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The dynamical generation of a pole in the self-energy of a Yang-Mills field—an extension of the
Schwinger mechanism —establishes a link between the tendency of the field to form nonperturbative
vacuum condensates and its "noninterpolating" property in the confining phase —the fact that it has
no particles associated with it. The nonvanishing residue of such a pole—a parameter b of dimen-
sion (mass) —on the one hand provides for s nonvamshiug value of (0

~

(B„A„—B„A„)'
~
0), s con-

tribution to the "gluon condensate. " On the other hand, it implies a dominant nonperturbative form
of the propagator that has no particle singularity on the real k2 axis; instead, it describes a quan-
tized field whose elementary excitations are short lived. The dispersion law for these excitations is

given and shows that they grow more particlelike (are asymptotically free) at large momenta, thus

providing a qualitative description of the short-lived excitation at the origin of a gluon jet. At large
k, the nonperturbative propagator reproduces nonperturbative corrections derived from the
operator-product expansion. Moreover, it is a solution to the Euclidean Dyson-Schwinger equation
for the Yang-Mills field in the following sense: there exist nonperturbative three-vector vertices I 3

and auxiliary ghost-ghost-vector vertices 63, satisfying all symmetry and invariance requirements,
and in conjunction with which this propagator solves both the Euclidean Dyson-Schwinger equation
through one-dressed-loop terms and the I 3 Slavnov-Taylor identity up to perturbative corrections of
order g . The consistency conditions for this solution give b =pa~exp[ (4') /11—g ] to this order,
confirming the nonperturbative nature of the residue parameter, and providing a paradigm for the
dynamical determination of condensates.

I. THE EXTENDED SCH%'INGER MECHANISM

The spontaneous generation of mass for a gauge vector
boson, whether by mechanisms visible already at the tree
level or by pure quantum effects, ' can be represented for-
mally as the development of a pole at lightlike four-
momentum in the polarization function —the general
Schwinger mechanism. Schematically,

11' '(k ) =0 11(k')=—,+O(g'),(0) 2 2 m (gpc)

where the polarization function II is defined in the usual
way through the transverse invariant

bative feature of the process indicated in (1.1) is that the
function 1+II(k ), equal to unity in zeroth-order pertur-
bation theory, develops a term with a lower power of the
squared four-momentum, whereas perturbation theory, to
any finite order, can at best produce logarithmic correc-
tions, indicated by 0 (g ) in Eq. (1.1).

The present paper discusses what happens when this
process of spontaneous generation of lower powers of k2

proceeds one step further and leads to the formation of a
second-order pole in II(k ). For the object usually studied
in quantum field theory, the (transverse) proper two-point
vertex or inverse propagator 1 i T ——I /Dz, this implies the
structure

D&(k') = t
—k'[1+ II(k')] I

in the tensor decomposition

(1.2) I i T(k )=—k +2a (g,pc) — +O(g ), (1.6)

Dt'"(k) = t t'"(k)DT(k')+ lt'"(k)Dt (k'),
kl'kt""(k)=g"" =g"' 14—"(k)—

k

(1.3)

of the momentum-space gauge-field propagator

5~D""(k)= i I d x (—0
~
T[A,"(x)Ab(0)]

~

0)e'" " . (l.5)

In general, the residue m, representing the squared mass
of the gauge boson grown massive, will depend on the re-
normalized gauge coupling g and the associated
renorrnalization-mass scale po. The essential, nonpertur-

with a first-order pole at k =0, where the masses a (g,pc)
and b(g, p )[owe write 2a instead of the rn of Eq. (1.1)]
may depend nonanalytically on g, while O(g ) summarily
denotes perturbative corrections. The term "perturba-
tive, " for the purposes of this paper, will denote contribu-
tions that can be represented as power series in g and
behave logarithrnically for large k . We wi11 refer to a
dynamical effect leading to Eq. (1.6) as an extended
Schminger mechanism.

In what follows, arguments will be presented to indicate
that a quantized Yang-Mills field with a proper two-point
vertex as in Eq. (1.6), in a regime of parameters where

a'(g, p,.) & b'(g, i .),
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is well suited in several ways for describing the physics of
the chromodynamic gluon field. Before examining these
arguments, however, one should reflect on a prejudice en-

countered frequently in the study of gauge-field propaga-
tors. It is often stated summarily that the propagator and
other Green's functions for a Yang-Mills field (i) are
gauge-noninvariant quantities and (ii) therefore have no
physical meaning. This dogma is such an oversimplifica-
tion as to be counterproductive. Even the first part of its
statement is merely a half-truth —in the covariantly quan-
tized theory with a standard gauge-fixing term
—[B&A"(x)] /2(0 and corresponding ghost coupling, on
which the discussion in this paper will be based, the prop-
agator, and in fact all Green's functions, enjoy the well-
known Becchi-Rouet-Stora (BRS) invariance, a genuine
nonclassical gauge invariance comprehensive enough to
ensure (among other things) all those consequences of
gauge invariance essential to the renormalization pro-
gram. More significantly, while the radiative corrections
generally do make a non-Abelian Dr(k ) dependent on
the gauge-fixing parameters such as go, this dependence
may well be absent for certain dominant nonperturbative
parts of the transverse vector propagator, which may then
have an eminently physical meaning. The prime exam-
ples, in theories such as the standard electroweak model,
are the particle singularities: the facts that the W and Z
propagators (i) possess a pole on the positive real k axis
and that (ii) this pole is at the physical mii or mz, are
independent of gauge fixing, and indeed form the concep-
tual basis for all calculations of those masses. It is from
these gauge-fixing-independent particle poles that we
infer —by reversing the chain of arguments used in estab-
lishing a I.ehmann-Kallen representation —that the corre-
sponding gauge fields are interpolating fields for certain
asymptotically detectable particles. Utterly familiar as
these truths are, it is clarifying to realize that an issue as
"physical" as the particle interpretation of the electroweak
theory rests on the theoretical side, not on the much-
touted gauge-invariant Green's functions, but on gauge-
fixing-independent features of an otherwise gauge-flxing-
dependent function. Below we shall present arguments
for, and indeed prove to a certain order, the conjecture
that the nonperturbative terms in Eq. (1.6) may enjoy a
similar independence of gauge fixing, and a similar status
in determining the particle interpretation, for a Yang-
Mills field whose conspicuous empirical feature is that it
just has no asymptotically detectable particles associated
with it.

In Sec. II we start our study of expression (1.6)—while
deferring temporarily the question of how it may emerge
dynamically —by recording those of its properties that
make it peculiarly suitable for a description of confined-
gluon propagation. These include, first, the fact that it
implies the nonvanishing of certain nonperturbative vacu-
um expectation values, and second, that it leads, in the re-
gime (1.7), to a form of the gluon propagation function
that has no particle singularity on the real k axis, and
thus predicts the nonexistence of an asymptotically detect-
able gluon particle. Instead, its space-time structure de-
scribes a field whose elementary excitations are intrinsi-
cally of finite lifetime, a lifetime growing however with

~

k
~

so as to make these excitations look increasingly par-
ticlelike at large momenta. These propagation properties
fit remarkably well the observed characteristics of the
short-lived gluonic excitation at the origin of a gluon jet.
The logical connection established by expression (1.6) be-
tween those two effects makes it possible, perhaps for the
first time, to think in mathematical terms of the gluon
vacuum condensate as a confining agent, and may influ-
ence our notion of gluon confinement.

The more intricate question of whether Eq. (1.6) fits
into the specific dynainical framework of quantum chro-
modynamics is addressed in Sec. III—V. As a prelude, we
may ask (Sec. III) whether the nonperturbative part of
(1.6) is consistent with asymptotic, large-k2, nonperturba-
tive corrections to the free gluon propagator as derived
previously from the operator-product expansion (OPE).
This indeed turns out to be the case, and the comparison
not only identifies the dimension-four condensate appear-
ing in the OPE in terms of the residue parameter b up to
O(g ), but may also shed some light on the peculiar
workings of the operator-product expansion in this sector.
We then turn to the central question (Sec. IV) of whether
the vertex (1.6) can be a solution to the dynamical equa-
tion determining the propagator, the Dyson-Schwinger
equation, which for technical simplification we consider
here up to its one-loop terms and for a pure gluon theory.
Here we must first ask whether nonperturbative parts of
the three-point vertices involved can be constructed
which, together with (1.6), satisfy the relevant Slavnov-
Taylor identities. Such a construction is possible, and not
only fixes the nonperturbative parts of most of the invari-
ant functions in these vertices, but also suggests a very
specific dressing pattern which, as a heuristic principle,
we may require to persist in the transverse vertex part not
fully determined by the Slavnov-Taylor identities. In this
way we are led to a linearly parametrized family of three-
point vertices "compatible" with Eq. (1.6). Section IV
then demonstrates that the Dyson-Schwinger equation in
the Euclidean domain, when set up with these compatible
vertices, indeed reproduces expression (1.6) up to "pertur-
bative" corrections O(g ) when its inverse, DT, is used in
the (nonlinear) right-hand side, provided two consistency
conditions are met which determine, to this order, the
"condensate" parameters a and b . These conditions
give a =0 and the important relation (4.16), which agrees
with renormalization-group requirements, and confirms
the conjectured, nonanalytic g dependence. An essential
point about this solution is that the perturbatiUe renormal-
ization constants remain applI'. cable, as is expected for an
asymptotically free theory.

