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%e show that some regularization schemes in conventional quantum field theory can be extended

to the Parisi-%u stochastic-quantization scheme. In particular, we discuss the Pauli-Villars and the
dimensional-regularization methods.

I. INTRODUCTION

where S is the (Euclidean) action and rl(x, t) is a Gaussian
white-noise source having the properties

(~(x,t) & =O,

( r(lxt) r(lx', t') & =25(x x')5(t —t') . —
(1.2)

(1.3)

Using (1.1)—(1.3) the correlation functions of P can be
computed. Parisi and %u show that in the steady-state
limit the equal-time correlation functions go over to the
Euclidean field theory Green's functions. However, this

I

The stochastic quantization scheme of Parisi and Wu'
has attracted the attention of many physicists since it does
not require gauge fixing for constrained systems. In their
original formulation Parisi and Wu start with a Langevin
equation in fictitious time t,

ay 5S +rl(x, t),

aA„'(x, t)

Bt
5S +g~(x, t),

5Aq(x, t)
(1.4)

the "free" two-point correlation function of the gauge
fields, with initial conditions set at t=O, reads

equivalence is only formal because of ultraviolet diver-
gences. If the Parisi-Wu scheme is to be an acceptable
theory in its own right, the analysis of divergences and the
renormalization program must be completed for the sto-
chastic perturbation theory for the correlation functions.
A careful treatment of the ultraviolet divergences requires
regularization schemes for the stochastic perturbation
theory. It is desirable to have regularization schemes
which allow easy computations and a minimal subtraction
procedure. For gauge theories an additional requirement
of preserving the underlying gauge symmetry must be
met.

In the original Parisi-Wu formulation of gauge theories
based on the Langevin equation

( A„'(k, t)A„(k', t')
& =5'b5(k+k') 5„„

I
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~

) —exp( —k
~

t+t'
( )] +2mi n(t, t')

k2

(1.5)

It must be noted that the last term in (1.5) diverges in the
field theory limit t =t'~ Do and even for finite t, t' it has
a bad ultraviolet behavior. Both these difficulties are
bypassed by a suitable Zwanziger stochastic gauge-fixing
term.

Several schemes of regularization have been proposed in
the literature ' for stochastic quantization. In some of
these schemes the properties of the random source are
modified and in some others the Langevin equation is
modified. It has been recently demonstrated' by explicit
computations that the stochastic regularization scheme in
which (1.3) is modified to have a form

& rl(x, t)rl(x ', t') & =25(x — )ax(t t')—
is inconsistent, with Zwanziger gauge fixing. A recently
proposed regularization scheme circumvents the problem

of inconsistency with Zwanziger gauge fixing. This
scheme has the added advantage of being a nonperturba-
tive continuum regularization scheme which is a welcome
feature.

In this paper we discuss some other regularizations for
the stochastic-quantization method (SQM). These are a
straightforward extensions of regularization schemes
known to preserve gauge invariance in the conventional
field-theory formalism.

The perturbative expansion of the correlation functions
can be obtained in a systematic and efficient manner using
the operator formalism of Namiki and Yamanaka. " The
operator formalism offers a very simple and at present the
only available route to a discussion of the renormalization
and the derivation of %'ard-Takahashi identities in the
stochastic formulation of field theories. In the operator
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formalism the Parisi-Wu stochastic quantization of N
dimensional field theory becomes equivalent to a field
theory in %+ 1 dimensions, the extra dimension being the
fictitious time. The perturbation expansion for the
(N +I)-dimensional field theory runs parallel to that of
conventional field theories.

In the following by regularization of stochastic pertur-
bation theory we shall mean the regularization of the cor-
responding five-dimensional theory suggested by the
operator formalism. A short summary of the main
features of the stochastic perturbation theory are given in
Sec. II utilizing the operator formalism. In Sec. III power
counting for the degree of divergence for 8"P -type in-
teractions is presented. We show that the degree of diver-
gence of a stochastic diagram is bounded by the degree of
divergence of a corresponding field-theory diagram. This
enables us to adopt the Pauli-Villars regularization
scheme for SQM. This regularization scheme can be im-
plemented nonperturbatively as it corresponds to inodify-
ing the action of the (%+1)-di mensi onal field theory.
We briefly discuss a higher-derivative-type regularization
procedure for gauge theories. In Sec. IV we give the
dimensional-regularization method for the stochastic per-
turbation theory, closely following the dimensional-
regularization procedure for conventional field theories.

II. PERTURBATION THEORY
IN THE PARISI-%'U SCHEME

In this section we briefly summarize the main features
of the stochastic perturbation theory. For this purpose we
shall be using the operator formalism of Namiki and Ya-
manaka. For details of this formalism we refer the reader
to the original paper and our review.

