXC and H= —BoC—VCo.

%hen electric sources are present, these expressions for
the fields must be modified. To introduce an electric
charge density p, for example, one must write

D= —V XC+D,
and choose the "string field" D, to satisfy

(2.1)

q q 1+cos6I
e, = —VX . e~ +q5(x)5(y)8(z)e, .

4~y 4m r sin8

(2.2)

The "string field" D, is

so that the electric displacement will obey Gauss's law
with sources. For a single point charge q located at the
origin, the decomposition (2.1) simply reflects the identity
(in spherical coordinates)

Gq„B„C„"d——„C„ig—[C—q, C„] (1.3) D, =q5(x)5(y)8(z)e, ; (2.3}

and

N„=B„ig[C„,—], (1.4)

II. INCORPORATING SOURCES
INTO DUAL POTENTIALS

In sourceless electricity use of the dual potential makes
Gauss's law V D=o and Ampere's law VXH —i3oD=O

where C& is the dual potential. The color notation is
C„=C&T', and the generators T' are normalized to
[T',Tb]=if'+T'. Thus TrT'T'= I/N for SU(X). The
field f„„ is an auxiliary field, introduced to eliminate
operators like 1/& . We refer to the components of F as
electric and magnetic fields: E;= —,' e;Ji,F/k and—

B; = —Fo;, even though these are the true color E and B
fields only in the Abelian and long-range limit. (Other
definitions of the electric and magnetic fields could have
been made; for example, we might have called D+E the
electric field, since the electric energy density [see Eq.
(3.12)], at the Abelian level, is given by —,

' D.(D+ E). We
have found the present choice to be the most useful intui-
tively. )

The potential W(F) is a phenomenological term in-

dependent of C„and containing no derivatives. Spon-
taneous symmetry breaking is associated with a minimum
of W at a nonzero value of F; thus W plays the role of the

Higgs potential and F the role of the Higgs field.
In the past we have analyzed (1.2) only for pure glue

with no sources. Among other things we have found
quantized tubes of color-electric flux as excitations of the
vacuum. ' Our purpose here is to relate these flux tubes to
heavy-quark sources, to see how they are modified when
the sources are close to each other, and to extract the in-
teraction energy between the sources„ that is, the static
quark potential.

it exists only along the positive z axis and serves to cancel
the string in —VXC which results from the attempt to
represent a point charge as the curl of something. Both
—VXC and D, contain strings; D does not. Evidently

V D=q5'(r) (2.4)

as required. For two equal and opposite charges located
on the z axis at z =+R /2, we have

1 +cosOi

r&sin9&

1+cosL92
e~,

r2 S11182
(2.5)

where r i 2 ——
~
r+ —,

' Re, ~; now

D, =q5(x)5(y)[8(z —R /2) —0(z +R /2)]e, (2.6)

(2.7)

Maxwell's equations are obtained from this with C as the
independent variable. The extension of all this to include
electric current sources is straightforward.

Exactly the same procedure can be followed to intro-
duce sources into the effective action of QCD, expressed
in terms of the dual potential. %'e now write

D= —V x C ——[C, x C]+D,
2

with the string field D, chosen to satisfy

V.D, +ig[C, D, ]=p

(2.8)

for a static charge distribution p. The action has the same
form as in the sourceless case

and the string only joins the two charges and no longer
extends to infinity.

The electrostatic action, with sources, becomes

S=—, f d x[ —VXC(x)+D, (x)]
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S= dx NTr —DE— D+ —E. E3 1 2 I

2f 2 M

+ SH+ 8 ——8- 81, 1

2f 2 M2

—W(E, B) (2.10)

but now (2.8) is to be used to express D in terms of the in-
dependent variable C. Again the modifications necessary
to add color-electric currents, as well as charges, as
sources are straightforward.

