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In the presence of a Chern-Simons term, a single Dirac monopole induces a current that extends
throughout space-time. The Dirac string acquires a constant charge per unit length, which should
confine monopoles and antimonopoles by a linear potential. The monopole of °t Hooft and Polyakov
is generalized to include a Chern-Simons term for the gauge field, and the string tension for these

monopoles is calculated.

Topologically massive gauge theones—gauge theories
in 2 + 1 dimensions with a Chern-Simons' mass term—
provide examples of some extraordinary phenomena.?~*
In this paper I consider what happens to monopoles in
these theories.

Dirac monopoles’® in the Abelian theory are the subject
of Sec. I. Henneaux and Teitelboim® have shown that for
a Dirac monopole to be a solution of the field equations, a
current induced by the monopole must be included. I ex-
tend their analysis to show that for a single Dirac mono-
pole the induced current is of infinite range: for a spheri-
cal shell of radius R about the monopole, the current
flowing in through this shell is a constant, balanced by the
current flowing out through the Dirac string.

The Abelian example helps both to motivate and to ex-
plain the results of Sec. I. 't Hooft” and Polyakov®’
showed that magnetic monopoles are produced when an
SO(3) gauge theory is spontaneously broken to U(1). I
consider how the monopole changes when a Chern-
Simons term for the SO(3) gauge field is added to the ac-
tion. I argue that there is a monopole solution that is reg-
ular everywhere, but find that the action for a single
monopole, Sy, is infinite: if R is the radius of space-
time, the action diverges linearly in R, Sy ~0oR as
R .

This divergence can be understood by remembering that
over large distances, by a gauge rotation a non-Abelian
monopole can always be treated as if it were effectively
Abelian. From Sec. I the total chargé induced by a Dirac
monopole grows linearly in R, so it is not surprising to
find that the action of the underlying non-Abelian field
behaves in the same way. Alternately, this linear diver-
gence can be viewed as the self-energy of a charged Dirac
string. A monopole-antimonopole pair does have finite
action S, which is linear in their separation R for large
R, S, ~0R. Because the action for a single monopole
is infinite, I term this the “confinement” of monopoles.
From S,;; we see that monopoles and antimonopoles are
confined by a linear potential, with a string tension that is
just o.

For the Abelian theory without monopoles there is no
relation between the Chern-Simons mass m and the gauge
coupling e. In the non-Abelian theory, topological gauge
invariance requires 4m /g%(=q) to be an integer; g is the
non-Abelian coupling constant. For the Abelian theory
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with Dirac monopoles, following Alvarez'® and Henneaux
and Teitelboim® it can be shown that gauge invariance re-
quires 7m /e? to be an integer. In Sec. III I show how in
the presence of a Z(2) monopole in an (unbroken) SU(2)
gauge theory, g must be not just an integer, but an even
integer. While the usual quantization condition on g is re-
lated to the one cocycle of the gauge group, in the pres-
ence of a Z(2) monopole the two cocycle of the group
also enters.

Throughout this work I assume the conventions and
notation of Refs. 3 and 4.

I. DIRAC MONOPOLES

I first review how to introduce Dirac monopoles® in
2 + 1 dimensions when there is no Chern-Simons term.
leen the field strength F,,=09,4,—3,4,, and its dual
F W=7 e“vAF YA the field equatlons in the absence of
monopoles are

3 F*=j*, 9,Fr=0. (1.1

jV¥ is the usual current density and is conserved, ayj“=0.

In 2 + 1 dimensions, monopoles are points not in space
but in space-time, with a density k that is a space-time
pseudoscalar. For the time being, I prefer to avoid Dirac
strings by using a (pseudoscalar) monopole potential ¢. I
define a new field strength G,,,:

Guv=F,,+€,,10:9 . (1.2)

For k0, the field equations are

3,G*'=j", 9,Gt=k . (1.3)
Of course ¢ is an unphysical degree of freedom and could
be eliminated by introducing a Dirac string for each
monopole. This is possible because the equations for 4,
and ¢ decouple —9,G**=3,F"=j" and 3,G =3 = —k.
It is worth emphasmng that monopoles in 2+ 1 di-
mensions are rather different from those in 3 + 1 dimen-
sions. Since monopoles in 2 + 1 dimensions are points in
space-time, they cannot be viewed as a type of particle,
but rather as a form of “instanton.” Further, monopoles
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in 2 + 1 dimensions are characterized by nonzero G*, so
they carry both electric and magnetic fields. I neverthe-
less refer to such objects as (Dirac) monopoles, for they do
share an essential property with their cousins in 3 + 1 di-
mensions: the divergence of the dual of the field strength
tensor is only nonzero at monopole sources, Eq. (1.3).