The equal-time correlation functions

state averages (P(x&, t&) . P(x„,t„))„computed from
the Langevin equation {2.1) are identical with the expecta-
tion value {0

~
T(P(xi, t, ) . . P(x„,t„})

~
0) of the Heisen-

berg operators in a suitably defined vacuum state. The
perturbation expansion then becomes identical with the
one obtained from the functional representation for the
generating functional

Z[J]= f &(I)&irexp f d xdt( —W+iJQ} (2.6)

where

—rt +rtK(P) . (2.7)

As an example, for the P theory ascribed by the action

S = f d x ,'dqPdqP—+ (2.8)

W=@' —ir +n( —2+M )(I}+ i'dt 3l
(2.10}

For perturbative calculations W can be split into a sum of
"free" and interaction parts:

W=WO+W;„, , (2.11)

we have

K = =( CI+M—')P+ IP'
3I

(2.9)

and the five-dimensional Lagrangian density assumes the
form

((I}(x„t,) y(x„,t„))„
obtained from the Langevin equation

with

&0 it +n( ——C—I+M )p,Bt
(2.12)

(2.1) (2.13)

can also be computed by means of probability distribution
P [P,t] obeying the Fokker-Planck equation

"=FP, (2.2)

where F is the Fokker-Planck operator given by

F= f dx K(P)+ (2.3)

The operator formalism associates an operator P(x, t) to
each P(x, t) and a corresponding m(x, t) such that

[P(x,t),&(x', t)]=5(x —x') . (2.4)

These operators obey Heisenberg equations of motion
governed by a Hamiltonian obtained from F by replacing
5/Q by —m". i.e.,

A word about notation: the symbols W, Wo, W;„„W,
etc., will refer to the five-dimensional field theory whereas
the symbols L,LO,L;„„Swill refer to the corresponding
quantities for the underlying four-dimensional field
theory.

We now summarize some of the important features of
the perturbation theory in SQM for a self-interacting sca-
lar field P with L;„, containing the m-fold product of P
fields and n derivatives (L;„,-8"P ). For this case &0 is
the same as given in (2.12) and W;„, will be of the form

onym —i

(1) The free propagators obtained from Wo are

{0
~

T{((tkt)m( k't'))
~

0) =5(k+k')G(k, t t'), (2.14)—
{0~ T P{( kt)P( k't' )}~0)=5(k+k')D(k, t' —t'), (2.15}

{0
~

T{ir(k,t)ir(k', t'})
~
0) =0, (2.16)

H= f dx[ &K(P)+& (x, t)] . — (2.5} where

Nalniki and Yamanaka have shown that the steady- G(k, t t') =8(t —t'}exp[ —(k—'+M')(t —t')], (2.17)
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D(k, r —r')=(k'+M') 'exp[ —
i

r —t'i (k'+m')l

(2.18)

= f dPg(P ~t r—'~ )exp[ —P(k +M )]

G(k, &-g 3 D(at-t }

(b)

(2.19)

d t —t exp — t —t k +M

FIG. 1. The internal lines of the (%+1)-dimensional field
theory.

(2.20)

(2) The Green's functions

&0 T(y(x„r, ) n.(x'„r', ) ) ~0)

of the five-dimensional theory have the usual Feynman-
diagram expansion with vertices determined by W;„, and
the propagators given by (2.14)—(2.20). There are two
types of lines arising from the pairings of a P and a m

field and from the pairing of two P fields. These will be
called the directed and crossed lines and will also be re-
ferred to as the 6 and the D propagators, respectively,
and will be diagrammatically represented as shown in
Figs. 1(a) and 1(b).

(3) The vertices of the Feynman diagrams are deter-
mined by the W;„, part of the five-dimensional action. To
write the contribution of a given diagram each line is as-
signed a four-momentum in accordance with momentum
conservation at each vertex. Each external vertex is as-
signed a time I;, and a time ~; is associated with each
internal vertex. The contribution of a diagram is obtained
by writing suitable propagators for the lines, appropriate
factors for the vertices as dictated by W;„, and combina-
torial factors as is done in conventional field theory.
Apart from the integrations over all loop momenta we
must also integrate over times assigned to the internal ver-
tices.

(4) The directed lines or the 6 propagators alone cannot
form a closed loop. The self-closing loops of a single 6
line which starts and ends at the same vertex are excluded.
All diagrams containing a loop of two or more 6 lines
alone must vanish due the presence of the 8 functions for
the 6 propagators.

(S) The self-closing loops of a single D liqe must be ex-
cluded if and only if the SQM is to correspond to a
normal-ordered interaction Lagrangian L;„, for the under-
lying four-dimensional field theory.