III. THE APPROXIMATE DUAL SUPERCONDUCTOR

The field equations obtained from (2.10) are a compli-
cated set of coupled nonlinear differential equations. For
the source-free case we have studied them earlier in both
cylindrical' and spherical geometries. The basic features
of the solutions can be summarized as follows, as can be
seen from the graphs of the numerical solutions shown in
I. First, far from an excitation a nonperturbative vacuum
obtains, characterized by a minimum of the potential
8'(E,B) at a nonzero value of the magnetic field 8=So
and a zero electric field E. The asymptotic vector poten-
tial C vanishes only slowly, like (distance), while the
scalar potential Co is zero. The vacuum energy density
e„„=W(0, 8o) is negative.

As one approaches the excitation the fields differ from
their asymptotic values, but only by amounts vanishing
exponentially with distance. This exponential damping is
caused by the nonzero value of 8' which effectively
prevents the fields from penetrating the nonperturbative
vacuum. Inside the excitation the magnetic field 8 be-
comes small, vanishing at the center. Therefore 8' van-
ishes too. All fields are continuous, smooth, functions
throughout. The surface of the excitation is a fairly broad
region, of dimension comparable to the size of the excita-
tion itself.

These properties suggest that the exact field equations
can be replaced by an approximation in which the surface
region of the excitation is replaced by a sharp boundary.
Outside of the boundary, the energy density is simply e„„
and the fields have their asymptotic values. Inside, the
exact field equations hold except that the potential W is
set equal to zero. At the surface the independent fields
C&, Co, E„and 8„are to be continuous with their asymp-
totic values, while the normal component of 0 and the
tangential component of H vanish.

How much violence such an approximation does to the
actual solutions remains to be seen. The true surface of
the excitation is, as we have mentioned, not at all sharp.
Nevertheless, it appears that a11 qualitative aspects of the
solutions are reasonably well maintained.

It is useful to keep in mind the differences between this
approximation and the conventional MIT bag model.
The dual superconductor has a region inside of which the
"potential" 8' (analogous to the Higgs potential in the
Abelian Higgs model, or in the Landau-Ginzburg equa-
tions of a relativistic superconductor ) vanishes, and out-
side of which W =e„„is a constant. In the NIT bag, the

(ii) "Ampere's law"

, & &&D+& &&E+&oH+NoB —i, [&E;,E;]f M

+i [&8;,8;]=0. (3.2)

(iii) The constitutive equations of the medium

(&o' —~')
H= 8

M
(3.3)

(3.4)

Sources are introduced through the relations between
0, 8, and the potentials

D= —VXC—i —[C, XC]+D, ,
2

H= —uCo —aoc+H, ,

(3.S)

(3.6)

with the "string fields" chosen to satisfy

& D, =p,
&xH, —M~pD, =j,

for any given color-electric charge and current densities p
and j which we wish to introduce. In all of the above
equations,

&=V+ig[C, ] (3.9)

~o=~o ig[&o ]—. (3.10)

bag is a region where the dielectric constant e= 1, while
outside e =0. Here, in contrast, the dielectric constant (or
rather the permeability p=e ') is everywhere given by
p=M /& +1/f, where &z is the (dual) covariant
derivative &„=8„—ig [C„,]. (In this respect, the present
picture is more like that advocated by Friedberg and Lee,
though that is expressed in terms of the usual vector po-
tential, not the dual one. ) Nevertheless, as we will see,
many of the properties we find here are similar to those of
the MIT bag model.

It is also important to emphasize that the present pic-
ture is simply an approximation to the exact field equa-
tions following from the effective action (2.10), supposed
to describe long-range QCD with sources present. It is
not more ad hoc than (2.10) is; if (2.10) indeed can be
shown to follow from quantum QCD, then the model
described here is a fortiori derivable as a reasonably good
approximation to quantum QCD.

To summarize, our approximate field equations are [as
obtained from (2.10) by varying with respect to the in-

dependent canonical fields C, Co, E, and 8].
(i) "Gauss's law"

1

f M M
& H+& 8 i g—[& E, E]+i [N 8, 8]=0.