With a Chern-Simons term, but without monopoles the
field equations in Euclidean space-time are

8, F* +imF¥=j", 3,F*=0. (1.4)

To include monopoles, the natural thing to do in Eq. (1.4)
is to replace F*¥ by G**, and F* by G *. This cannot be
the whole story, however, for if one takes

3,G*+imG ¥ =j*

then the divergence of this equation gives imd,G *=0—so
k =0. To avoid this, Henneaux and Teitelboim® add a
new term to the current, jy;. The complete field equations
are then

3,G* +imG Y =j"+jy , (1.5)
3,G =k . (1.6)

As before, a,,'G“ F=3%p=k, but for Eq. (1.5) to con-
sistent, jyy must satisfy

3,k =imd*p=imk . (1.7)

Jar represents a current which is induced by the monopole.
I take the obvious solution of Eq. (1.7):

e =imd*e . (1.8)

Then Egq. (1.5) reduces to B#F’“’—Hmf":j”, and as before
the equations for 4, and ¢ decouple. Note that the in-
duced current j§; is imaginary in Euclidean space-time
and real in Minkowski space-time.

The field equations of Egs. (1.5) and (1.6) are generated
by the Lagrangian

L=1G,2— —lzﬁe*‘v}”AMavAA+j”A“

+(jiy —imd“$)A, +dk . (1.9)

The total monopole current that couples to the vector po-
tential 4, is Ji; =jl;y —imd¥¢$. While the induced current
j& is not conserved, the total monopole current J§; is;
indeed, from Eq. (1.8) J§; vanishes identically. Thus the
action formed from Eq. (1.9) is gauge invariant— even at
points where there are monopoles—up to the usual terms
that depend upon the boundary of space-time. As will be
seen in Sec. III, these surface terms can be significant if
there are monopoles about.

It is instructive to solve for the example of a single
Dirac monopole. Given a monopole of strength g,, at the
origin of space-time,

k =g 8%(x) . (1.10)
Then
8m 1
=ar 7’ (1.11)

r=Vx? and
$n
k‘x————gu—, (1.12)
XH=xH/r. If a surface encloses the monopole, the in-

duced current flowing surface is

fjﬁ,‘,d2$*‘=——zmgM

¢ can be eliminated at the expense of a Dirac string.
(For a given time slice, the string is at best a “Dirac
point.”) Then F¥=(gy /4m)X#/r* and j§ is as in Eq.
(1.12), except on the string. As the string carries F#, it
must also carry an induced current, j§; ~ +imgy,t*, where
t# is the tangent vector to the string. In the string
description of the monopole, current conservation is
preserved because the induced current flowing into a sur-
face which encloses the monopole (but not the string)
equals — img,s, which is canceled by an induced current
equal to + img,, flowing out through the string.

The necessity of introducing the induced current j§; is
best seen in the string description of the monopole. The
crucial point is that with a Chern-Simons term, F* ap-
pears directly in the field equation 9, F BY 4 imF Y=j". Be-
cause of this term, when m=£0 currents j” produce a flux
for F¥.> What happens with a monopole is the converse
of this: flux producing a current. To have 3, FHr_8%(x),
FHE_£H/r? so away from the monopole and 1ts string, if
the monopole is to be a solution of the equations of
motion, there must be an induced current. Current con-
servation then dictates the current carried by the Dirac
string.

There is an analogy to the current j§; in 3 + 1 dimen-
sions. Witten'! has shown that when the ® parameter is
nonzero, monopoles acquire an electric charge ~O.
While this is something like what happens here, there is
an important and obvious distinction. In 3 + 1 dimen-
sions for ®+0, the charge is concentrated on the mono-
pole. With a Chern-Simons term in 2 + 1 dimensions, the
current induced by the monopole runs throughout space-
time, including along the string.