While the general lines of an inclusion of the two-loop
Dyson-Schwinger term will become quite clear from Sec.
IV by way of analogy, the fact that the "compatible"
three-point vertices get restricted but not yet fully deter-
mined in the process of this solution requires further con-
sideration. We close in Sec. V with the conjecture that the
solution may be regarded as the first stage of a scheme for
determining nonperturbative parts of primitively diver-
gent vertices —a scheme which, in spite of the infinite na-
ture of the Green's-function hierarchy, may be a closed
problem.
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Nonperturbative solutions to the Dyson-Schwinger
equation for the Yang-Mills field have been sought previ-

ously in what may be called the extreme opposite direc-
tion, where a second-order pole develops not in the polari-
zation function II(k ), but in the propagator D""(k) it-
self. Since the Dyson-Schwinger equation is strongly
nonlinear, and its solution probably not unique, it is quite
possible that both types of solutions exist. Here we only
wish to state that the physical and mathematical proper-
ties of expression (1.6) discussed below would seem to
make it at least a serious contender for the "physical"
solution. %e remark, however, that a strongly singular
behavior of the one-gluon-exchange diagram in momen-
tum transfer —the heuristic guideline for the search of
Ref. 3—would emerge also in the present approach, but
from the singular character of the vertices (Sec. IV) rather
than from the gluon propagator, as suggested some time
ago by Alabiso and Schierholz.

Some hmitations of the present paper should be em-
phasized from the outset. On the technical side, covariant
gauge fixing and the MS renormalization scheme (where
MS denotes the modified minimal subtraction scheme) are
employed exclusively. On the physical side, nothing yet is
said about the inclusion of fermions, nor about the
behavior of the theory at nonzero temperature.

II. CONDENSATE FORMATION
AND NONINTERPOLATING GLUON FIELD

Consider the partially renormalized vacuum expecta-
tion value

gP& 0 (2.1)

in D=4—e Euclidean dimensions, where

(2.2)

is the appropriate dimensionless coupling constant, and
where the overbars denote the renormalized gauge field.
This represents a contribution (not classically gauge in-
variant but BRS invariant) to the "gluon vacuum conden-
sate" of Shifman, Vainshtein, and Zakharov, whose par-
tially renormalized version reads

COG
——0 6", x Gp„gx 0 (2.3)

in terms of the field-strength tensor

G~"(x)=a~A:(x)—a A ~(x)

Z]+ gfgb, A ~b(x)A,"(x) . (2.&)

This condensate, we recall, characterizes the leading non-
perturbative vacuum properties in the context of
operator-product expansions for current-correlation func-
tions. ' While (2.1) is just the simplest contribution to
(2.3), with no direct physical significance by itself, it will
be of interest here because it can be related directly to the
nonperturbative part of the Euclidean gluon propagator.
Taking the T product in (1.5) to be the naive one, the re-
lation

—,
' TI[a„A„.(x)—a~„.(x))[a~A."(y)—a"A ~(y)]I

a a
ax& ay~

T[A ",(x)A,"(y)]+iZ& '(N 1)(D —1)—5 (x —y) I (2.5)
ax" ay"

is straightforward to establish, for an SU(N)-color group, by use of the canonical equal-time commutation relations.
Here, as in (2.4), Z3 denotes the gauge-field renormalization constant. Upon taking expectation values of both sides in
the physical vacuum state, and using the inverse of (1.5) in D Euclidean dimensions, one finds

D

(0~ T[[a„A„,(x)—aQ„,(x)j[a"A,"(y)—a"A",(y)]I ~0) =2(N' —l)(D —1) I D[kb Dr( —kE ) —Zp ']e
(2.6)

which involves the renormalized version Dz ——Z3 'Dq of
the transverse gluon propagation function (1.2). Here kF
is the positive-definite, squared Euclidean four-
momentum. By putting y =x one obtains for the conden-
sate (2.1)

l

normal operator ordering with free fields. Indeed for the
free field, kE Dz. ( —kb )~1 and Z3~1, and the conden-
sate vanishes.

%e may now insert the particular transverse propagator
corresponding to (1.6) and (1.7),

Ci —— (N 1)(D —1 )po—
2~2

x kE Dp —kg —Z3
dDkE

2 —I

(2m )
(2.7)

k
D, ( k,')=. . —. „+&(g'), a'&b',

kF +2a kE +b"
(2.8)

The subtraction of Z3 in the integrand performs, for
this particular matrix element„a function analogous to

and moreover stipulate that in conjunction with (1.6) or
(2.6), the perturbatiue renormalization constants remain
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valid, that is in particular, Zi ——1+O(g ). This impor-
tant point, to be verified in Sec. IV, is intuitively obvious:
the large-k behavior of (1.6) or (2.8) is still the free one,
and so will be the large-inomentum behavior of the higher
vertices compatible with (1.6). So the divergent parts of

loop diagrams, and thereby the renormalization constants,
will be those of perturbation theory. (Put differently, the
nonperturbative propagator modification, because it only
affects the small-k behavior, is compatible with asymp-
totic freedom. ) The result then is, for X =3,

C =-" g
4m

b2
(b —4a ) l—n +N, + —,

'

go

+a 4 —3b
b2

'4' —1/2
Q a

arccos
b

'2"

+O(g ) (2.9)

up to terms of order @=4 D, w—here an abbreviation
convenient for working in the MS scheme,

2
N, =——yE+ ln4m,

E
(2.10)

has been used for the divergent term. It is clear that (2.1),
as a matrix element of a local composite operator, will ex-
hibit a divergence not taken care of by field renormaliza-
tion, and also that the extra renormalization required for
{2.1) as a contribution to (2.3) cannot be discussed in the
context of (2.9) alone, not only because (2.3) has non-
Abelian terms involving the higher n-point functions of
A(x) up to n =4, but also because the operator of (2.3), at
least in the gauge-fixing scheme used herew, ill mix upon
renormalization with classically gauge-nonin variant
I.orentz scalars of dimensions four. Since this mixing
problem is reasonably well studied, it will not be of in-
terest to us here. The essential point about (2.9) emerges
when we anticipate from Sec. IV that the case of physical
interest for the gluon field is a =0, and that the dynami-
cal determination of b implies (g /4n ) ln—(b /go )
= —,', + O (g ). We then conclude that

Thus as a contribution to (2.3), (2.11) is overcompensated
in nature by the non-Abelian and operator-mixing terms.

Next we may cast a glance at the simpler and more
familiar condensate

Cm= 0 — A", xA~, x 0 (2.12)

which of course is essentially the trace of the tadpole term
in Fig. 2 below and will therefore be termed the mass-type
condensate. Its evaluation analogous to (2.7) gives

2

C = —g (X'—1)p,,'-'
4m

X J D[(D —1)Dr( kF )+Dl (—kE )] . —
(2m. )

(2.13)

It is elementary that the longitudinal contribution actually
disappears due to BRS invariance —the simplest Slavnov-

Taylor identity ensures that, to all orders,

C2(a =0)=b — +O(g ), %=3,
11

(2.11) Di«')=, . (=zi 'ko
k +i0

(2.14)

where divergence and operator-mixing problems appear
oilly iii tile terms O(g ). This I'eslllt says tliat tile 1'esldlle

parameter b which controls the extended Schwinger
mechanism induce= —or, depending on taste, may be re-
garded as the effect of—a nonvanishing "condensate"
(2.1). The leading-order coefficient connecting the two is,
as a result of the nonperturbative g dependence of b, of
order g in spite of the explicit g factor in the definition
(2.1); it is also independent of either the gauge-fixing pa-
rameter g or the renormalization-mass scale po. [In
higher orders, the latter properties are not expected to per-
sist for (2.1) alone, but only for the renormalized version
of (2.3), which should be gauge-fixing independent and
renormalization-group invariant. ) It hardly needs em-
phasis that {2.11) is not an "approximation" to (2.3) in
any quantitative sense; indeed to the leading order exhibit-
ed, it even has the wrong sign, since the "empirical" gluon
condensate as extracted from QCD sum rules is positive.

so the longitudinal contribution to (2.13) vanishes by vir-
tue of the well-known symmetric-integration theorem

yd
k""'"=g""Jd.k

' =0.
(I 2)2 D k

(2.15)

It is intuitively necessary that only transverse gluons con-
tribute to the generation of quantities such as (2.6) and
(2.13). Since vacuum condensates are physical quantities
leading to observable effects, one expects unphysical de-
grees of freedom, such as the longitudinal gluon fields or
Faddeev-Popov ghosts, not to participate in their forma-
tion, except indirectly through higher perturbative correc-
tions in DT.

On using again the propagator (2.8), the condensate
(2.13) becomes
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6 g
m 2a —ln +X,+ —,

po

Q
2

+ iI 2f
b2

(2.16a)

I
I

I

I

I
I
l
I
I

I
I
I
I

I
/

I
I

/rr

ll b'. D, fg')

=a2 +O(g')
11m

(2.16b)

where a divergence, and thus renormslization and
operator-mixing problems, ' appear only in O(g2). Here

f (p) is an elementary function vanishing at p=0. Once
more, the parameters a, b characterizing the extended
Schwinger mechanism are seen to be connected to a con-
densate. This one is less important, since the most plausi-
ble solution for a will turn out below to be a =0, in
which case (2.16) shows that C vanishes.