(3.1)
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Equations (3.1)—(3.8) hold inside the volume V of per-
turbative vacuum. Outside, the energy density is e„,gO.
Hence the action (relative to the nonperturbative vacuum)
1S

S= d x XTr —D.E— D +—E- E+B.H3 1 g 1

V 2f 2 M

+ zH ——8 28 +e„„V. (311)1 2 1

2f 2 M

At the surface we have (see the next section)

D„=O, 0, =O, E, =0, B„=b,
and the position of the surface is determined by balancing
the interior pressure [inside the brackets in (3.11)] against
the vacuum pressure —6„„&O.

As we mentioned in the Introduction, classical colored
sources really make no sense except at the Abelian level,
due to the fact that they are gauge dependent. For this
reason, as well as for simplicity, we will in what follows
limit ourselves to the Abelian, or small g, limit of Eqs.
(3.1)—(3.4). In this limit, then, and for a static problem,
the action becomes

(3.12)

[in the exact field equations, the forms (a;E) and
—E V E in the energy density are equivalent, since the
electric field vanishes at infinity. In the approximate
e uations, the surface term by which they differ, namely,

E; VE; dS, does not vanish on the surface of the region
of normal vacuum. The form given in Eq. (3.12) is the
correct one for the approximate equations] and the field
equations are

1

2
V H+V 8=0, (3.13)

1

, VXD+VxE=0, (3.14)

(3.15)

5= d xXTr —D E— D ——E — E1 2 1 V
V 2f 2 M

1 V2+BH+ H+ —8 — 8 +g„„V
2f 2 M

IV. THE ABELIAN DUAL SUPERCONDUCTOR
WITHOUT SOURCES

As a test of the approximate dual superconductor field
equations described in Sec. III, we begin with a discussion
of an infinite cylinder with no sources but containing one
unit of color-electric flux. For SU(2) of color the exact
solution to this problem is given by I. The approximate
equations are (3.13}—(3.16). To lowest order in g the elec-
tric and magnetic problems decouple.

The electric equations (using the scaled notation of I)
are

a 1 a

ap p ap

c}Ez =0,
ap

(4.1)

a 1 a a'
pE

ap p ap ' az' ' az
' (4.2a)

1 a a a 1 a

p p p az p p
—

a Pa Ez+, Es= —
a PCy (4.2b)

and hold for 0 &p & a, where a is the radius of the
cylinder. The relevant solutions to these are

PCy=-
27M

(4.3)

2ma2
(4.4a)

[there are additional solutions to Eqs. (4.1) and (4.2), in
which C~,E&-Ii(p) and E„D,-IO(p), where Io and Ii
are Bessel functions. We confine ourselves to Eqs. (4.3)
and (4.4) because they are the large-separation limit of the
solutions with sources given in Sec. V] and

E,= (1—p'/a'),
4m

(4.4b)

D, = —— pC(p) =1

P ~P ma
(4.5b)

it is not continuous at p=a, since the outside value of D
is of course zero.

The action density is (using the field equations)

L = ——D ——D-E+e„l 2 I

2 2 YRC

subject to the boundary conditions that C apd E, are con-
tinuous at p=a with the solutions outside, which are
C = —I /2np and E,=0. The electric displacement is

(4.5a)

together with

D= —Vx C+D, ,

H= —VC0+ H, ,

V D, =p,
V&H, =j.

(3.16)

(3.17)

(3.18)

(3.19}

(3.20)

and the energy density A is minus this. Explicitly, we
find from Eqs. (4.4) and (4.5) that the total energy (per
unit length) in the cylinder is

a 1 1E(a)= 2irpdpA (p)= + —ma e„„;0 2m-a'

minimizing the energy with respect to the cylinder radius
a leads to the boundary condition determining a; namely„

2 4
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This equation is immediately recognizable as

( —,D + —,
' D.E)

~ ~,= —e„„;
thus it describes the balance between the vacuum pressure
outside the cylinder and the electrostatic energy density
inside the cylinder. Evidently this is in general the ap-
propriate boundary condition. The total color-electric
flllx is

(()= f D.dS= f 2npdp =1. (4.7)

The exact, non-Abelian, field equations require the
quantization of color-electric flux in the cylinder; the ap-
proximate Abelian equations of course do not; to lowest
order in g solutions could, in principle, exist for any
amount of flux. However the boundary condition that, at
the surface, C must be continuous with the outside value
of C= —1/2np guarantees that the flux comes out to
have the right value.