As the Dirac string carries a current when m =40, it be-
comes a physical entity. It is natural to guess that, since
the string has a given charge per unit length, the elec-
tromagnetic self-energy of the string will give rise to some
mass per unit length o. o is then the coefficient of a con-
fining, linear potential for a straight string between a
monopole antimonopole pair.

This confinement of monopoles by physical strings is
similar to what happens to monopoles from the Higgs ef-
fect. If one has Dirac monopoles in an U(1) gauge group
that is spontaneously broken, the monopoles are confined
by a linear potential. However the photon gets a mass—
from either the Chern-Simons term or the Higgs effect—
naively the confinement of monopoles can be viewed as
the result of the physical vacuum being unable to support
the long-range U(1) fields of a monopole.

This explanation is a bit glib. When the U(1) symmetry
is broken, the Dirac string represents a tube of unbroken
U(1) flux. The degrees of freedom for this string are
directly related to those fields which are responsible for
the symmetry breaking; e.g., the monopoles’ string tension

through the
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is proportional to the difference in the action density be-
tween the broken and unbroken phases.

In contrast, with a Chern-Simons term the string is
only visible because it carries a current. The Chern-
Simons term does not break the gauge symmetry nor does
it add new degrees of freedom—it is simply inconsistent
to have an invisible Dirac string in its presence. Further,
there is no string tension between the monopoles until
electromagnetic self-energies are computed.

Dirac monopoles are point objects, so in the Abelian
theory all self-energies diverge. In the next section I con-
sider an SO(3) gauge theory which is spontaneously bro-
ken to U(1). For the monopoles in this theory, the vacu-
um expectation value of the Higgs field provides a natural
length scale for their size. This cuts off the ultraviolet
divergence in the monopole self-energy, and so allows for
the direct computation of the string tension o.

II. ’t HOOFT-POLYAKOV MONOPOLES

For an SO(3) gauge theory which is spontaneously bro-
ken to U(1) by an isotriplet Higgs field, ’t Hooft’ and Po-
lyakov® showed that certain static solutions in 3 + 1 di-
mensions represented magnetic monopoles in the unbro-
ken U(1). As static solutions of the field equations in
3 + 1 dimensions, these monopoles carry over unaltered to
2 + 1 dimensions. Polyakov® has shown that in 2 + 1 di-
mensions, a dilute plasma of these monopoles produces
the confinement of external U(1) charges. In this section I
add a Chern-Simons term for the gauge field to the action
and find the monopole analogous to that of ’t Hooft and
Polyakov. Contrary to the case without a Chern-Simons
term, it is the monopoles and not external (electric)
charges which are confined. I remark that the solution I
find has no counterpart in 3 + 1 dimensions: while there
are close similarities between the Chern-Simons term and
® vacua in 3 + 1 dimensions, only the Chern-Simons
term contributes to the local equations of motions—the ®
term does not.

To look for a monopole solution, I take as an ansatz

h%(x)=x°h , (2.1

for the Higgs boson field, and

A,“,(x):%[ea“vf"(l—¢,)+8“"¢2+(rA —$)R %2 H]
2.2)

for the gauge field. I assume that the functions A, ¢,, ¢,,
and A all depend only on the radius r =V x?.

Equations (2.1) and (2.2) are the most general solution
which are invariant under combined rotations of isospin
and space-time. The form of this ansatz is preserved
under an Abelian subgroup of gauge rotations generated
by Qab5

Qg =explifs-o/2), (2.3
f=f(r), o denotes the Pauli matrices. The gauge-
transformed A, =07",,(3,+ 4, )04, with
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b1=¢cosf +¢ssinf ,
$2=—¢sinf +¢ycosf 2.4)
ZZA _f, )
f'=df/dr.

For the monopole of 't Hooft’ and Polyakov,® only A
and ¢, are nonzero, with ¢,=A4 =0. It will be seen that
when a Chern-Simons term for the gauge field is added to
the action, it is crucial to consider the full ansatz of Eq.
(2.2).