In obtaining results such as (2.11) and (2.16), it is cru-
cial that all Green's functions involved, and the equations
relating them to condensates, be considered in the Et/-
clidean domain. Had we started from the corresponding
Minkowski-space relations and divided the integrations
into an integral along a real kp axis alid a (D —1)-
dimensional Euclidean one, then a Wick rotation of the
kp contour would have produced, in addition to the above
real answers, complex contributions from integrand poles
in the first and third quadrants of the kp plane [arising
from those of Eq. (2.20) below] which would not make
physical sense. To a much higher degree than in the per-
turbative theory —where switching back and forth be-
tween the two regimes by means of Wick rotations is an
essentially trivial act—the prescription of Euclidean field
theory must be taken seriously here: calculate all Green's
functions and related quantities in the Euclidean domain,
and only in the end continue to Minkowski space. This
will become important again when we study the Dyson-
Schwinger equation for I 2 r.

What are the propagation characteristics of the obvi-
ously condensation-prone field described by (1.6)? We
have already written the Euclidean transverse propagator
in (2.8); as continued to Minkowski space, it reads

Dr(k )= —+O(g ), a ~b
(k )2—2a2k +b

(2.17)

DT(k2)=
2

' + 2
+O(g2)

k —s+ k —s

with residues and pole positions

(2.18)

Here we discuss the nonperturbative part alone; it will be-
come clear in Sec. IV that the "perturbative" terms denot-
ed again by 0 (g ) will not alter the picture qualitatively.

The function in (2.17), which Fig. 1 displays for a =0,
has no pole on the real k axis. Thus the field it describes
is not an interpolating field for any asymptotically detect-
able "gluon particle" of whatever mass. Instead one ob-
serves, by decomposing expression (2.17) as

rrr
/

I
/

I
I

I
I

I
I
I
I

I
I

I
l
I
I
I

I I

FIG. 1. Nonperturbative, transverse propagator function
DT"'(k ) corresponding to the extended Schwinger mechanism
with a '=0 (solid line) and bare transverse propagator
DT'(k2) = —1/k {dashed line) in units of 1/b as functions of
k /b2.

1 .a
r+ ———1+i

$2

s+ ——a +ib

4 —1I/'2

a
b

' 4 1//'2

(2.19)

(2.20)

that the propagator exhibits two conjugate poles in the
complex k plane. Both features fit in remarkably well
with what we know about physical gluons. Not only is
there, on the theoretical side, no principle forbidding com-
plex propagator poles in a non-Abelian, confining gauge
theory, more importantly, the empirical case for them is
fairly compelling. A photon can get converted into e+e
pairs, or more complicated channels, only when interact-
ing with matter, when radiated into a perfect vacuum, it
will travel on indefinitely as a stable particle. Field theory
describes this by the gauge-independent pole at k =0 in
the transverse photon propagator, which fixes the photon
dispersion law as k =0. By contrast, what we call the
gluon —the extremely short-lived excitation at the origin
of a gluon jet—will rapidly convert itself into hadroniza-
tion channels even when released into an absolute vacuum;
it has an intrinsically finite lifetime. Regardless of how
we describe the later stages of the hadronization process,
the gluon's dispersion law itself must therefore contain a
finite lifetime: that is, there must be a gauge-independent
complex zero in the inverse gluon propagator. (This, of
course, is true already for the effective propagators of
fast-decaying hadronic resonances, but these are compos-
ites, while the gluon is an excitation of one of the elemen-
tary, fundamental fields. ) The conjugate 'zero then follows
from the nature of the propagator, which simultaneously
describes (anti)gluon propagation backward in time.
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To elaborate on these remarks, consider the coordinate-
space expl esslon

&+ = 2, S+ ——+l& (2.22)

d k —g&"k +k"k
DP(x —y) =

(2m ) (k —s+ )(k —s )

—Ik-(,X —y)Xe
Again we restrict ourselves to the case a =0, where

(2.21)

the case anticipated to be the physically relevant one.
This case is also distinguished as the only one where the
residues in (2.18) are real and positive (thus the complex
poles are not "ghost poles" in the old sense") whereas the
pole positions are purely imaginary. Then doing the ko
integration by residues we have

3
Dyv~ )

1
( ~~ ~~„) d k;g.~~ &~

1 ta&(—Ill ) ~xo yo ~

2~3' ~(lkl)' (2.23)

that is, the elementary excitations of the field propagate as
decaying plane waves, with a complex disper»on law
given by

ro(lkl)=(ikl —ib ) =«Ikl) — (224)
2 Alki) '

which consists of an energy-momentum relation

« Ik I
) =I ~ I( lk I'+b')'"+ Ik I'&I'"

I

to the present discussion, it might be mentioned that the
space-time propagation function decays exponentially at
large spacelike separations in roughly the same way as a
scalar, massive, free propagator with mass b/V 2, except
that the decay is a damped oscillation, rather than mono-
tonous. The essential difference from a particle propaga-
tor emerges at large timelike arguments, where a particle
propagator is radiative, whereas (2.23) again decays ex-
ponentially according to

and a momentum-dependent lifetime

(
I
)

I
) I 2[(

I
k

I

4+b4)1/2
I
k

I
2) I

—I/2

(2.26)

p v

„2b(2n) / x

«Ikl)= lkl 1+—1 b
8 Ikl

+ ~ ~ ~

4

(2.27a)

For momenta large compared to the "condensate mass" b,
Xe-'i'i/ 'cos

vZ 8
(2.29)

r( Ikl )= 1+— + ~ 0 ~ (2.27b)

so the lifetime grows linearly with momentum, while the
energy-momentum relation rapidly approaches that of a
free massless particle. These relations, which reflect
"naive" asymptotic freedom, are in qualitative agreement
with observation: when endowed with larger momenta,
the gluonic excitations grow increasingly particlelike, and
"jets get jettier. " On the other hand, for momenta

I
k

I «b, both e and ~ approach finite lower limits,

« Ikl )= 1+—b 1 lkl
2

+ 4 ~ ~

~(lkl)= 1+—1 1 lkl
b 2

2

+ 4 ~ 0 (2.28b)

so that, in particular, ex~ —,'. Thus even at zero three-
momentum there are short-hved dementary excitations of
the field which follow a time-energy uncertainty relation.
%Rule further evaluation of (2.23) proceeds along standard
lines hmhng to Bessel-function expressions not important

with t
I
=(x )'/, which once more exhibits the lifetime

1/'b 2 of (2.28b).
The difference between (2.17) on one side, and the exact

statement (2.14) about DL (k ) on the other, is noteworthy.
The longitudinal gluon, exactly like the longitudinal pho-
ton in QED, retains its zeroth-order propagator, and thus
its particle pole, to all orders. Both can afford to do so
precisely because they are unphysical degrees of freedom:
since physical initial or final states containing them do
not exist, they appear only in intermediate states, where
the theory may with impunity propagate them in a for-
mally particlehke manner. Field theory accounts for this
by defining the S matrix as including projectors onto a
"physical subspace" free of longitudinal gluons. This de-
vice cannot be applied to transverse gluons, which despite
their color-nonsinglet nature must not be dismissed sum-
marily as unphysical in the above, rigid sense. The reason
is that we do see transverse-gluon jets, whereas
longitudinal-gluon or Faddeev-Popov-ghost jets do not ex-
ist. If we make the plausible assumption that the already
well-established tendency of jet gluons to become more
particlelike at higher mornenta may be extrapolated, and
if relations such as (2.27) plus (3.8) may be used as guides
for such an extrapolation in even the crudest qualitative
sense, then eventually (though at gluon energies admitted-
ly exorbitant, @=10' CieV) these excitations would travel
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over distances of millimeters during their intrinsic life-
time, and could in principle be intercepted by macroscopic
detectors before hadronization. A theory that would sim-

ply seek to banish them to an unphysical subspsce would
then be manifestly insufficient.

By viewing together Eqs. (2.11) and (2.16) on the one
hand, and Eqs. (2.18) and (2.24) on the other, the extended
Schwinger mechanism may be seen to establish the fol-
lowing physical picture. Existence of a certain vacuum
condensate ~ b modifies the gluon self-energy nonpertur-
batively through a pole term with residue b . This term,
in turn, pushes the particle pole of the free gluon propaga-
tor into the complex plane, to k =+ib, thereby provid-
ing an imaginary part to the dispersion law, or a finite
lifetime ~ I /b for the elementary excitations of the field.
By having to plow their way through a "vacuum" filled
with condensates, the excitations get damped out in a way
reminiscent of disturbances in a viscous medium. At
momenta~~b, particlelike behavior of the elementary ex-
citations is recovered asymptotically, though never exact-
ly.

By giving the connection between these effects a specif-
ic mathematical form, the extended Schwinger mecha-
nism opens the possibihty —perhaps for the first time —of
thinking in quantitative terms about the gluon uacuum
condensate as a confining agent, where confinement of
gluons is understood here in the strict empirical sense that
free gluons are not seen but short-lived gluonic excitations
are. Of course, this possibility is contingent upon a
demonstration that an extended Schwinger mechanism is
not outside the specific dynamical scheme of quantum
chromodynamics, and the next sections address them-
selves to this question.