(6) Given any internal vertex there is one and only one
directed line attached to it such that it points towards the

where k; are independent internal (loop) momenta and q;
are the momenta of the external lines. The integrand has
the form

I= II aj(Q, , ~, ~„) II a. .
a]l lines vertices

(2.22)

Here H, is a polynomial in momenta of the lines meeting
at the vertex labeled a. The precise form of H, is deter-
mined by the way derivatives appear in W;„,. For the jth
line QJ is the momentum carried by the line, rj, and rj,
are the fictitious times associated with the vertices joined
by the line j. Also

6(Qi, ri, —ri, ) if Ith line is directed line,

D(Qi, ri, ri, ) otherwis—e .

For an internal line Qi is a linear combination of k s and
q's whereas for an external line Qi is simply qi.

Writing the D propagators in the form (2.19) or (2.20)
we associate a parameter PJ with each crossed line. For
each directed line also we associate a parameter PJ which
is simply the time difference ~J —~J. . Then the contribu-

tion of any diagram can be cast in the form

vertex. As a result the internal directed lines will form a
closed loop and the diagram will vanish [remark (4)] un-
less at least one ir field coming from one of the internal
vertices is paired with an external P field. In other words
we must have at least one external directed line pointing
away from the external vertex.

(7) The contribution of an arbitrary Feynman diagram
has the following structure:

'; I,,q;,~;,t;
VCftiCCS loops

f II d&- f II d. f IId'k
D lines only vertices loops vertices 6 lines D lines

(8) Let us for the moment consider the stochastic diagrams for the Green's functions involving the P fields alone for
the case when W;„, has the form FBI.;„,/BP. For the graphs contributing to Green's functions of 4} alone there is a one-
to-one correspondence between the 6 lines and the internal vertices. The parameters PJ for the 6 lines can be used as in-
tegration variables in place of I r; I and we have

Iiltcrnal vert 1ccs
d7;= II dpi .

6 lines

The contribution of an arbitrary diagram can now be written in the form
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f ' g dP, f gd k; g H, Q p[ —P, (Q, +M )] g 0(P, ) g 0(P —I,—,I). (2.24)
all lines loops vertices all lines 6 lines D lines

Here an explicit expression for AI has been written. The
times ~ appearing in the last set of 8 functions must be
expressed in terms of the parameters Pi. The 8 function
in (2.24) determines the region of integration for the pa-
rameters I Pi I. The different stochastic diagrams of a
fixed topology correspond to different regions of integra-
tion.

The sets of diagrams with a fixed topology are in a
one-to-one correspondence with the field-theory diagrams.
Recalling that the propagator (k2+M~) ' can be written
in the Schwinger parametric form

I3
(k +M ) '= f dPexp[ —P(k +M )) (2.25)

the integrand of (2.24) looks exactly like the field-theory
diagram contribution except for the region of integration
for the arameters Pi. It was first shown by Gonzales-
Arroyo' that when all external times are set equal and
the steady-state limit taken, the stochastic diagrams of a
fixed topology on addition produce the range (O, ao) for
each parameter Pi. Thus this sum becomes identical with
the field-theory contribution written in the Schwinger
parametric form. In Sec. IV we shall define dimensional
regularization for stochastic diagrams in a way so as to
retain this property for the regularized Green's functions
also.

(9) It is easy to see that there exists a maximal loop
passing through all the vertices of a one-particle-
irreducible diagram. This loop integral w'ill diverge only

l

if all the times r;, associated with all the internal vertices,
are equal. If integrals over the loop momenta are carried
out, the divergence of a diagram manifests itself as a
nonintegrable power in difference of times r's associated
with the internal vertices. This fact has been used to sug-
gest a new regularization scheme in Ref. 9.

III. POWER COUNTING

6(k, r r') =8(—r —r')exp[ —f(k)(r —r')], (3.1)

D(k, t r')= —exp[ —
I

r r'
I
f(k)—)f(k)

=
I

&
—&'

I f dPe"P[ —& I
r —&' If (k))

(3.3)

(3.2)

where f ( k)-k "for large k. Writing a typical stochastic
diagram contribution as

I'

f g d k; J(q;,k;, t;), (3.4)
loops

where

For the sake of generality let us assume that we are
dealing with a (N+ I)-dimensional theory with 2';„, hav-
ing a p number of n fields, a q number of P fields, and an
n number of derivatives. Also we assume that the 6 and
D propagators have the form

J=f
vertices internal 6 lines

6}(r —r )exp[ (rI rj )f—(QJ )]—

internal D lines
f d@6(A —1)

I «, «, I
expt: —P—l I «, «, If—(Qi)l

x
external lines

~'(qi, «, «, ) . — (3.5)

For a stochastic diagram we define the following quan-
tities: V= member of vertices, L =number of loops,
E =number of external nfields, ED.——number of exter-
nal crossed lines, EG ——number of external 6 lines
pointing away from the external vertices, E =ED
+EG+E =total number of external lines, ID —number
of internal crossed lines, IG ——number of internal directed
lines, I=IG +ID ——total number of internal lines,
%=dimension of each loop integration.