The total action S is a sum of three terms, S =S,
+5S,,+S,. So is the usual action for the gauge field:"®

1 ,
So=—5§; dextr(Fw,F")
=j:§ Jiar {(¢1+A¢2)2+<¢5—A¢1>2

+ g2,

> 2.5)
,

S,, is the contribution of the Chern-Simons term:!?
S, =217 [ dx (—im)e* tr(A4,8,4, + 3 A,4,4,)
=% [, drlim 2910146
—A(1—¢2— 7] . (2.6)
Lastly, S involves the Higgs fields:

Sh= ;12— J &*x[ 5Dk — Sphh®+ A h %]

4r r? 2
=g—2fo dr | (h )2+h2<¢12+¢22)—f‘2—r2h2
Ar?
+=h 2.7

In Egs. (2.5—(2.7), A, and h° are scaled by 1/g relative
to Refs. 3 and 4. I work in the regime of weak coupling,
where the dimensional couplings g* and Ag? (A is dimen-
sionless) are much less than the masses m and pu, m and
©>0. _
Under the gauge transformation of Eq. (2.4), S,, —S,,,

5, =S, + i;%’ii [$a(cosf — ) —dysinf +1| Sup . (2.8)

Consider the class of gauge transformations for which
f(0) and f( ) are each equal to 27 (integer). From Eq.
(2.4), such transformations do not alter ¢, or ¢, at either
r =0 or «; from Eq. (2.8), they do change the action by
2mi(4mm /g?) (integer). Thus within the ansatz of Eq.
(2.2) these are the topological gauge transformations
which are responsible for quantizing ¢ =4mm /g2 as an
integer. This is the usual condition on g, and it is not al-
tered by the presence of a monopole. This is unlike Dirac
monopoles,®!° or Z, monopoles in SU(2) (Sec. III), where
monopoles do change the quantization condition.
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From Eq. (2.8) it is possible to choose a “unitary”
gauge in which ¢,=0 everywhere. Henceforth I set
¢,=0, and redefine ¢,—¢. The Chern-Simons term be-
comes

s,n::—’; [ dari—imac1—¢9]. 2.9)

Equation (2.9) shows why it is necessary to consider the
general ansatz of Eq. (2.2). If the usual monopole ansatz
was assumed, ¢,=A4 =0, one would have concluded that
the monopole was unaffected by the Chern-Simons term,
S,, =0. Because S,, is linear in 4, S,, will not be ex-
tremal with respect to small variations in 4 at 4 =0 un-
less p=1— and 4, =0.

This just means that when m=£0, the stationary point
of the action has A4s£0. For ¢,=0, Sy has a term

A%¢%. Since no derivatives of A appear we can solve
for it:

im 1-—@2
A=— .
2 ¢
Substituting this back gives the gauge field action found
by d’Hoker and Vinet:!?
(1—¢*?
4

(2.11)

(2.10)

So+Sn="5 [, ar [<¢

Because A is imaginary for real ¢, the vector potential Ay
is complex While worrisome, since the action itself 1s
complex in Euclidean space-time this seems inescapable.
Surprisingly, the action we are left with in unitary gauge,
Eqgs. (2.7) and (2.11), is real, and has solutions with real ¢
and A.

The equations of motion for ¢ and A are

. d@*—=1)  m? ($*=1)
= r2 +T (b3 +h2¢)

(2.12)

h"+%h’=i—lz¢2+(—u2+kh2)h (2.13)
¢ =d>p/dr?, etc.

I claim that there is a regular solution of Egs. (2.12)
and (2.13) which is a U(1) monopole. That a solution is a
monopole is actually guaranteed by the form of the an-
satz. Consider the Abelian field strength F,, (Ref. 7):

, h 1
P

—€apch*D,h®D k¢
—_— e ‘/X\a
- a— 3

(add r2

(2.14)

as long as h=£0; F n=—%X*#/r is the dual field strength
for a monopole at the origin.

About the origin, the m-dependent term in Eq. (2.12) is
small relative to that ~1/r2 Thus the limiting behavior
as r—0 is the same as when m =0: ¢~1+0(r?), and
h~r.