III. CONDITIONS FROM
THE OPERATOR-PRODUCT EXPANSION
AND THE RENORMAI. IZATION GROUP

The first nontrivial test which expression (1.6}or (2.17)
has to pass in quantum chrornodynamics is that it must
reproduce the asymptotic, large- k, "nonperturbative
corrections" to the free gluon propagator that can be de-
rived from the Wilson operator-product expansion
(OPE). Such corrections are obtained in the usual fashion
by writing a Wilson expansion for the time-ordered field
product in (1.5), taking vacuum expectation values, and
treating the Wilson-coefficient functions in the small-x or
large- k regime by perturbation theory. The result takes
the form D =D~+D, where the "perturbative" portion,

Dq„(k)=t~„(k) — +0(g )
k +i0

+ l„„(k)
k +io

(3.1)

arises from the terms associated with the identity operator
in the %ilson expansion. The leading contribution at
large k to the "nonperturbative correction" D, in the
pure gluon theory considered here, comes from terms as-
sociated with an operator of mass dimension four —it is
generally assumed that the dimension-two operators such
as A&A„, while present in the general OPE (Ref. 10), do
not contribute to the vacuum expectation value, i.e., that a
condensate of type (2.12) is absent. For color-SU(N) and
D =4—e Minkowskian dimensions, this leading contribu-
tion is given by

D ' "(k)= i — (D + 1)g„,
8

4(N —1)(D —1) D(D+2) " Bk~ Bki
—2

8 a (2n)D5o(k) +0(g'),
ak~ ak" (3.2)

where C' denotes the nonperturbative vacuum expectation
value of the dimension-four operator. As indicated, this
has its own perturbative corrections 0(g }, which we do
not consider here. The dimension-four operator is oc-
casionally written 6""6„,so that C' becomes propor-
tional to the full gluon condensate Coo of Eq. (2.3), and
this indeed would be the only choice if one were expand-
ing a gauge-invariant operator product, as in the standard
applications of the OPE to products of gauge-invariant
fermion currents. In the present case, where one is ex-
panding the gauge noninuariant T(-A&A„), this choice
however is not necessary and in fact implausible, and we
shall see presently how to identify the C' in (3.2).

At first sight, (3.2) looks quite different from anything

that might emerge from (2.17), and it is therefore interest-
ing that the two in fact agree. Since (3.2) is distribution
valued, we must consider its k-space integral with a test
function f(k) regular near k =0 and possessing thus a
Taylor expansion

f(k)=f(0)+f,'(0)k'+ —,f„"„(0)k"k'+ . .

(3.3)

%hen translating these expressions to Euclidean space and
evaluating the integral by partial integrations, (3.2) simply
picks out the second-order coefficients, snd we obtain

dDk D r

po f DD„„(kE)f(kg)=—
2 [(D+1)5„„trf"(0)—2f„"„(0)]+0(g) .

(2n ) 4(N 1)(D —1) D(D+2)— (3.4)
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We wmt to compme tl s with the nonp ~urbative pa~ of
(1.3) with (2.17), which is of the purely transverse form

be avoided only by choosing a =0; the term then be-
comes proportional to a Feynman-parameter integral van-
ishing by symmetry:

D„„(k)=&„„(k)DT(k ) —— +O(g2)
k +i0

(3.5a)

For the special case of the nonperturbative propagator
(2.17) considered here, we have

ii

DT(k2) — —
2 +O(g )

k +i0
i

b' —2a'k'
+O(g') . (3.51)

k2[(k2)2 —2a2k +b ]
When this is again translated to Euclidean space and sub-
jected to symmetric D-dimensional integration with the
test function (3.3), a contribution proportional to f(0) can

dp
o 2y —1

Thus if the absence of a C -type condensate usually as-
sumed in the OPE is correct, then as in (2.16) we are led
to a =0 as the physically preferred value of the spontane-
ous mass parameter in (1.6). We continue, of course, to
pick up contributions from the higher, even-order terms
in the Taylor series (3.3), which in D =4 will be increas-
ingly divergent, but these turn out to have mass factors of
dimensions 6,8,10, . . . , and therefore must be compared
with OPE terms of higher condensate dimension, which
vanish more rapidly as k~~oo. For the second-order
term, we get the (EucHdean) result to be compared to
(3.4):

f D"'(kE)[ if"i.(0)kE,kz, i]=—, [(D+1)&„«f"(0)—2f„".(0)](2ir) ' ' 4(N —1)(D —1) D(D+2)
de

X 2(N —1)(D —1}po I ~ Ikx DT( —ks ) —[1+O(g2)]j(2'�)
(3.6)

This result, making use only of (3.5a) and not yet of the
special form (3.51), is quite general. The identical forms
of the tensor structures on the right-hang sides of (3.4}
and (3.6) confirm that (3.2) is indeed transverse. ' Com-
parison of the other factors and a glance at (2.7) then
shows that, generally,

g2p 4—D

C'=C2+O(g') . (3.7)4n'

The dimension-four condensate in the OPE expression
(3.2) thus is essentially the C2 of Eq. (2.1), up to "pertur-
bative" corrections. Although, as we have mentioned,
CGo is occasionally written in place of the left-hand side
(I.HS) of (3.7), the simple and general relation (3.6) shows
clearly that no conclusion stronger than (3.7) is justified at
this level of the OPE. On using in (3.6) the special form
(3.51), with a =0, we are led back to (2.11).

%e may thus state that the extended Schvringer mecha-
nism is compatible with asymptotic predictions from the
OPE in a distribution sense. As an aside, the comparison
hints at the possibihty that the workings of the operator-
product expansion in the one-gluon channel considered
here may be rather unusual from a physical point of view.
By pulling apart the full nonperturbative propagator into
a rturbative part (3.1) and a term such as (3.5), whose
k dependence is treated by asymptotic expansion, the
OPE never quite gets rid of the "wrong*' particle pole at
k =0 in the perturbative propagator. Moreover, an in-
tegral such as J d kD P(k)f(k), which for sufficiently
well-behaved test functions f(k) may even be convergent,
gets decomposed rather artificially into a series of increas-
ingly divergent terms. In contrast with the beautiful ap-

[

plications of the OPE to current correlations in color-
singlet channels, we may therefore expect it to be less
useful in learning about the gluon itself.

Concerning the (g,po) dependence of b, we recall
long-known restrictions from renormalization-group argu-
ments. '~ If b is to be a measurable physical quantity, it
should be of the gauge-fixing-independent and
renormalization-group-invariant form:

b'=i 0'exp —2 J [P(g')] 'dg' (3.8a)

1 102 g=go exp '— 1n 11
11(g/4n )2 121 4n

'2

+2k,b+O(g ) (3.81)

(A(2) )Ze2i.b[1+O (g2) ] (3.8c)

for a pure gluon theory with N =3. The two g -singular
terms in the exponent of (3.81) have been written so as to
give the standard two-loop definition, (Ag~}, of the QCD
A parameter in the MS scheme; the dimensionless integra-
tion constant 2A, b fixes b in terms of A . The nonanalyt-
ic and renormalization-group-invariant dependence (3.81)
is a highly nontrivial requirement for the extended
Schwinger mechanism to fit into the QCD framework. If
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the ansatz (1.6) would run counter to some principle of
@CD dynamics, that dynamics presumably would react to
(1.6) by forcing the b parameter to have a noninvariant

po dependence, and it will be interesting to see that this
d~ not happen.

In this context, it should be pointed out that the extend-
ed Schwinger mechanism, if its crucial b parameter
would indeed show a nonperturbative coupling depen-
dence such as (3.8b}, could equivalently be regarded as a
special realization of the mechanism of infrared-
singularity generation discussed by West. ' West's work
demonstrates, on the basis of a general solution to the
renormalization-group equation for a single-variable
Green's function, that this type of nonperturbative cou-
pling dependence can be associated with infrared-singular
pole behavior in k . While his discussion has in mind the
function kDz—(k ), our Eq. (1.6) would correspond to
the mechanism occurring in the function I i r(k ), which
is equally possible.

IV. SOLUTION OF THE DYSON-SCH%'INGER
EQUATION

The Dyson-Schwinger (DS) equation for the gluon
propagator in covariant gauges, displayed in Fig. 2, is not
a closed equation for I"2 but in addition involves the prop-
er three-point vertices I s (gluon-gluon-gluon) and I s
(ghost-ghost-gluon), as well as the four-point gluon ampli-
tude T&. (Since we are considering a pure gluon theory,
there is no fermion vertex. ) Dynamical formation of non-
perturbative parts, if any, in these higher vertices is not
independent of the one postulated for I 2 in Eq. (1.6), since
all vertices are related to each other via the Slavnov-
Taylor (ST}identities' ' embodying BRS invariance.

While the coupled nature of the Green's-function
hierarchy would seem to lead to a consideration of the
equations for all these higher vertices, the question of
whether the extended Schwinger mechanism (1.6) can live
in the specific dynamical environment of a gauge theory
will be studied here only in a weaker and more restricted,
but still nontrivial version. We shall inquire whether
there exists a class of "acceptable" nonperturbative ver-

tices I &
and I 3 which satisfy all Lorentz-invariance and

Bose-symmetry constraints, and which together with (1.6}
solve the relevant ST identities up to perturbative correc-
tions 0(g }, such that the extended Schwinger mecha-
nism can become self-consistent in the gluonic DS equa-
tion. The question of how vertices of this class can in
turn be made self-consistent in the next-level equations
must be deferred to a separate study, but it is remarkable
that the detailed (and intricate) way in which (1.6)
"solves" the DS equation will nevertheless lead (i) to a
very definite conclusion about the coupling dependence of
the nonperturbative mass parameter b and (ii) to interest-
ing indications that the problem of nonperturbative parts
on the higher levels of the Green's-function hierarchy
may in fact be a closed problem. We have not mentioned
the four-gluon amplitude T4 because, in what follows, the
above question will only be studied in the context of a
"truncated" DS equation omitting the T4 term. The
reason is not that this term is unimportant, but that the
kinematical complications presented by the three-point
vertex (one-loop) terms are already substantial enough to
render it imperative to try simpler things first. However,
the strategy applied to these terms will be quite obviously
extendable to the T4 contribution.

