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Ghostless Feynman rules in non-Abelian gauge theories
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%e have found two sets of Feynman rules for non-Abelian gauge theories in which ghosts do not
appear. These Feynman rules are derived from the canonical formalism which has the advantage
(over the path-integral formalism) of the propagators having explicit boundary conditions. These
boundary conditions are not necessarily those of Feynman. The new Feynman rules are, however,
equivalent to the conventional ones in the Feynman gauge. This demonstrates that ghosts can be
eliminated at the cost of Feynman's boundary conditions.

I. INTRODUCTION

it is usually argued, ' incorrectly, that in non-Abelian
gauge field theories there is no ghost in the axial gauge
(A&nt'=0, where n" is an arbitrary vector). In this paper
we shall give two sets of Feynman rules which are truly
ghostless. The derivation of these Feynman rules are on
the basis of canonical quantization.

In the past, the main difficulty in canonically deriving
Feynman rules for gauge theories is the non-
normalizability of the wave function. (See, for example,
Ref. 4 for a discussion of this paint. ) We shall give two
tricks for handling this non-normalizability of the wave
function, obtaining the two sets of ghostless Feynman
rules aforementioned. One feature of the propagator is
that it does not necessarily satisfy Feynman's boundary
condition which determines the sign of i e in the denomi-
nator.

ture. This means, in particular, that the state satisfying
(2.4) satisfies

lim V sr
~ g t ) =0;t~+ 00

(2.6)

(2.7)

and

Eq. (2.6) says that (A'~ g, +Oo), the wave function at

~

t
~

=0o is independent of AL, the longitudinal com-
ponent of A'. This explicitly demonstrates that the wave
function is not norrnalizable in the measure f &A'.
Such non-normalizable wave functions pose difficulties
for the canonical derivation of Feynman rules, as the
Green's functions can no longer be expressed as vacuum
expectation values of time-ordered products of field
operators. We shall, therefore, perform a similarity
transformation

II. THE VPEYL GAUGE
(2.8)

In the Weyl gauge formulation for the pure Yang-Mills
theory, the Hamiltonian is

0 = — - +8'8'd x (2.1)

5=exp —,
' f A,(AL) d x

with k a positive c number and with

(2.9)

with

a l aBi 2 GijkFjk (2.2)
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where A" is the gauge field operator with polarization i
and color index a, n is the o erator conjugate to A', g is
the coupling constant, and f' is the structure constant of
the non-Abelian group. The Gauss law is imposed on the
physical states:

Note that AL is anti-Hermitian; thus, its eigenvalues are
purely imaginary. By (2.7) and (2.9), ( A

~
P, t ) is normal-

izable in the measure f N A'. Furthermore, since
(A'~ f, +Do ) factorizes into the product (A'~ P, +Do ), a
function of AT only, and 5, a function of AL only, we
have

AT I A' A' 4', Oo

G'~ g, t) =0,
where

(2.4)

Ga V.~+~abcIt b.~c (2.5)

Let us assume that we can adiabatically switch off the
coupling constant at the distant past and at the distant fu-

where (A'~ tbf ) depends on A'r only. Therefore, the S
matrix, which is the left side of (2.10), can be expressed as
the right side of (2.10). In other words, we may deduce
the S matrix from the wave function in the representation
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(2.7) together with the Hamiltonian in the representation
(2.8) and the measure J &A'.

The Hamiltonian H~ given by (2.8) can be explicitly
written as

Hg =I 2(e ) + 2A, (AL, )'+ —,'(8')'

O'= V M —ii,(V.A')

+gf' A n' i—VA. (V A'}1

p2
(2.13)

+iA, (V A')[V.H —iA(V A')] d x .
g2

Equations (2.11) and (2.13) can be easily derived by utiliz-
ing

(2.1 1} Sm S '=H iV—A(.V A') .1

+2
(2.14)

And the Gauss law (2.4) becomes

6'~ 17) =0, (2.12)
Applying the Gauss law (2.12), we may express H~ in

(2.11) as

a = —,
' '+-,' '~, '+-,' S'' —~. '", A' A' —,A' (2.15)

The expression (2.15) has an advantage over (2.11): the
unperturbed part of H~ (obtained by setting g =0) in
(2.15) is simply that of a system of uncoupled harmonic
oscillators, with the frequency of a transverse mode of
momentum It equal to

~

It ~, and that of the longitudinal
mode of momentum k equal to A, . Thus the unperturbed
propagator can be easily calculated to be

k'ki
D'J(k) =

k2+ie
~

lt
~

kp —A,'+i e

(2.16)

(The group factors in the propagators are not and will not
be exhibited whenever there is little chance for confusion. )

The interaction terms contained in —,(8') give all

three-point vertices and four-point vertices in the usual
Feynman rules with all polarization indices spatial.
Furthermore, although there is no Ao in the Hamiltonian
(2.15), we may easily identify an operator which plays the
same role as Ao. Let us put

Ap= iA2V—A, ',1
(2.17}

+2

Equations (2.16) and (2.19)—(2.21) can be summarized as
t'

D„,(k) = — gq„d(k)n„k—, e(k)k„n-„
k +lE.