At large r, the terms involving 1/r and derivatives
d /dr can be neglected, so the Higgs field behaves as ex-
pected: —h(r)—h,=(u’*/1)!/? as r— . By the same
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reasoning, from Eq. (2.12) when m=£0, ¢ is also nonzero
at infinity: ¢(r)—>*d_ as r— o,

1/4
m? i
’

—2—+h——2 (2.15)
m 0

|
by convention I choose ¢(r)—+¢ .
this means that 4 (r)— A4, at infinity:

im 1—6,°

From Eq. (2.10),

(2.16)

T2 4]
As m is tuned to zero, ¢ ~V'm and vanishes smoothly,
whereas A, ~ih /2 does not. This is not a contradic-
tion: if g2 is taken as given, by the topological quantiza-
tion condition m must be an integer ¢ times g?/4s, and
so m cannot vanish continuously.

For large r, the corrections to h, and ¢, are well

behaved:
2
hy ~ hy 1=f= L]
r—o 'u, r
(2.17)
¢t . 211

N ~ b 1+ 1= 1= | oo

As for the ’t Hooft-Polyakov monopole, I cannot find an
exact solution, but surely there is a regular solution that
smoothly interpolates between the behavior found at large
and small r.

While this solution is regular, it does not have finite ac-
tion. To evaluate the action, the contribution of the trivi-
al vacuum, h(x)=h,, A,(x)=0, must be subtracted.
The remainder has a divergence that is linear in R, the ra-
dius of space-time:

47 R m —¢?)?
So+S;, +Sp~— h%¢?
0+9m +Oh g2 0 ¢ + 4 ¢2 +

(2.18)

~0oR +0(1). (2.19)

The terms in the action which are not written in Eq. (2.18)
do not contribute to the linear divergence, Eq. (2.19).

This linear divergence occurs because when m=£0,
A, (x) is not a pure gauge rotation at space-time infinity:
¢, and A4 0. For the Dirac monopoles of Sec. I, there
is a current induced by the monopole at infinity. In the
present example, this induced current is carried by the
Higgs field. For the ansatz of Egs. (2.1) and (2.2), the
current for the Higgs field is

J =€uapX

Hence, because ¢ #0 there is a Higgs current at infinity,
Jh~€uaX®h b /ras r—o.

As dlscussed in my introductory remarks, o is the
string tension for a monopole antimonopole pair. From
Eq. (2.18), it is easy to read off o

o= ‘:’ L2240 (1—¢ 22 (2.20)
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For small m,

4
g ~ —-—mhw ,

. 221
m<<h, g

while for large m,

Am

2 (2.22)

g ~
m>>hw 4

h,?.

Without a Chern-Simons term, in perturbation theory
the static potential for the unbroken U(1) gauge field is
governed by single photon exchange, and is logarithmic in
space. Polyakov’ has demonstrated how even a dilute
plasma of monopoles changes the U(1) potential from log-
arithmic into linear. This occurs because the monopoles
have Coulombic interactions over large distances, and
respond to external currents as a charged plasma.

With a Chern-Simons term, monopoles and antimono-
poles are bound to each other so tightly that they do not
respond as a plasma, but as a gas of “molecules.” Because
the U(1) field has a Chern-Simons mass, the perturbative
U(1) potential is Yukawa-like. Over large distances, this
is not altered by the (small) monopole molecules.

This result is not as surprising as it might first appear.
Without the Chern-Simons term, the photon is massless
and there are long-range correlations between fields.
These correlations build up to the produce the confining
plasma of monopoles.

The situation is very different when there is a Chern-
Simons term. All gauge fields, including the photon, are
massive, so long-range correlations are not expected. As
argued by d’Hoker and Vinet,!? this lack of long-range
correlations should mean that topologically massive
theories do not confine external charges. My results here
illustrate that, although it is amusing to see how in detail
this comes about—by the confinement of monopoles.

There is one point of subterfuge to which I should con-
fess. Equation (2.12) only determines the value of ¢* at
infinity, so the field equations allow not only ¢—+*¢, as
r— o, but ¢—+i¢ . The solutions I constructed have
real ¢ and imaginary 4; if —=*id,, ¢, 4, and so 4,
will all be purely imaginary. Unlike the o of Eq. (2.20),
which is always positive, imaginary ¢ can give o <0;
physically, this is not sensible.