In this "truncated" problem, only the two lowest ST
identities for I 2 and I'& are relevant. The former has been
written in (2.14): DI (k ) should not get dressed. The
identity for I s is more intricate ' it connects I & to
I z z, to the ghost propagator D(k ), and to an auxiliary
amplitude 6&'~ defmed graphically in Fig. 3 which also
involves the ghost fields:

! (Gj
, ~~ ~ (b)

!
3(OI

1

go 3(0)

I+ —, I~~ ~h
!

!!

(c) (d)

I+—
2 gl

T~

! gr0 4(ol

!

I

P+Q, g
P3, p.

Pq

FIG. 2. Diagrammatic form of covariant-gauge Dyson-
Schwinger equation for pure gluon theory. Heavy dashed and
wavy lines represent, respectively, dressed ghost and gluon prop-
agators. I 3(0) and I 3(o) bare three-point vertices, I 3 and I 3,
dressed proper three-point vertices, I 4(o), bare four-gluon vertex,
T4, four-gluon off-shell T matrix. The "truncated" equation
considered in the text retains only the boxed, i.e., the one-
dressed-loop diagrams for the gluon self-energy.

FIG. 3. Definition of auxiliary ghost-ghost-vector amplitude
63. The circle denotes an amplitude which is connected, ampu-
tated, and one-particle irreducible in the
gluon + ghost~gluon + ghost channel. Heavy dashed and
wavy lines represent dressed ghost and gluon propagators,
respectively; the cross on the left puts the "external" field points
of the two propagators together in coordinate space, or calls for
integration over the four-momentum Q in momentum space.
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I ~g "(Pl,P2,P3}P3„P3D(P3 ) I ~(PI )G3 (Pl, P3,P2) — I~P(P2)G@3(P2,P3,PI )
DT(Pi ) DT(P2 )

(4.1)

Here and below, the four-momenta are always understood
to satisfy

I')+I'2+I'3 ——0, (4.2)

Vertices whose external legs all refer to unphysical de-
grees of freedom —longitudinal gluons or Faddeev-
Popov ghost should remain "in the perturbative
mode, " i.e., should not develop nonperturbative parts
proportional to b or a .

(4.4)

%Phile obviously valid in the purely gluonic sector, this
postulate is highly plausible in view of what has been said
above about the connection bebveen nonperturbative
terms and measurable vacuum condensates. By incor-
porating it, our construction ensures in particular that up
to perturbative corrections 0 (g ), the factor P3 D(P3 ) in
(4.1) may be replaced by unity.

and the notation of Eq. (1.4) is used. While (4.1) involves
the transverse part of G3 with respect to its first momen-
tum argument, the longitudinal part will also enter the DS
equation via the proper ghost-ghost-gluon vertex 13,
which is given by

(4.3)

[All three-point vertices have a common color depen-
dence' given by the SU(N structure constants f,s„
which has been factored out in the above equations. ]

Omitting all technical and heuristic detail, the essential
steps and results leading to self-consistency of the extend-
ed Schwinger mechanism in the gluonic DS equation may
now be outlined as follows.

(1) It is possible to construct "acceptable" nonperturba-
tive vertices I 3 and G3 (and I 3 from the latter), which
satisfy the symmetry and Lorentz-invariance require-
ments, and which are compatible with Eq. (1.6) in the
sense that (i) the ST identity for I'2 is satisfied up to per-
turbative terms O(g )—that is, the longitudinal gluon
self-energy vanishes through order g2—and (ii} the ST
identity (4.1) for I 3 is satisfied up to perturbative correc-
tions O(g2).

The Lorentz-invariance and symmetry constraints are
solved as usus/ through suitable tensor decompositions,
which are straightforward to estabhsh. A set of such
formulas —similar to those of Ball and Chiu' but with
some changes to suit our purpose —is given in the Appen-
dix, which also hsts the detailed form of the invariant
functions determined by the construction. In this con-
struction, the essential guidehnes are (i) the ST identities
themselves and (ii) a heuristic princi le apparently first
formulated by Eichten and Feinberg in the context of
the theory of dynamical symmetry breaking, which for
our purpose may be phrased as follows:

(2) Although this construction determines only the
"longitudinal" part (4.1) or (A22) of I 3 (with at least one
longitudinal gluon leg) and thus leaves the nonperturba-
tive parts of two among the six different invariant func-
tions of I 3 undetermined except for symmetry properties,
it establishes in the other invariant functions a very defin-
ite pattern of nonperturbatiue dressing visible, e.g., in Eqs.
(A22) for the longitudinal I 3 or (A16}for I 3. dimension-
less invariant functions acquire, in addition to their
zeroth-order forms, terms proportional to n (P; ) with di-
mensionless kinematical factors, where P; is any of the
three invariant variables of the vertex, and where the
quantity

a2 b4
n(k )=—2 +

k (k} (4.5)

represents, under the assumption of the extended
Schwinger mechanism, the nonperturbative part of the
gluon polarization function —that is,

I 2 T(k )= k[1+n—(k )+O(g )]
1

O 2)
Dz"'(k }

(4.6)

The essential observation is that if we postulate a pole in
the gluon s I 2, the ST identities enforce singularities in
the next higher vertices I 3 and I 3 as well. There is noth-
ing wrong with thi since the nonperturbative parts
among themselves solve the ST identities exactly, BRS in-
variance is maintained, and since they dominate only at
small values of the P~ and leave the perturbative large-
P; behavior unchanged, renormalizability and asymptotic
freedom are also maintained. In fact, such infrared singu-
larities in the vertices conform to a long-standing theoreti-
cal prejudice about confining gauge theories, since ex-
change mechanisms controlled by such vertices will lead
to spatially long-range forces. However, consistency ques-
tions do arise from the fact that the vertex singularities-
at least in the vertices with one or more unphysical legs
that we have constructed up to now —are of type (P; )
as shown by (4.5). If a simple pole in I 2 leads to a
second-order pole in I 3, are we not facing the possibility
of stronger and stronger singularities in the higher n
gluon vertices? This fortunately is not the case, since by
the general prescriptions for renormalizable theories, 'I the
vertice~more precisely, the irreducible kernels —for
n ~4 are to be built by skeleton expansions from the
(dressed and renormalized) primary propagators and ver-
tices with n &4. Each of their external legs must end in a
prilnary vertex, and therefore can have no stronger singu-
larity in its momentum-squared variable than in those pri-
mary vcrtlccs. (Thus any slllglllaIltlcs 111 I 3

—aIld, lf wc
go beyond our "truncated" scheme, in I 4 or T&—pvill

have to become consistent among themselves in the I 3
and I"& equations. )
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However, even in the context of this paper, which con-
centrates on the DS equation for I 3 alone, the consistency
problem is inescapable: if I 3 and the partially longitudi-
nal I'3 have second-order poles in the invariant masses of
their transverse-gluon legs, will the contributions to I 2 T
controlled by these vertices not come out with (k )

singularities, rather than the (k )
' of Eq. (1.6) postulated

as input?
(3) The contributions in question are those from un

physical two pa-rticle intermediate states: the dressed-

ghosts loop of Fig. 2(b), and those parts of the dressed-

gluons loop of Fig. 2(a) in which at least one of the two-

loop gluons is longitudinal [and which by (2.14) therefore
carry factors of go or go ]. These quantities are complete-
ly fixed to order go by the preceding construction, and it
is therefore a critical test of the survivability of an extend-
ed Schwinger mechanism in a Yang-Mills theory to see
whether they assume an acceptable form. Remarkably,
they do, without further hypotheses. Their combined con-
tributions to the RHS of the transverse, unrenormalized
DS equation for I 3 dimensionally regularized in D =4 @-
Euclidean dimensions, are found to be

1 go

DT"'( kE') 4it

2
'

kE-(---ko) N -»
4 2 2

po

2a2 —kE——' ——'go 1 fg—3 2
I 2 $2

—
g go' '+o(go'} . (4.7)

This is proportional to the inverse of the very propagator DT"' that was used as input to the equation, with a factor goi
that identifies the whole contribution as belonging to the "perturbative" corrections 0(g2) in (1.6). Note that those
terms in the integrand arising from application of the ST identity (A22) that are not proportional to 1/DT"'( kE ) al—l
cancel, that (kE3) 2 singularities get softened to (kE } ', and that the kinematical singularities present in the transverse
kinematical tensors of (A22) are removed —the latter are in fact no more of a nuisance than the long-familiar ones in
(1.3) and (1.4). Note also that the divergent (N, ) and the associated logarithmic terms in (4.7) are exactly the same as for
the corresponding contributions to the perturbatiue one-loop calculation. In fact the only nonperturbative feature in (4.7)
is the appearance of the dimensionless function ft, which is finite, i.e., free of divergent and logarithmic terms, and
whose detailed form is unimportant here except for the property that in the "perturbative limit, "

(a,bi)~(0,0}, (4.&)

it vanishes identically, as it should.
On the other hand, if (4.7) automatically emerges as proportional to (1/DT"')go, it obviously will play no role in estab-

lishing the leading, nonperturbative part of (1.6), which is to be regarded formally as of zeroth order in go. This, too, is
intuitively welcome —since the nonperturbative terms represent physical effects with observable consequences, one ex-
pects as in Sec. II that unphysical intermediate states cannot contribute to their generation.