This simple example illustrates how the approximate
equations imitate the exact solutions given in I. Compar-
ing the approximate solutions for C&, D„and E, with the
exact solutions displayed in I shows that the approxima-
tion is reasonably good qualitatively, though quantitative-
ly the numerical values can miss by as much as a factor of
2. This gives us a measure of the reliability of the simpli-
fied baglike approximation we are using. The major
discrepancy between the approximate solution and the ex-
act solution of the nonlinear equations, however, lies in
the existence of Ez and in its dependence on z. The ap-
proximate E& vanishes at z =O. In the exact problem, the
region over which Ez vanishes widens, so that in the pres-
ence of sources the exact Ez exists only near the sources
and is zero in much of the region between. The approxi-
mate Ez, in contrast [as we see here and also in Eq.
(5.11)], simply varies linearly between the sources.
Nevertheless, the approximate solution gives a rather good
imitation of the exact energy density, since Ez does not
contribute to it. We also learn that the appropriate boun-
dary conditions are that the components of C and E
tangent to the surface are continuous since E vanishes
outside, we must have E, =O on the surface. We infer
that in general the required boundary conditions at the
surface are D„=O and E, =O, the first following from
Gauss's law V D=O and the second from the continuity
of E.

The magnetic equations inside the cylindrical sourceless
cylinder, to lowest order in g, are

and the approximate Abelian equations. Outside we have,
we recall, Co=0 and B=b (e~Ti+e~T2); these values (to-
gether with C= —(1/2mp)e&T3 and E=O) satisfy the ex-
act non-Abelian field equations [for SU(2) of color]. Thus
inside there is no tangential 8 field, and therefore in par-
ticular it cannot be continuous with the outside tangential
8 across the boundary. The normal component, however,
can be continuous, as can Co, and the appropriate solu-
tions to (4.8) and (4.9) are

Co ——0,
8& pb —/—a,

(4.10)

(4.11a)

8,= 2bz/a—.

Then

(4.11b)

aco „e, =O;
Bz

BCp8=- C—
P

therefore the magnetic energy and action density
—,(B+H) H inside both vanish. As in the electric case,
we infer from this simple example that the boundary con-
ditions H, =0 and 8„=bhold in general at the surface.

V. THE ABELIAN DUAL SUPERCONDUCTOR
WITH SOURCES: LARGE SEPARATION

1

f2
VxD+VxE=O (5.1)

+20= — F.
M

together with (3.17) and (3.19). The action is
T

S= f d xNTr —D.E—

(5.2)

1——8 8 +e„„V.
M

(5.3)

As the charge density let us take

p = [qi 5'(x —xi )+q25'(x —x2)] . (5.4)

Let us next consider purely electric sources, so that
j=O. The magnetic field equations then can be satisfied
by choosing 8=8=CO ——0 and the electric equations are

1 8 8 ~co
p+

~P P ~P ~~ ~P

1 0 a a' ~Co
p + 8,=

p Bp clp Qz Bz

For two quarks in an SU(3)-color-singlet state,
(4.8a)

q &
———qz ——&4/3e, (5.5)

(4.8b)
where e is the usual Yang-Mills electric coupling con-
stant, so that

e =2m. /g . (5.6)

1 3 8 3 1 8 8
p p p Qg p p zp + Cp —— p8p — 8,=0, (4.9)

where we have taken 8=8&e&+B,c„which is the only
form consistent with the assumed azimuthal symmetry

Except in the Abelian limit (g small) we cannot handle
sources with noncommuting color matrices at the classical
level. It is necessary to quantize the dual gluon field to do
this. A discussion of quantization will be deferred to a
later publication, ' here we will limit ourselves to the Abeli-
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V.D, =[qi&'(x —xi)+qz&'(x —xz)] . (5.7)

We choose the quarks to lie-on the z axis at a separation
R.

an version (5.1)—(5.3), so that qi and qz are simply num-
bers. We have

xi ——(O, O, R/2), xz ——(0,0, —R/2) .