I suggest the purely imaginary 4, should not be includ-
ed as saddle points in the functional integral. To calculate
the quantum fluctuations about a complex background
field, it is necessary to consider how to deform the con-
tour of integration over 4,(x). For some solutions, the
required deformations of contour will be allowed, while
for others, not. I believe that one could sensibly expand
about the monopole solutions with real ¢ that I have con-
structed (or more precisely, a monopole antimonopole
pair), but that an analysis of small fluctuations would ex-
clude any purely imaginary gauge potentials—such as the
monopole with imaginary ¢.

I argue this by analogy. Consider a real scalar field ¢
with a potential V(¢)=p2¢?/2+1d*/4, u?> and A>0. A
solution to the field equations is ¢; = +i(u?/A)!/?, with an
action density V(#;)=—pu*/4A. While V(¢;) is less than
that of the perturbative vacuum ¢ =0, surely ¢; has noth-

ing to do with the physical vacuum for positive % and A.

This reasoning also excludes some of the solutions
found by d’Hoker and Vinet,'? who found purely imagi-
nary A,(x) that are constant in space-time. While these
solution have an action density that is negative, because
Ay, is purely imaginary I do not think they represent a
physical vacuum state.

III. Z(2) MONOPOLES

*t Hooft'® has argued that in (unbroken) SU(N) gauge
theories, quark confinement in 2 + 1 dimensions occurs
due to a condensate of Z(N) monopoles. These Z(N)
monopoles are effectively Abelian configurations, so by
Sec. I, adding a Chern-Simons term for the gauge field
should result in the confinement of the Z (N) monopoles.
This strongly suggests'? that quarks are not confined in
topologically massive SU(N) gauge theories—certainly
for weak coupling, m >>g?, and probably for any (renor-
malized) m 0.

If Z (N) monopoles are inserted by hand into an SU(N)
gauge theory, they will alter the allowed values of
g =4mm /g% 1 specialize to an SU(2) gauge group
without matter fields, and work at temperature T-£0
(Ref. 4). At finite temperature, 4,(x,t) must be strictly
periodic in time,

Au(x,t+B)=+A4,(x,0)

B=T"", but since there are no fields in the fundamental
representation, the allowed gauge transformations Q need
only be periodic up to a constant element of Z(2):

Q(x,t +B)=+Q(x,t) .

Let Q=exp(w), and assume that at spatial infinity
(x— o0 ), @ approaches a constant value.

I consider a Z(2) monopole at the origin of space
(x=0) at a time t’, and an antimonopole at x=0 and a
time t"”, t" >t'. There are two different ways to run the
Dirac string between these monopoles; for simplicity I as-
sume that the string runs along the time axis. The first is
just to run it from ¢ =t¢" up to ¢t =¢". There is a second,
however: run the string up the time axis from ¢ =¢" to
t =f. Then, using the periodicity in time, run the rest of
the string from ¢ =0 up to ¢ =t'. These two ways are to-
pologically distinct, and I assume the second.

In a background field A4,, under a gauge transforma-
ti(;n3 the action for the Chern-Simons term transforms
as”

4mm
g?

Sy —> Sy, + 2 (w+Aw) . (3.1

The winding number w depends only on {2 and is an in-
teger for any compact manifold."* Aw is a surface term,
and is a function of both  and the background field 4,,:

Aw=ﬁ [ d2ste (3,00 14,) (3.2)
7

d2S* is the surface element for space-time.
I evaluate Aw for a special () and the 4, of a mono-
pole. I take the monopole and antimonopole to be very
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close to each other, t""~¢'. As only the boundary of
space-time enters into Eq. (3.2), for t""~¢' I can neglect
the monopole fields, and consider only the effects of the
Dirac string. Thus in Eq. (3.2) I can take 4, to be pure
gauge, A, =0y " '9,Q/g;

3

Q) =exploy )=exp (3.3)

Lao
2

a is the angular direction in space, x=r;(cosa,sina). Be-
cause of the Z (2) string, Q,, is multivalued:"®
Qula+2m)=—Qyla) . (3.4)
Since € and ), are periodic in time up to *1, in Eq.
(3.2) the integrals over space at t =0 and B cancel, leaving
only the integrals over the spatial boundaries. This in-
cludes not only spatial infinity, but possibly a small circle
of infintesimal radius € about the Dirac string at r,=0.