(4) Self-consistency of the nonperturbative part of I'3 T can then be expected to result, in the context of our "truncat-
ed" DS equation, only from the gluon loop of Fig. 2(a) with both loop gluons transverse. (This is an essential difference
from the first of Ref. 3, where the nonperturbative effect ls assumed to arise entirely from the vertex part controlled by
the ST identity. ) Again labeling nonperturbative parts by the suffix NP, we thus have, in D Euclidean dimensions,

dD
Ki, T( —kE }]NP kE + go Po I D

I 3(0)(kE~ pE~ pE}DT ( pE }
2 D —1 (2m}D

XDT ( pE )tp ( E) rrp(pE) ia(pE) 3 (pE~pE kE)
NP

' (4'9)

Here I 3({j) denotes the bare three-gluon vertex. The cru-
cial question is whether the term in large parentheses on
the RHS can become equal to 2a +(ii /kE )+ 0(go ),
with the added, important condition that the divergence
present in the perturbative correction O(go ) should com-
bine with that of (4.7} in such a way as to keep perturba-
tive renormalization feasible.

The answer will partly depend on the totally transverse
three-gluon vertex appearing in the last line of (4.9). This
vertex, which has two different invariant functions (for
technical detail, see again the Appendix), is not deter-
mined by the ST identities. Nevertheless, the ST identi-
ties, through the construction discussed before, establish a

n( ~P), n(P ),2n(P3 ),
n(P )n3(P3 ), n(P3 )n(Pi ), n(Pi )n(Pq ),
n (Pi )n (P2 )n(P3 ),

(4.10a}

(4.10b)

(4.10c)

strong heuristic guideline for its choice, in the form of the
nonperturbative-dressing pattern observed in step (2). (It
would be highly implausible to assume that transverse-
gluon legs in the partially longi. tudinal vertex and those in
the totally transverse part dress themselves in completely
different ways. ) This pattern suggests that we construct
the two unknown invariants as linear combinations of the
building blocks
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with kinematic coefficients dimensionally appropriate for
the invariant function considered, and with due regard for
the symmetry requirements on that function.

A parametrization of this form, written out in detail in
Eqs. (A27)—(A31) of the Appendix, will be used in the
following. While not yet the most general parametriza-
tion of its kind, it represents a large class of transverse
vertices, conforming to the above-described dressing pat-
tern, for which nontrivial insights can already be gained
into the restricted consistency question posed for this sec-
tion. This parametrization ensures again removal of the
kinematic singularities in the associated transverse tensors
and, through the linear restrictions [(A30) and (A31)]
placed on its parameters, the softening of kE ~ to kz
singularities in the gluon-loop contribution to the propa-
gator. In all, it possesses a fourteen-parameter linear fro:-
dom.

Up to this point we have done no more than extending
heuristically the dressing pattern estabhshed by the ST
identities as far as possible. This naturally gives us terms
(2a /k@ ) + (b /kE ) in (4.9) via (4.10), and since we have
arranged for softening, it would now seisin likely (though
not yet guaranteed) that the desired self-consistency can
be attained in (4.9). Appearances are deceptive, however,
because a problem more difficult than establishing the
singular momentum dependence is to obtain a sensible
coupling dependence. The overall coupling factor go in
(4.9), even assuming that renormalization will have turned
it into a (finite but po-dependent) g to this order, seems
to spoil consistency hopelessly. %e must avoid consisten-
cy conditions of type b =g XconstXb; to nail down
the intrinsically (Mo-dependent coupling to a specific num-

ber would be nonsensical. But the freedom in the vertex
does not help at a11—if we use it to choose some of the
coefficients proportional to g to cancel the g, then I s
contains g b factors while I 2 contains b, and these
two mass scales cannot be simultaneously
renormalization-group invariant. At least one of the two
vertices would have nonperturbative terms with an un-
physical mass scale, and this would disqualify (1.6) as a
physically meaningful mechanism.

The solution to this problem will emerge, not from the
vertex, but from the nonperturbative denominators of the
two Dz"'s of (4.9), in which we have na freedom any
more, given the postulated Eq. (1.6). It will also turn out
to be tied intimately to the divergence of the loop integra-
tion, and will thus reveal one of the subtler aspects of the
extended Schwinger mechanism. To see this, we cannot
avoid looking at (4:9) in somewhat greater detail.

(5) For brevity we from now on restrict ourselves to the
case a =0, and simply state that a self-consistent solution
with a =0 is possible. We prefer such a solution because
it is only for a =0 that we obtain the agreement with the
OPE discussed in See. III. [One may do the following
steps with a2&0, realizing that the tadpole of Fig. 2(c)
then contributes, obtain additional a -dependent terms in
(4.11) below, and convince oneself that they disappear for
a =0]

The two-transverse-gluons loop in the large parentheses
of (4.9), with the family of transverse vertices defined in
(A24) —(A28) subject to constraints (A30) and (A31), in
this case assumes, after a long calculation using standard
symmetric-integration machinery, the final form

1 So
D(n)( k 2)

'2
N
3

25 kE'
N, —ln

2

kE—
&z + To(0' s)')» ",—ln, +fD 0' n'

Pp Pp

kE'
Q2

(4.11a)

~'

2
kE
$2

(4.11b)

Here (g', ri'} denotes the set of vertex parameters,
To, Wo, fY„are linear combinations of these parameters
[given in detail in (A32) and (A33)], and fD J'„are again
"finite" functions, free of divergent or logarithmic terms,
whose details are again unimportant except for the fact
that they VaniSh aS b ~OOr kE ~0o.

The first new element in (4.11), as compared to the con-
tribution (4.7), is the term (4.11b) proportional to b /kz,
which is precisely what we need. It implies that the ver-
tex construction of step (1), heuristically extended to the
totally transverse vertex as in step (4), can indeed supply
the right kind of singularity needed for (1.6). The second,
and crucial, new element is the term ln(b /po ) insid—e
(4.11b); it arises, together with the divergent N, preceding

go Z~g, Z——(g, e)=1—11
4m

'2

X,+O(g 4) (4.12)

(for N =3 in the MS scheme) remain applicable, since our

propagator and vertices retain perturbative large-

momentum behavior. %e may then write

it, from the divergent loop integration with two nonper-
tutbative propagators (2.8) that contain the mass scale b .
TQ see that this term resolves the dilemma of correct cou-

pling dependence, we now insist that perturbative
coupling-constant renormalization
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2
2go

W„(g', ii'} X,—ln i +2kb.b

4'1T Pp
b =pp exp2 2 1+O(g~

11(g/4m )i (4.16)

2

le, +0 (g")
4m

X X+ W„(g', i}')
4m

(4.1 3)

where

X=X(g,po)

= —w„(g', i)') ln
b(g.vo}

Pp
2Kb

(4.14)

ln
$2

2
Pp

+2Ai, +O g
11(g/4m)2

(4.15)

This intricate way of getting rid of the go factor is the
physically correct one, as becomes apparent by exponen-
tiating (4.15):

and where 2A, b W„ is an as yet undetermined, finite con-
stant that we have extracted from the f„ function of
(4.11b). Perturbative renormalization will continue to
work if (4.13) is arranged to be free of divergent ltd, 's up
to terms O(g ). This requires X:8'„=I:11 up to O(g ),
a condition from which the freedom in the vertex entering
through W„(g', ri') drops out completely, and which gives

To the order we can hope to determine with our truncat-
ed, one-dressed-loop equation, this is just the gauge-
fixing-independent and renormalization-group-invariant
form (3.8). [The lng term in the exponent of (3.8) could
be obtained only with the T4 contribution of Fig. 2(d).]
Thus the b parameter of (1.6) indeed has a chance of liv-

ing within Yang-Mills theory as a physical, invariant
mass scale, and displays the conjectured nonanalytic cou-
pling dependence typical of a nonperturbative
phenomenon.

While the constant 2A, b of (4.15) will be seen to be not
yet determined on the level of the DS equation alone, and
therefore has not been made explicit in (4.16), there is
nevertheless an intriguing aspect to (4.16): in view of
(2.11), it represents the beginning of a dynamical deter-
mination of a vacuum-condensate parameter from the
Green's-function equations. The idea that vacuum con
densates may become calculable through their nonpertur
batiue effects on propagators and uertices is likely to be of
general significance, and its usefulness may transcend the
context of the extended Schwinger mechanism in which it
has been used here.