In the limit R~ap, the region of normal vacuum be-

comes a long cylinder, and the cylindrical case can be
analyzed analytically. The solution for the electric dis-
placement 0, incorporating the boundary condition that
the radial component of D vanishes on the cylinder's sur-
face at p=a, is

Co Kt(ka)
D= e —— f k dk[qicosk (z —R /2)+qzcosk (z +R /2)] —K, (kp)+I, (kp)P 2 2 0 Ii(ka)

co Ki(ka)
+eg z f k dk[qisink(z —R/2)+qzsink(z+R/2)] Kp(kp)+Ip(kp)

2m. I, ka
(5.8)

where Kp, Ki, Ip, and Ii are Bessel functions. The value of the cylinder radius is determined by the pressure balance
equation. When R is very large (R/a~ao ) (5.8) becomes

D~
z [qie(z R/2) —+q ze( z+R/2)], (S.9)

2&Q

where e(z) =+1 according as z ~+ 0.
The corresponding solution for the electric field E is

pM Ki(ka)E= e, — f dk [q isink(z —R /2)+qzsink (z +R /2)] Ki(kp—)+ I i (kp)
4~2 Ii(ka)

pM Ki(ka)
+ez f dk [q, cosk (z —R/2)+qzcosk (z+R/2)] Kp(kp)+Ip(kp)P 4 p I, ka

For large R
e,M e~z

(I P /a )[qie—(z R/2)+qz—e(z+R/2)] (qi ~—z —R/2
~

+qz (z+R/2
~
);

Sm 4ma
note that E, vanishes at p=a as required by the boundary conditions.

The energy contained in the cylinder is readily calculated. When 8 is large,

(5.10)

(5.11)

V(R)= —, d x D +D E —e„„V~ Rqiqz—1 3 1 2 1 M+fz 2~a f 16m
+ oo(qi+qz)' era Re„„.— (5.12)

The divergent term comes from the contribution of the cylinder s end caps, and exists only provided the two quarks are
not in a color-singlet state. It represents the net flux flowing out to infinity in this case. When in a singlet state, howev-
er, qi+qz ——0, all the flux coming out of one quark is absorbed by the other, and the divergent part vanishes. Only color
singlets have finite energy. (In higher orders in g, overall color-singlet states can be constructed from nonsinglet quark
configurations together with explicit quantum gluons. )

It is also of interest to calculate the dual potential C for this cylindrical case. We find

C=ep
j ce Ki {ka) 1/ka-

2m. f dk[q, sink(z —R/2)+qzsink(z+R/2)] K, (kp)+Ii(k—p) Ii(ka)
(5.13)

Note that at p=a,
1C= [qie(z —R/2)+qze(z+R/2)],

4ma

continuous with the vacuum value outside the cylinder.
0 is calculated from C via 0= —V &( C+0, . The
—V)&C terms contains a string joining the two quarks,
coming from the 1/kp singularity in (S.13), and the
"string field" 0, is

For finite separation of the quark sources, the shape is
of course not a cylinder, but is rather determined dynami-
cally. The shape, and the interaction energy, can be ob-
tained using a numerical variational calculation, much
like what is done in the conventional bag rn.odel. How
this is done is described in Sec. VI.

VI. THE ABELIAN DUAL SUPERCONDUCTOR
WITH SOURCES: ARBITRARY SEPARATION

[q i@(z —R /2)+qze(z +R /2)]e,&(p)

4'
(recall q, +qz ——0 in the color-singlet state).