Over these boundaries, w and w,,; are constant elements of
the Lie algebra, so

1 (B
Aw=§ [ as fo dt €tr(+ 3,0

— 3;wdow ) r—e (3.5
dS' is a surface element for space at r,=€ or «. In-

tegrating dy by parts, and dropping terms ~d,d; (this is
allowed for the w and wy, I use),

-]

(3.6)

1 i
Aw=—7 [ dS'eitr(wd;wy —wpdjo) r=eli_o -
Aw in Eq. (3.6) is manifestly an integral over the two-
cocycle of the gauge group.

I choose an () similar to that used in Ref. 4:

Q=exp (3.7

t A
—iT—=0-0
B

Unlike the ©Q of Ref. 4, this Q is antiperiodic in time.
That is allowed here, because thereAareAno fields in the
fundamental representation. I take ® =®(x) to be a two-
dimensional instanton'* centered on the origin with in-
stanton number=1. I require that as x— oo, ®-0~—>+a3;
then ®-0— —o? as x—0.

Evaluating Aw for this Q gives Aw=+. From Eq.
(3.1), for the partition function to be gauge invariant,
g =4mm /g* must be not just an integer, but an even in-
teger.

The quantization condition on ¢ differs in the presence
of monopoles because the Dirac string carries flux, and
when the string pierces the boundary of space-time, sur-
face terms such as Eq. (3.2), which are usually negligible,
become important.

For Z(N) monopoles in SU(N), I suspect that the
analogous condition is that ¢ must be a multiple of N.
My direct but inelegant approach is not the best way to
show this.
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Similar arguments can be used to derive the quanti-
zation condition on m /e? for Dirac monopoles in the
Abelian theory.*!© Under a gauge transformation
A,—A,+0,A/e, the Abelian Chern-Simons term trans-
forms as

— [ d
J

I consider a A which wraps around the time direction in a
nontrivial way: A(x,B8)=2w, A(x,0)=0. Taking a mono-
pole-antimonopole pair as above, only the contribution of
the Dirac string cutting through ¢ =/ matters. For a
Dirac monopole of unit charge, the flux through the
string is 27 /e; the action changes by —2mi(7m /e?), so
7m /e? must be an integer.

I have been a bit sloppy in these arguments, since I have
neglected the induced current which by Sec. I must run
through the string. Including it, however, does not alter
the conclusions: in the Abelian case, this current contri-
butes +27i(27m /e?) to the action, while for the non-
Abelian, it gives —27ri (4rm /g?).

In the Abelian theory, an alternate argument can be
given following Henneaux and Teitelboim.® In Min-
kowski space-time, the Dirac string carries a real charge
per unit length ey =mgy. For a monopole of unit
strength, gy =2m/e; requiring ey gy to be 2m (integer)
implies that 27m /e? must be an integer. This is less re-
strictive than my condition that 7m /e? be an integer.

In this section I have only considered topological gauge
invariance at the classical level. For the sake of discus-
sion, let me assume that the mass and charge are renor-
malized in the same way when there are monopoles
around as not. Because monopoles are large gauge fields,
this assumption could well be wrong.

In an SU(N) gauge theory with N flavors of adjoint
fermions of mass m, about the trivial vacuum g is renor-
malized>* as g, =¢q +N +NNysgn(mg). [The fermions
must lie in a representation such as the adjoint so that
they do not spoil the Z(N) symmetry.] Consequently, if
g is a multiple of N, so is g.,: topological gauge invari-
ance is still maintained in the quantum theory with Z (N)
monopoles.

In the Abelian theory without monopoles, Coleman and
Hill'® have shown that p=7m /e is only renormalized to
one-loop order, p..,=p +%Nfsgn(mf) for fermions of
charge e. Apparently, for p., to remain an integer N
must be a multiple of 4.

More generally, perhaps a consideration of the quantum
theory with monopoles could yield a unified—and
topological—understanding of all of these results: in the
Abelian theory, a nonperturbative proof of the theorem of
Coleman and Hill, and in the non-Abelian SU(N) theory,
why g, —q is proportional to N.

im

vA im 2 r
B e A,0,4)— same T fd S“AF” ,
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