(2.22a)

where

k' —A.kpd(k)= —e( —k)=
k (kp A+—ie,)

(2.22b)

and where n" is the unit four-vector in the time direction.
Note that

D~„(k)=D„q( —k), (2.23)

D„„(k)~D„„(—k) .

Thus the designation of the indices p and v are correlated
with the direction of k. In our notation, D»(k) is di-
agrammatically represented by

then the last term in (2.15) is

gf' ApA .(m'+VAp) (2.18)

which accounts for all other three-point vertices and
four-point vertices. From the definition (2.17), the other
propagators are easily deduced as

D ~(k) =—, (2.19)
ko —k +i@

i.e., the direction of k is from index v to index p, .
Next we shall prove that, for all choices of A, (A, can

even depend on It), the Feynman rules with the propaga-
tor (2.22) without ghosts are equivalent to the convention-
al Feynman rules. ' This is done by invoking the
theorem that, if the gluon propagator is

D p;(k)
Ak' i

k ko —A. +i@
(2.20) [g„„—aq(k)k, —b„(k)k„+c(k)k„k„],k'+is (2.24)

A,k'
D "(k)=

ko —k +lE
(2.21)

(2.25)
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and

c(k)=c( —k},
the ghost propagator is

6'(x)
I P, t ) =0,

G'= (V—5' gf—' A') (n +VAO) .

(3.4)

(3.5)

l

k +ie
This is because we may easily calculate the commutator
between A and I' and get

and the ghost-ghost-gluon vertex is [M,I']= i6—', (3.6)

[(a k }—1]k" k'a—", (2.26)

then the physical amplitudes are independent of a„and c.
In the present case, the ghost-ghost-gluon vertex in (2.26)
is easily calculated to be

k [Ak" +n "(It —Ako)] .
Iz (ko A+—i e).

For such a vertex, the integrand for a ghost loop vanishes
as

I
ko

I
~oo, and has singularities in the lower-half ko

plane only. Therefore, we may choose to close the con-
tour integration in the upper-half ko plane, obtaining
zero. In other words, there is no contribution from the
ghosts of (2.27) and the Feynman rules with (2.22}
without ghosts are equivalent to the Feynman rules
(2.24)—(2.26) with a„=b„=c=0, which are the conven-
tional Feynman rules in the Feynman gauge.

Two special cases of (2.22) are worth mentioning.
(i) The case A, =O. Then (2.22) becomes

g Q +U
Ao —= (3.8)

and

i.e., in the Heisenberg representation, 6' is equal to I '.
As a consequence of (3.2),

(A& If, t)=exp i f AOV A'd x gs(A', t) . (3.7)

Note that g~ is independent of Ao. Furthermore, we
may prove from (3.4) and (3.7) that, if g =0, Ps is in-
dependent of Az, thus f~(A', t) is independent of Az as
t~+00, when the coupling constant is adiabatically
switched. Therefore, the dependence of (A'

I P, + oo ) on
Ao and Az is contained entirely in the exponential factor
in (3.7). Consequently, in the measure fN A &,

(A„ I g, +oo ) is not normalizable, if we integrate over
real values of Ao and V A'.

Instead, let us take Ao and V.A' to be complex. More
precisely, let us put

Dq„(k) = — gq, —
k'+ i e "" ko+~ ~

k„n„ k„k„+
ko f& ko +lE

(2.28)

2 0
g Q —UAz=

2
(3.9)

The unperturbed part of H in (3.1) for the Az and Au be-
comes

g nPkV 71 VkP
( ) (2.29)

which can be regarded as the gluon propagator in the
Weyl gauge. (Note, however, that Do„&0.)

(ii) The case A, =
I
It

I
. Then (2.22) becomes

——,
' [n„+n, +(Vu) +(Vu) ],

and the exponential factor in (3.7) becomes

exp —U'2 q2 ~ Ut —g~ q &~2/ 1 d3/

(3.10)

III. THE FEYNMAN GAUGE

In this formulation, the Hamiltonian is given by

~=f Hd'x, (3.1a)

The factor in (3.11) is normalizable if we choose u to be
purely imaginary and u to be real. The S matrix can be
obtained with the normalization as (A„'

I P, + oo ) has the
factorized form aforementioned.