(5.14) We next want to solve Eqs. {5.1) and (5.2), subject to the
boundary conditions that D„and E, vanish at the surface
of the region of normal vacuum, for arbitrary separation
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between the sources. The surface position is determined
by the pressure balance condition

—,D (D+E)= —e„„. (6.1)

and

x=(q / —2f e„„)' x,
2f2& )1/4y

(6.2}

(6.3)

Apart from the presence of the field E, and of Eq. (5.2)
relating E and 0, this is the same as the usual MIT bag
problem. Several numerical solutions to the MIT bag ex-
ist in the literature ' but, for varying reasons, none of
these is exactly suited to the present problem, so we will
use a technique which we describe below.

It is convenient to introduce two functions 1t1 and g de-
fmed by D=VQ and E=VQ. [This will not yield the
most general solution to Eq. (5.1), but it will give the
physically relevant one. ] In order to minimize the number
of parameters for which the numerical problem has to be
solved, it is also convenient to introduce scaled variables.
We define

late the fields and the surface shape analytically in the vi-
cinity of the cusps. Let the equations of the surface be
p=P(z), where P and z are cylindrical coordinates relative
to the axis through the sources, and let the cusp be located
on the axis at z=zo. Since BPIBn =0 on the surface, we
have

dp(z ) BPIBp
dz BP/Bz

and the boundary condition

(ay/aP)'+(ay/az)'=1

is valid there as well.
Near the cusp, BPIBz =1—a(z —zo). Hence

(a(t /aP)'=(dP/dz)'=2+(z —z, ) .

Finally, if cr(z) is the line charge density along the axis,
which exists for z & zo, flux conservation requires
2irpBp/Bz =o. Putting all this together we see that
a -(z —z11) and p-(z z)'/ —near the cusp. [In two di-
mensions, 0-(z zo)—'/ and p-(z —zo) /. ] The fields
themselves are then calculated from

2
&vac

(6A) 1 o(z ')dz '

zo [(
— —i)2+ —2]1/2

In terms of the scaled distance and fields, the field
equations become

v'y=s'(x —x,),
V V'= —0

(6.5)

(6.6)

BPIBn =/=0,
(VP) +V1)) V/= 1,

on the surface.
The (unscaled) energy is

3/2
V(&)=

2 2 „(—e„„)' [Vi(R)+ Vi(R)]
(2f2)3/4

(6.7)

(6.8)

q
5/2~2

+ 16~(2f')'" [ V2(& )]+V11, (6.9)

where we define

Vi(R)= f d x(VQ) (6.10}

V2(R)=8m f d x Vp Vg, (6.1 1)

Vi(R)= f d x=V,
and V is the scaled volume of the region of normal vacu-
um. Comparing with the analytic solution for large
separation given in Sec. V we see that V~, V2, and V3 all
approach P. as 8~ ao. The undetermined constant Vo
appears in Eq. (6.9) because in calculating Vi a self-
energy appears only the singular part of which can be
uniquely discarded.

These field equations and boundary conditions require
the existence of two cusps in the surface. We can calcu-

(6.12)

where xi ——(0,Q,R /2), X2 ——(0,0, —R /2), and the bound-
ary conditions are

and search numerically on the parameters giving the sur-
face shape to minimize X .

The explicit parameterization we use for 1I} is (in spheri-
cal coordinates}

[X—Xi I

1 +0 cusp
X—X2

+ g A, r ' 'P21 1(cos8),
I=]

(6.13)

(z ' —zo)
cusp zo [(

—i —)2+—2]1/2

—zo (Z '+Z11)
—z [(

—i —)2+—2]1/2
(6.14)

f ~(z )[(z—z )2+p2]'/2dz .

The numerical procedure we shall use now proceeds as
follows. We choose trial fields ({} and P containing the
sources and the cusp potentials and satisfying the field
equations. We also choose a trial surface shape contain-
i the cusps. %e next minimize the integrals

(BPIBn) dS and g P dS with respect to the paraine-
ters in the trial fields. This yields analytic expressions for
parameters in 1)) and 1( in terms of the parameters describ-
ing the trial surface. Finally we calculate

'2

f dS [(VP)2—1]2+
Bn
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The parameters here are the AI, as well as z, and A. ; the
cusp position zo is part of the surface parameterization.
Minimization of f (r)p/Bn) dS with respect to the Ar

gives a set of linear equations for the Ai which are solved
analytically on the computer.