(6) In order to remove the remaining divergence in
(4.11b), and to make both the nonperturbative b4/kEi and
the zeroth-order kE in (4.9}emerge with the correct coef-
ficients of unity, we may impose three further consistency
conditions, which amount to three additional linear con-
straints on the transverse vertex, and are listed in (A32)
and (A33) of the Appendix. In the remaining terms, by
(4.12), we may replace gc by g to this order. However,
the result

1 g
4~ N, —ln

25 kE
E 2

2
89 kE
iz+fD 0'n'

I 4

+
k 2 +

4

2
kEf. 0'n' —22Kb ' (4 17)

appears to produce different perturbative corrections
O(g ) to the zeroth-order (kE ) and the nonpeiturbative
(b /kE ) parts of I'z T. This at first might seem to be just
a clumsy feature, but a few lines of calculation will show
that the 0 (g ) corrections to the propagator,
Dz 1/I z z., would th——en possess second order poles a-t

k =+ib, and ~ould thus destroy the appealing physical
interpretation of the "quasiparticle" propagator poles at
k =+ib discussed in Sec. II.

Here another subtle property of (4.11}comes into play,
which again is valid only for a =0: the function f„ is an
even function of s= k@ /b w—ith no singularities (in

f„(g',g';s) =f~(g', q')+(s'+1)f„(g', ri', s) (4.18)

therefore has no poles (but only logarithmic branch
points) at s =+i Thus if we .choose

particular, no cuts) on the real s axis, and its value at
5 =+l,

f, (C' n'}=f.(k' n's =+i»
is real. Thus f„f~ vanishes both—at s=+i and at
s = i [in fa—ct, its behavior there is proportional to
(s+i)ln(s+i}, as we simply state here for brevity]. Con-
trary to appearances, the function f„defined by
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(4.19)

(b /kF )(s +1)=1/Dr'"'( —kx ),
the O(g ) corrections in (4.17) assume an acceptable
form. At this level, the scale constant 2A,s is not yet fully
determined, since the vertex parameters on which it de-

pends wiB get fixed only on the next level of the dynami-

cal hierarchy, the equation for I i (and that for I q, if we

go beyond the "truncated" DS equation and include the

T4 term). Nevertheless, (4.19) shaws the logic that will

lead to the calculation of the scale constant once the ver-

tex is fixed. The open end of this calculation simply re-

fiects the fact that the DS equation is not a closed prob-
lem; complete determination of the vertex is not expected
to occur until the next level of the Green's-function
hierarchy.

(7) Now adding (4.7), where go and go may be replaced

by g and g to this order, to (4.17) as simplified by (4.19),
we abtain the final result for the transverse DS equation,

I i r( —kE )= 1— 13—3g
2

N, +O(g') kx'+
I~

x 1+
4m

'2
13 3g kE 97 , kE

ln — —Tg 1 fg 0; ——
2 p 12

+O(g') (4.20)

I 2
——Z3I 2,

Zi(g, e}=1+ 13—3
2

N, +O(g )
4m

(4.21)

(in the MS scheme). In the limit (4.8) the functions f~
and f~ both vanish, and the perturbative one-loop result
is recovered. The unphysical nature of the logarithmic
cut in (4.20) is clearly seen from the dependence of its
coefficient of gauge fixing g, which is the same as in the
perturbative theory.

It is in this sense that the extended Schwinger mecha-
nism (1.6) is a solution to the DS equation for the Yang-
Mills field. When viewing (4.20},and in particular the re-
sult (4.16), together with the results of Sec. III, it seems
reasonable to conclude that the mechanism stands a good
chance of being sustained by the specific dynamics of
QCD. It will be noted that it is Fig. 2(a}, arising from the
trihnear gluon self-interaction, that plays the crucial role
in making the solution possible. In this sense, one is deal-
ing with a genuine "non-Abehan" effect.

As emphasized before, the consistency question has
hx:n considered here only in a restricted sense. The
answer we found refers to a class of "compatible" three-
gluon vertices which, in spite of its remaining eleven-
parameter freedom, is of a rather special form strongly

which through kz ~—ki may be continued back to the
Minkowskian domain. Here fz ——fz+f„. As anticipat-
ed, this may now be rendered finite by perturbative
gauge-field renormalization:

suggested (though not enforced) by the ST identities. In
this sense it is a preliminary answer; the next logical step
of studying the I i (and I'4} levels of the Green's-function
hierarchy would ga beyond the limits of this paper. One
should realize, however, that already this restricted first
step has revealed a nontrivial result that is largely in-

dependent of either the special class of vertices adopted,
or of the freedom remaining within that class. This result
is the emergence of factors ln(b /po ) f—rom the self-
energy-loop integration as a consequence of the
nonperturbative-loop propagators, and the observation
how a consistency condition designed to maintain pertur-
bative renormalizability, Eq. (4.15), renders this term pro-
portional to 1/g in leading order so as to cancel the
overall g of the loop. This mechanism of generating a
nonperturbative contribution from an apparently pertur-
bative diagram, and in accord with renormalization-group
requirements, is remarkable because the crucial logarith-,
mic factor is tied to the divergence of the loop integration
and would not be present without it; in a sense, it
represents a dynamical effect of the divergence structure
of renormalizable Yang-Mills theory.

This has the further, interesting consequence that for-
mation af nonperturbative terms by this mechanism is ex-
pected to be possible only in the small finite number of
"primitively divergent" vertices (those with n & 4 in
Yang-Mills theory) which have genuine divergences —the
higher vertices, when built from dressed and renormalized
building blocks through skeleton expansion, involve only
convergent loop integrals. Thus in spite of the infinite na-
ture of the Green's-function hierarchy, the consistency
question for nonperturbative parts of the kind postulated
in (1.6) beyond the level of the DS equation will be a
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"closed" problem that can be decided from the equations
for the primitively divergent vertices alone. This ques-
tion, as well as the inclusion of a fermion sector, is
currently being studied.

Finally, one might think of a rather direct test of (1.6)
in the QCD framework: the qualitative propagator
behavior shown in Fig. 1, or rather its Euclidean form
given in (2.8), could in principle be checked by lattice cal-
culations with gauge fixing. It is one of the purposes of
this paper to suggest such tests. The necessity of obtain-
ing a reasonably accurate Fourier transform (1.5) at small
ki, which calls for large lattices, would undoubtedly
strain the present technical capabihties of lattice calcula-
tions to their limits, but it is not inconceivable that at
least the qualitative "bending over" of the DT function—
from its asymptotic form 0:1/kz to the approximately
linear infrared form ~k@ /b" co—uld be observed with
tolerable error bars. Of course there remains a problem of
principle with such tests which at the moment seems to

have no ready solution —if b &0 is but one possible phase
of the gluon field, there is no way of ensuring in advance
that a numerical calculation mill run into just this phase.
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APPENDIX: NONPERTURSATIVE
THREE-POiNT VERTICES

Here we record some details of the kinematics of the I 3

and 63 vertices, and of their nonperturbative parts as re-
sulting from the construction of Sec. IV, steps (1) and (4).

The auxiliary vertex Gi can be written in terms of five
dimensionless invariant functions 63] 635 as

G~ (Pi P2 Pi)=g'"+r'"(P3)Gii(Pi'Pz'P 'i)+i'"(Pi)6 z(~Pi'Pi'P~')

+m "(Pi,Pi}633(Pi,Pp, Pg )+l "(Pi)Gi4(Pi, P2,Pi )

etc

zGi5(Pi, P2,P3 ) .
1' 3

Here we have introduced the kinematical tensor

p 'v

m""(p,q) =g""— =m ~(q,p)
(p q)

with transversality properties

(A2)

so that in the "perturbative limit" (4.8), these functions
satisfy the conditions

6&„(Pi,P2,P&,a =b =0)=0(g~),
n =1, . . . , 5 . (A4}

q„m""(p,q) =m""(p,q)p„=0 .

Since in zeroth order 63" is given by g+, nonperturbative
terms (if any) in the invariant functions should be chosen

I

In dealing with the full proper three-gluon vertex
f.„I,"(P„P2,Pi), some kinematical definitions will be
useful. We introduce the three permutation invariants

Si (Pi P3 )= —,
' (Pi +P2'+Pi )

Si(pi, P2,P3 }=——,'[(Pi ) +(P2 ) +(Pp ) —2(Pi P2 +Pi Pi +Pi Pi )],
S3(Pi,Pi,Pi )=Pi P2 Pi

(A5a)

(Asb)

(A5c)

(P2 Pi)P") —(Pi P3)P~p
(A6)

and cyclic permutations. These vectors satisfy, in analogy
to (4.2),

Qi+Qi+Q3 =o

The second of these, by (4.2), inay be written in the
equivalent form

S2(Pi,Pp, Pi )=Pi P2 —(Pi Pi)

or any cyclic permutation of the RHS. Also useful wi11 be
the four-vectors Qi, Q2, Q& defined by

and are transverse to their respective I' s in the sense that

Qi Pi=Q2 P2=Qi.Pi=0 (Aga)

whereas their scalar products among themsdves are sim-
ply

Q; Qp =P;.Pk, i, k =1,2, 3 .