With this normalization, we easily obtain the free prop-
agators for u and v as

H = ——'m(0)m~o+ —m' H ——'(VAO) (VAO)

+ —'(V A')(V A')+ —,8' 8'
+gf'"'AOA" (n'+VAO) .

The state is required to satisfy the Lorentz condition

(3.1b} and

d'k e -'~
( Tu(x)u(0)) = i f-

(2' ) k —ie
d4k e-'~

( Tu (x)u (0) ) = i f-(2') k +i@

( Tu (x)u (0) ) =0,

(3.12)

(3.13)

(3.14)

l'(x)
I P, t) =0, (3.2)

I'= —no+ V.A' . (3.3)

Equation (3.2), satisfied for all t, implies the Gauss law

where T denotes time ordering and ( ) denotes the expec-
tation value with respect to the unperturbed vacuum.
Note that the denominator of the integrand in (3.12) is
( k i e), while that in—(3.13) is ( k +i e). This is because
the energy in a u mode is negative, while that in a U mode,
with u purely imaginary, is positive. It follows from (3.8),
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(3.9), (3.12), and (3.13) that the free propagators for
Ao, AL are

( TAp(x}Ap(0) ) = i—f ~
e

d4k g

(2m )

Note that we have used the identity

ko 2

IkIi k ie—
1 I

k —ie k +ie

1 1 1
X —

2 +
k —l & k +lE

( TAz(x)AL(0))= i —f e
d'k

(2n. )

X —
2 +1 1 1

k —IE k +lE

(3.15)

in deriving (3.19). It is easy to verify, by using the rules
given in (2.24)—(2.26), that the ghost loops give zero am-
plitude after integrating over the time component of the
loop momentum. Therefore, using the propagator (3.19)
with no ghosts is equivalent to using the propagator
—ig„„/(k +ie) with the ghost-ghost-gluon vertex —ki',
which are the conventional rules in the Feynman gauge.

One notes that the propagator given by (3.19) does not
satisfy

( TAp(x)AL (0))= i f—
4 e

d4k

(2m)

1 1 1X—
k i e —k'+i e

(3.16)

(3.17)

This does not contradict the Lorentz condition (3.2). The
reason is that the Lorentz condition is imposed as a sup-
plementary condition on the wave function, not as an
operator equation.

IV. CONCLUSION

and

( TAL, (x)Ap(0) ) = i f — e
d'k
(2~)'

1 I 1X—
k —ie k +IE

(3.18)

One notices that, had we ignored the sign of ie in
(3.15)—(3.18), we would have arrived at the conclusion
that the gluon propagator of momentum k is —ig„„lk,
and that there sre no ghosts in the Feynman rules in this
gauge. Such an error underlines the importance of the
boundary conditions dictated by the initial and the final
wave functions, which have been ignored in the path-
integral formulation for gauge fields.

Equations (3.15)—(3.18), together with the usual propa-
gators in the transverse modes, can be summarized as

D„„(k)=— " + (ak "n "+bk "n "+ck"k"),
k +is k2

(3.19)

Ik I
—kpa(k}=

k —ie k2+ip

1 1 1c(k)=-
k —ie k +ie

The quantum theory of non-Abelian gauge fields can be
formulated either via canonical quantization or via path
integration. ' The path-integral formulation is merely
heuristic. One of the reasons is that, in the path-integral
approach, the form of the propagator is deduced from the
form of the unperturbed Lagrangian. However, the La-
grangian only provides the differential equation satisfied
by the propagator. To determine the propagator uraquely,
one needs, in addition, boundary conditions for the propa-
gators. In the case of scalar field theories, for example,
such boundary conditions are provided by the initial and
final wave functions (wave functions at the distant past
and at the distant future), and turn out to be those of
Feynman. In the case of gauge field theories, the conven-
tional expression of the path integral does not specify the
initial and the final wave functions. As a matter of fact,
the wave functions one should use in such an expression
are not normalizable, making the path integral infinite.
Such an infinity cannot be handled by the Faddeev-Popov
trick. Furthermore, this non-normalizability remains in
the Euclidean space; hence, this difficulty cannot be
resolved by the formulation in the Euclidean space. Thus
the boundary conditions for the propagator in a gauge
field theory formulated via path integrals are ambiguous.
In contrast, we derive the Feynman rules on the basis of
canonical quantization. The non-normalizability of the
wave function is handled by either multiplying the wave
function with a cutoff factor, or continuing into the com-
plex space. No additional auxiliary variables are needed,
snd hence there are no ghosts.
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