For f we write
0.3—

1
(

I
x —xi I

—
I

x—x21)+~1...,sm

—g Arr '+'P2I I(cos8)/(81+2)
l=l

+ g Bir ' 'Pzi I(cos8),
/=1

ZI (z' —za) [(z' z) +—p ]' dz',
2 ~ zo

Zo

Z +Zo Z —Z +P Z

(6.15)

charge ~acat iah~
I I I I I I I I I 4L I I

0.2 0.4 0.6 Qe 1.0 1.2

FIG. 1. Comparison of two-dimensional surface shapes (of
which only the first quadrant is shown) as calculated by our pro-
gram with the analytically calculated shape from Ref. 11. The
separation is R =2. The curves are indistinguishable, except
near z =0.

(6.16)

Again, minimizing (ti g dS with respect to the Bi deter-
mines these parameters.

Finally, the surface shape is written

M

g C,P2I(cos8)+D(sin8)i~3
1=0

r(8) = (6.17)
(1+Ecos 8)'i

where D and E describe the cusp shape. (See Haxton and
Heller, Ref. 10. This paper actually allows the power of
sin8 to be arbitrary. However, as we have seen, the
correct power to describe the cusp is —, .) The cusp posi-
tion za is given by za —r(8=0).

The asymptotic solution in Sec. V tells us that as
R~ao, A i~i, BI~—,', Ca~I/~m, E~—1, D ~0,
and the remaining AI and BI a11 vanish.

The Anal step of the method now is to use Eqs. (6.13),
(6.15), and (6.17) to calculate I and then to minimize this
numerically with respect to the remaining parameters A, ,
z„CI, D, and E.

The method can be tested by comparing its results, in
two spatial dimensions, with an analytic calculation given
by Giles. " To do this we replace r 'PI by p'cosl8 [where
p=(x z+z 2)I~2], —I/4m [ I—xi

~
by I/2m ln

~
X—Xi ~,

the cusp potential by its two-dimensional form, and of
course we drop g. Figure 1 shows the surface shape ob-
tained by our method and the shape obtained analytically
by Giles, at a source separation 8=2. Our 7 for this
case is-3 & 10 . The agreement is evidently excellent. At
a separation R =0.123, our 7 is 1.6&10 and the two
curves in the corresponding figure are indistinguishable.

In our three-dimensional calculations, we usually use
six Legendre functions in each of P and P. We have tried
up to ten at 8=2. The+ we obtain is in the range of a
few times 10 . The quantities Vi and V3 are quite in-
sensitive to the numbers of parameters; Vz becomes some-
what sensitive for 8 & 2. For this reason we have, in our
actual results, used the asymptotic form of V2 beyond
R =1.

V(R )~vR, (6.18)

while from the small R limits Vz, V3 ~0 and
V, ~—I/2m. R we have, as R ~0

P .20-

I

.05

charge Iacairan
L I

.IO .15

z

.20

FIG. 2. Surface shape for X =0.2. Note the different hor-
izontal and vertical scales.

For the surface shape five Legendre functions suffice;
the shapes are quite insensitive to this number. The five
CI, plus two cusp parameters in the surface shape, plus
the two cusp parameters in P and g are the parameters we
search on. The surface integrals are evaluated at 20
points, distributed so as to keep the same number of
points in the cusp region for each value of R.

Figures 2 and 3 show the computed surface shapes at
R =0.2 and R =2. For small R, the surface is not at all
spherical; it is much more like a bagel. (It is very inaccu-
rate to leave out the cusp terms, unless some sort of sur-
face tension is included. A spherical approximation at
small R does not work for the shape, though it is not too
bad for the energy. See Refs. 4 and 9.)