To compute the behavior of J as the loop momenta
k;~ oo, we replace k; by A,k; and in (3.5) retain only lead-
ing terms for A,~ oo. The large-A. behavior of (3.5) is easi-
ly obtained by replacing integration variables (r; r~) by-
scaled time differences A, "(~;—rj ). We then have

(3.8)

The degree of divergence is now defined to be

(3.9)

Therefore

cu=XL +nV 2(ID+ V —1—)r .

The number of loop integrations is given by

(3.10)

(3.11)

Counting the number of m and P fields needed for the
lines of a diagram in two different ways we get

J(q, kk;, i; )~AJ(q, k;, r; ), ,

where

M =nV 2IDr —2(V —1)r—.

The loop integration diverges if

(3.6)

(3.7)

(3.12)

and

qV +ED+EG 2(ID+ED)+(IG+E——G)+E . (3.13)

Solving for I~ and ID and expressing the degree of diver-
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gencein termsof V, E~, ED, and E we get

co=N+2r +(N/2 r—)[(q p—) V E—D E—~+Eo]
N—EG+(Np+n —N 2r)—V. (3.14)

Now we show that for a I.;„,-r)"P -type interaction
the degree of divergence of stochastic diagrams is bound-
ed by the degree of divergence of corresponding field-
thmry diagram. This would imply that if underlying
quantum field theory (QI I') has been regularized by
means of regulator fields and kinetic-energy-like terms
with higher-order derivatives, the corresponding stochas-
tic theory is also regularized.

For L;„,-r)"P the W;„, for the stochastic theory has
the form n.t)"4 '. Thus we set p= 1, q =rn —1 in (3.14)
and we obtain for N=4

ro=4+2r+(2-r)[(m —2) V E]—
2rEG

—+ (n 2r) V—.

Now recall remark (6) of Sec. II that EG & 1. Hence

ro (E(r —2)+4+ V[n +(2 r)m——4] .

(3.15)

(3.16)

IV. DIMENSIONAL REGULARIZATION

We now discuss an extension of the dimensional-
regularization scheme to Parisi-%'u stochastic quantiza-

The right-hand side is just the degree of divergence of a
diagram with V vertices and E external lines for interac-
tion of type 8"(() in conventional QI'I with propagator
behaving as k

The result that the degree of divergence of a stochastic
diagram is bounded by the degree of divergence of the
corresponding field-theory diagram' suggests new regu-
larization schemes for SQM. Given a field theory in four
dimensions we first regularize it by means of higher-order
derivatives in bilinear terms and by introducing regulator
fields. The regularized stochastic theory is then obtained
by introducing a rr field for each regulator field also and
constructing the five-dimensional action as described in
Sec. II. The resulting five-dimensional theory is automat-
ically regularized.

The regularization scheme discussed by Lee and Zinn
Justin' can therefore be extended to the Parisi-Wu for-
malism of gauge theories.

tion. It has already been noted that the contribution of
ordinary QI' I' diagram written in the Schwinger
parametric representation resembles the contribution of a
stochastic diagram. Therefore to dimensionally regularize
the stochastic diagrams we follow the steps for the dimen-
sional regularization in QFT'. We first calculate integra-
tions over loop momenta in (2.24) as N-dimensional in-
tegration. The resulting expression is then analytically
continued to complex values of X. The divergences will

appear as poles in ¹ This regularization scheme has the
advantage of being very simple and offers a minimal sub-
traction scheme to renormalize the stochastic theory.

It must be remarked that the scheme suggested here
does not correspond to continuing all the five dimensions
to complex values; it leaves the fictitious time untouched.
An important consequence of this feature is that the
correlation functions (0

~
T(P(xi, ti ) ((i(x„,&„))

~
0)

regularized in this way will become identical with the di-
mensionally regularized amplitudes of conventional QFT
at equal times ti ——~ ——t„. This is because of the obser-
vation, in remark (8) of Sec. II, that the regions of integra-
tions for the parameters for different diagrams of fixed
topology give the range 0—eo for each parameter.

The dimensional regularization for the Parisi-Wu for-
mahsm has been independently used in Ref. 15 for some
explicit calculations in Yang-Mills theories.

V. CONCLUSION

In this paper we have shown how conventional regulari-
zation schemes can be utilized to obtain new regulariza-
tion methods for the stochastic formalism. We expect
that these will give us regularizations which will be con-
sistent with gauge invariance and stochastic gauge fixing.
This point merits further detailed investigation.

In the end we note that the regularization schemes dis-
cussed in this paper do not modify the relation

between the 6 and the D propagators. This relation was
crucial for finding a supersymmetry for the stochastic
theory which was in turn used to prove equivalence of the
Parisi-Wu and the conventional formulations of field
theory. '6
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