Bose symmetry and the antisymmetry of the f,~ require
the tensor function I 3 "(Pi,P2,Pi) to be totally antisym-
metric under permutations of the pairs (p, P&}, (o,Pz),
(v, P3). A complete tensor decomposition adapted to our
purposes (which differs from the one of Ref. 16 in the
choice of the third term) reads
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~3 (Pl»P2» 3) I [g ( 1 P2} ]Fo(P1»P2»P3 )+(g P3)F1(P)»P2» 3

PZP3P] +P~~P] P2
+[mt' (P2,P))P3]F3(P),P2 ', P3 )+(c.p. )I+ 2 2 2 )~2 Fg(p), P2, P3 )

[S2(PI P2 P3 )]'"
S2

+ [m1' (P2,P))Q3] 2
2 F2(p) P2 P3 ) +(c.p. )

P2P3P1 P9—', P2
+ 2, 2,~2 (g—Q3+g "Q)+g"'QZ) FS(P1»P2'»P3 )

S2(P),P2,P3 )
(A9)

where (c.p.) denotes cyclic perm utations of
(p,p, ) . (v,p3). The six invariant functions
FO,F»F»F3,F»F& are dimensionless and have been
chosen so that in zeroth order Fo alone survives and
reduces to unity. Thus these functions should satisfy

r

633(p),P2,P3 )= 1 — n(P3 )+O(g ),( 2

p 2p 2

(A12)

F„(p),P2,P3,a =b =0)=5„P+0 (g ),
n =1, . . . , 3,A,S . (A10)

632(P),P2,P3 )=O(g ),
634( 1' P2' P3') =«g'» (A13)

631(P),P2,P3 ) =n (P3 )+O(g ), (Al 1)

Under interchange of the first two arguments P and
2

1

P2, Fo and F2 are even while F, and F3 are odd; Fs and
Fz are totally symmetric and totally antisymmetric,
respectively, in all three variables.

The construction mentioned in step (1) of Sec. IV now
leads to the following forms of the invariant functions
6» 6» in (Al):

2633(p)P2»»P3 )= — (632+634)+O(g )
p 2p 2

=O(g ) . (A14)

Taken together, these imply the following nonperturbative
form of 63.

G3"(P),P2,P3)=g "+ t+(P3)+ 1—(P2.P3)
2 2

m""(P3,P)) n(P3 )+O(g ),
P2 P3

(A15)

from which, by (4.3), the ghost-ghost-gluon vertex follows as
1

1 3(P),P2', P3)=P) 2 t "(P3) („) +I &(P3) +O(g ) .
p 2D)»»)(p 2)

(A16)

The invariant functions FO,F),F3,F& of (A9) can be determined from these through the ST identity (4.1) and read

P2 P3

2P) DT"'(P) ) P D'"'(P ) P

1

2p 2D(»»)(p 2) p 2D(n)(p 2) p 2

+ —,P32[4+(P)2,P22)+ 4 +(P, ',P, '}+4+(P,',P, ') ]+0(g'), (A17)

2 2
2 2. 2 P] —P2 P2 P3

F)(P),P2 ,'P3 }= 1 — n(P3 ) — n(P2 )
2P 'D'"'(P ') p 2 p 2

P2 —P& 2
P&.P3

2P 'D'"'(p')
i

p 2 '
P, 2

1 — n (P3 ) — n (P)2)

+ —,'(P1 —P2 )[4+(P),P2 )+4+(P2,P3 )+4+(P3,P) )]+O(g ),
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+O(g'),

They contain the nonperturbative building 11(x:ks

1 1 n(q) n(p )

Pzqz 2 D(n)( 2) D(n)( 2)

n(P( ) Pz
F3{p) P2 P3 ) („) 2 2 S2+{P2 P3){pz'pl )

D(n)(p 2) p 2

n (Pz')
Sz+ (P(.P3 )(P( Pz )

D(&)(p 2) p 2

F~(p)' pz' P3') = [@—{p(—' Pz')++ (pz' P3')+@ {P3'p(')]+O{g')

(A19)

(A20)

(A21)

{The f""ct'o"s Fz and Fs remain undetermined. ) it is, however, simpler and more transparent to characterize this vertex
by gtving separately its partially longitudinal portion (with at least one longitudinal gluon leg) and its totally transverse
part The former is gimme~ by the ST identity (4.1) and in the present case therefore assumes the form

(P(,Pz, P3)P3 „—— [t (P()+s (P(,P2)n(P2 )]D(n)(p 2)

[t t'(Pz)+s t'(Pz, p()n(p) )]+O(g ),D(n)(p 2)

featuring the kinematical tensor

[(P(+Pz) Pz]
s) (P(,pz) =t~(p()t (Pz)+ 1 — tn~(pz, p(),

{P(+Pz)'Pz'

(A22)

(A23)

which is transverse to both Pf and Pz. These expressions reflect clearly the principle (4.4): nonperturbative dressing
terms occur only in the momentum variables of transverse gluons.

The totally transverse vertex can be written in the form

t„q(P()tz (Pz)t~„(P3)
t„p(p()tz~(pz)t~v(P3)I 3 (P(,P2,P3) =

2 („) 2 2 („) 2 2 („) 2
I 3(0)(pl~pz~p3)

[—P('Dr'"'{P(') ][—Pz'DT"'(Pz') ][—P3'Dr"'(P3')]

—2 [t(P() t(pz)]„)( 2 Q3„F2(P(,P2,P3 )+c.p.
~S,
p 2

Sz

1

~S,
p 2 2/X

2

Sz
Q3p @s(p(,pz, p3 ),

3

(A24)

where f 3(p) is the bare three-gluon vertex [given by (A9) with F„=5„o]. Here the invariant functions F'z (symmetric in
its first two arguments) and 4, (symmetric in all three arguments) are linear combinations of Fz, F„and Fo from (A9),
and hence may be taken as the two invariants, undetermined by the ST identities, which according to Sec. IV should be
parametrized in terms of the nonperturbative building blocks (4.10). In the present context it turns out more expedient to
parametrize two equivalent functions 4'2 [dimension (mass) ] and (Ils [dimension (mass) ] connected to the above by

F2{pl ~pz ~P3 ) I{ P1 P2)+2(pl ~P2 ip3 )+ 2 +s(pl ~pz ~ 3
p 2p 2

+ —,'Sz[2n{P3 ) —n(P( ) —n(Pz )]I, (A25)

@'s(p(,pz, p3 )= (ps(p( Pz, P3 ) —IP3 0'2{p(,pz, p3 )+(—,Sz+ —,P3 P(.P2)[n(P( )+n(Pzz)]+c. p. I),
S3

(A26)

since in terms of these invariants the integral of (4.9) assumes a simple form; it becomes
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4 D N 4 'qE 2 PE ~ PE ~ E D(g)(,2)D(g)( 2)
dD S (

'2 2 k 2)
0P0 2D 1 (2)D S( 2 2 I 2) T —PE r P—E

r

X 3 q'E( pE—, pE—, —kE ) —[[(D—2)( P—E PE)+S)(p'E PE kE )]
D —2 t2 2 2 t2 2 2

X %2( pE2 pE kE )+(0 p ) I

where c.p. denotes cyclic permutations of p', p, and —k.
The class of "compatible" vertices we are considering in this paper is now given by the explicit parametrizations

+2(p q " ) U(01 02 03 P q) (p )+ U(01 02 03 q p)n(q )+ U(44 05 0 P q)

+ U($6, $7,$'s' p, q) n(p')n (r')+ U($6, ('7, g's, q,p)n (q')n (r')

+U($9,$)0,0;p, q)n(p )n(q )+U(g)t, g)2, 0;p, q)n(p )n(q )n(r ),
+s(p, q, r )= V(7I'), ri2, 7)'3, re,'r)n(p )n(q )+ V(ri't, ri2, 7)3 714 p)n(q )n(r )

+V(7)),712&ri3, rid, q)n(r )n(p )+V(7)'„7)6,0,0;r)n(p )n(p')n(r ) .

Here (p,q, r) is any cyclic permutation of (Pl, P2,P3), and U, V denote the polynomials

U(gl g2 43~P q) glSl +(g2 gl) +43 2 (P q

V(711 7)2 7)3 7/4~ r ) =71)S) +ri2S2 +713S)r +7N(r )

(A27)

(A28)

(A29a)

(A29b)

This form depends linearly on a total of 18 dimensionless coefficients (g) g)2, ri'1 7)6). It is very general and thus
does not automatically ensure the softening of (P; ) into (P; )

' singularities required for consistency of (1.6). The
specific correlation needed between the various terms of (A27) and (A28) to produce this softening is expressed by the
four linear constraints

~1(g )=3(46+07 2 gS+410 011 2012)

~2(g )=3(g2 2 43+ 2 k4 06 07+ 2 Ps k)0+ 2 kll+0)2)

~ ) (0'.7I') —=3[06—0i) + 2 (riI+7)3+ri6 —ns)] =0

~Z(g 7I') =3[ 2 4—4+ 2 0')) —
2 (nt+n3+7)6 —

Z ns)]=0.

(A30a)

(A30b)

(A31a)

(A3lb)

The additional consistency conditions necessary for turning expression (4.11) into (4.17) and thus for solving the DS
equation are

To(0 ~ q ) = 4 [146+ 207+408+ 5( P9+ 91+7I2)+18(410+713)]

IVO(g', 71') =——
~ [—10/6 —12/7 —44+1509—14')0—5011+3812

—15(711+712)—187)3+ 15(7I&+ ri6) ]=0,
and, finally

W„(g', ri') =———,[10('1+26/2 —11/3+6(6+ 18/3+ 10/6+ 12/7+4(I) —15/9+ 18$'10—16$')1—44/12

+ 15(7))+ F2)+ 187)3—367)3—157)6]= 11

(A32a)

(A32b)

(A33)

These conditions, of course, are specific for the "truncated" DS equation considered here, and will change once the T4
term is included.
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