The final step in calculating the static potential is to
put the physical dimensions back into the problem, via
Eqs. (6.2)—(6.4) and (6.9). From the asymptotic forms
V~, V2, V3~R we see that, as 8~00,
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char qe location~
I L

.8 1.0

FIG. 3. Surface shape for R =2.0.

4 a,
V(R)-+ ——

3 8
where the unscaled separation R is

R =~traR,
the string tension « is

I

1.4

(6.19)

I I I I I I I I I

0 0.5 &.0 &.5 2.0 2.5 M) M 4.0 4.5

R (fermi)

FIG. 4. Comparison of our calculated quark potential versus

quark separation vrith the phenomenological potential of Ref.
12. The two curves are indistinguishable over the entire range.

two curves overlap so closely that they are indistinguish-
able in the figure over the entire range from 0.07 to 4 fm.

VII. CONCLUSION

«= , afM+—
0

the asymptotic bag radius a is

a =( 8a, /—3tre„„)"4,

and the coupling constant o;, is

(6.20)

(6.21)

(6.22)

If we take q =&4/3e, appropriate to two SU(3) quarks in
a color-singlet state, then a, =e'/4mf . Insisting upon
the correct QCD short-range result (an insistence which is
perhaps extreme in view of the fact that our Lagrangian is
only correct at long range} then requires f2=1, as we
mentioned in the Introduction. We may write the static
potential in terms of «, a, Vo, and a, in the form

V(R)= «R —— + Vo+m'~ «a[V2(R) —R)
3 R

+—m' [ Vl(R)+ V3(R) —2V2(R)+1/2mB) .
3 a

(6.23)

This potential can be compared with a phenomenological-
ly determined static potential' to fix numerical values for
«, a, Vo and a, . We find «=0.24 GeV~, a =0.77 fm,
a, =0.27, and Vo ———1.25 GeV. From these values, and
Eqs. (6.20) and (6.21), we can extract some of the input
parameters in our Lagrangian. Specifically, we obtain
Mf=fM=1. 26 GeV and ( —e„„) =178 MeV. If in
addition we choose f= 1 we also have M = 1.26 GeV.

The match between our potential (6.23) and the
phenomenological one is excellent. As shown in Fig. 4 the

We have constructed a method for incorporating
heavy-quark sources into the dual-superconductor picture
of QCD, and applied this (within a simplifying baglike
and Abelian approximation to the actual nonlinear equa-
tions of the theory), to the calculation of the static quark
potential. The potential we obtain is in remarkably good
agreement with phenomenologically determined poten-
tials.

The comparison with phenomenology permits us to ob-
tain the values of some of the constants appearing in the
original dual-superconductor Lagrangian; in particular we
find that the vacuum energy density is e„„=—(178
MeV), and the mass scale Mf defined in I is 1.26 GeV.
If, further, we insist that the dual superconductor La-
grangian interpolates all the way down to very short
ranges (a somewhat dubious assumption) then the parame-
ter f=1 and so the original mass scale M in the QCD
dielectric constant is also 1.26 GeV.

These parameters are of course for SU(3) of color, since
they are determined from experiment. It is therefore not
really possible to compare them with the possible sets of
parameters we have obtained before, in the solutions of
the exact nonlinear equations of the theory, for cylindri-
cal' and spherical vacuum excitations: they were all for
SU(2) of color. In particular, if we used the value of the
string tension found here, namely, 0.24 GeV, and the re-
lation e„„=—0.096«used in Ref. 5, we would get
e„„=—(272 MeV), in contrast with the 178 MeV found
here. Nevertheless, within this kind of accuracy, the rela-
tively large value of Mf we have obtained here suggests,
interpolating from Table I of Ref. 5, a glueball mass in
the neighborhood of 1.5 GeV.

More generally, as the parameters in the effective action
(1.2} become better determined, through calculations such
as the one described in this paper, the predictive power of
the dual-superconductor picture will increase, and we may
hope for a relatively complete picture, even quantitatively,
of long-range QCD.
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